CSC 252: Computer Organization
Spring 2023: Lecture 14

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

* Programming assignment 3 out.

e Open-book midterm (anything on paper is OK; no electronics)

12

19

26

13

20

27

14

21

28

©

22

Due

16

23

17 18

24 25

Today

Mid-term

A Motivating Example

300 ps 20 ps
Combinational F;
logic g

Clock
« Computation requires total of 300 picoseconds
» Additional 20 picoseconds to save result in register
* Must have clock cycle time of at least 320 ps

Pipeline Diagrams

» Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1 320

OP2 320

OP3 : 320
Time

« 3 instructions will take 960 ps to finish

 First cycle: Inst 1 takes 300 ps to compute new state,
20 ps to store the new states

» Second cycle: Inst 2 starts; it takes 300 ps to
compute new states, 20 ps to store new states

« And so on...

3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R

logic e logic e logic e

A g B g C g
Clock

* Divide combinational logic into 3 stages of 100 ps each

* Insert registers between stages to store intermediate data between
stages. These are call pipeline registers (ISA-invisible)

e Can begin a new instruction as soon as the previous one finishes
stage A and has stored the intermediate data.

* Begin new operation every 120 ps
* Cycle time can be reduced to 120 ps

3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R

logic e logic e logic e

A g B g C g
Clock

3-Stage Pipelined

OoP1| A B C

OoP2 A B C

OP3 A B C
Time

Comparison

 Time to finish 3 insts = 960 ps

Unpipelined . Each inst.’s latency is 320 ps
OP1 320
OP2 320
2
oFs Time 320
3-Stage Pipelined
A B C * Time to finish 3 insets = 120 *
or- 5 =600 ps
OP2 Al B | C o
OP3 A | B | C ut each inst.’s latency

Time

increases: 120 * 3 = 360 ps

Benefits of Pipelining

OP1

 Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP2

OP3 Time

1. Reduce the cycle time from 320 ps to 120 ps

2. CPI reduces from 1 to 1/3 (i.e., executing 3 instruction in one cycle)

* Time to finish 3 insets = 120 *

oPi| A | B | C 5 = 600 ps
OP2 Al B | C Bt ench st s [at
OP3 A B C ut eacn INSt.’s latency

Time

increases: 120 * 3 = 360 ps

Pipeline Trade-offs

e Pros: Decrease the total execution time (Increase the “throughput”).
e Cons: Increase the latency of each instruction as new registers are

needed between pipeline stages.
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
300 ps 20 ps Clock
Combinational Z
logic g

Clock

Throughput

* The rate at which the processor can finish executing an
instruction (at the steady state).

Inst 1
Inst 2

Inst 3
Inst 4

Inst 5

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
B C Clock
A B C
A B C Throughput of this 3-stage
A g c processor is 1 instruction every
120 ps, or 8.3 Giga (billion)
A | B Instructions per Second (GIPS).

10

One Requirement of Pipelining

* The stages need to be using different hardware structures.

- That is, Stage A, Stage B, and Stage C need to exercise
different parts of the combination logic.

OP1| A B C
OP2 A B C
OP3 A B

Time

* Time to finish 3 insets = 120 *

5 =600 ps

- But each inst.’s latency

increases: 120 * 3 = 360 ps

11

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps

_ Comb. R Comb. R Comb. R
Delay: 360 ps logic e logic e logic e
Thrupt: 8.3 GIPS A g B g C g

Clock

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
_ Comb. R Comb. R Comb. R
Delay: 360 ps logic e logic e logic e
Thrupt: 8.3 GIPS A g B g C g
Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

12

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C 9

Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

12

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C 9

Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

12

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps
Thrupt: 5.9 GIPS

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C 9

Clock

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb, R Comb. R Comb. R
'OX'C e logic e logic e
g B g C g

Clock

12

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

170 ps
i
OP1 | A C
OP2 A B
OP3 A
Time
>
50 ps 20 ps 150 ps 20 ps 100 ps
Cycle time: 170 ps
: Comb. R Comb. R Comb.
Delay: 510 ps 'Ogc e logic e logic
Thrupt: 5.9 GIPS g B g C

20 ps

®

Clock

13

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Copy 1
Comb. R Comb. R Comb. R
logic logic e logic e
g B g C g

®

Copy 2
Comb.
logic

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Copy 1
Comb. R Comb. R Comb. R
logic logic e logic e
g B g C g

®

XC=

Copy 2
Comb.
logic

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
Copy 1 —
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B M g C g
U
X
Copy 2
R Comb.
e logic ~—
g B

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
Copy 1 —
Comb. R Comb. R Comb. R
logic LWh_at? e logic e logic e
A ogic? g B M g C g
U
X
Copy 2
R Comb.
e logic —
g B

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages

e Not always possible. What to do if we can’t further pipeline a stage”?
e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps
Comb R CC%I?nyb-' (] R
omb. . Comb.
logic LWh_at? e logic e ogic
A ogic’ g B M g C
U
X
Copy 2
R Comb.
e logic ~—
g B

What logic do you need there?

Hint: it needs to control the clock signals of the
two registers and the select signal of the MUX.

20 ps

®

14

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
lect
Copy1 | °° '
)
Comb. R Comb. R Comb. R
logic \iWh_ag e logic e logic e
A 0gIC g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic —
g B

What logic do you need there?

Hint: it needs to control the clock signals of the
two registers and the select signal of the MUX.

14

Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy 1 selec/t_l\
Comb. R Comb. R Comb. R
logic \iWh_aE? e logic e logic e
A 0gic? g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B

Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy 1 selec;t_l\
Comb. R Comb. R Comb. R
Iog\ic \ng/h_iE) e logic e logic e
9l g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B

15

Aside: Mitigating Unbalanced Pipeline

* Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

e The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost
of extra hardware.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy 1 selec;t_l\
Comb. R Comb. R Comb. R
logic \iWh_aE) e logic e logic e
A 0gic? g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B

15

Another Way to Look At the Microarchitecture

Principles:

» Execute each instruction one at a time, one after another
* EXpress every instruction as series of simple steps

* Dedicated hardware structure for completing each step

* Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

16

PC

Write back

Memory

Execute

Decode

icode ifun
rA ,rB
valC

newPC

valE ,valM

Data
memory

Addr, Data

aluA, aluB

valA,valB

srcA, srcB P
dstA, dstB Register

file g

Fetch

Instruction PC
memory

increment

Fetch

= Read instruction from instruction memory
Decode

= Read program registers
Execute

= Compute value or address
Memory

= Read or write data

Write Back

= Write program registers
PC

= Update program counter

17

Stage Computation: Arith/Log. Ops

OPq rA, rB

6

fn

rA

rB

OPqgrA, rB

18

Stage Computation: Arith/Log. Ops

OPq rA, rB

6

fn

rA(rB

OPqrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Read instruction byte
Read register byte

Compute next PC

18

Stage Computation: Arith/Log. Ops

OPq rA, rB

fn

rA(rB

OPqrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Decode

valA < R[rA]
valB < R[rB]

Read instruction byte
Read register byte

Compute next PC
Read operand A
Read operand B

18

Stage Computation: Arith/Log. Ops

OPq rA, rB

fn

rA(rB

OPqgrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB OP valA
Set CC

Read instruction byte
Read register byte

Compute next PC

Read operand A

Read operand B

Perform ALU operation

Set condition code register

18

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation
Set condition code register

OPq I‘A, rB fnlrAlrB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory

18

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

OPq I‘A, rB fnlrAlrB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back

18

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

OPq rA, rB fn|rA|rB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |PC < valP Update PC

18

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

19

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Read instruction byte
Read register byte
Read displacement D
Compute next PC

19

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

Fetch
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]

valB < R[rB]

Read instruction byte
Read register byte
Read displacement D
Compute next PC
Read operand A
Read operand B

19

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB + valC

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

19

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10
Decode valA < R[rA]

valB <— R[rB]

valE < valB + valC
Execute
Memory M;[valE] < valA

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

19

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB < R[rB]
valE < valB + valC
Execute
Memory M;[valE] < valA
Write
back

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

19

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB <— R[rB]
valE < valB + valC
Execute
Memory M;[valE] < valA
Write
back
PC update |PC < valP

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

19

Stage Computation: Jumps

jXX Dest

* Compute both addresses
* Choose based on setting of condition codes and branch condition

20

Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < My[PC+1]
valP < PC+9

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

20

Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < My[PC+1]
valP < PC+9

Decode

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

20

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?

20

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)
Memory

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?

20

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)
Memory
Write
back

* Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

* Choose based on setting of condition codes and branch condition

20

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)
Memory
Write
back
PC update [PC <- Cnd ? valC : valP

* Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

* Choose based on setting of condition codes and branch condition

20

Pipeline Stages

Fetch

e Select current PC

* Read instruction

« Compute incremented PC
Decode

e Read program registers
Execute

« Operate ALU
Memory

* Read or write data memory
Write Back

« Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

Decode

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

21

Real-World Pipelines: Car Washes

22

Real-World Pipelines: Car Washes

Sequential

22

Real-World Pipelines: Car Washes

Sequential

Pipelined

HiTH

22

Real-World Pipelines: Car Washes

Sequential

Pipelined

L
''''''
HH

|dea
 Divide process into independent stages
* Move objects through stages in sequence
o At any given times, multiple objects being processed

22

Pipeline lllustration

Fetch

Decode

Execute

Memory

Write
back

23

Pipeline lllustration

Inst0

Fetch

Decode

Execute

Memory

Write
back

23

Pipeline lllustration

Insti

Fetch

Inst0

Decode

Execute

Memory

Write
back

23

Pipeline lllustration

Inst2

Fetch

Insti

Decode

Inst0

Execute

Memory

Write
back

23

Pipeline lllustration

Inst3

Fetch

Inst2

Decode

Insti

Execute

Inst0

Memory

Write
back

23

Pipeline lllustration

Inst4

Fetch

Inst3

Decode

Inst2

Execute

Insti

Memory

Inst0

Write
back

23

Pipeline lllustration

Fetch

Inst4

Decode

Inst3

Execute

Inst2

Memory

Insti

Write
back

23

Pipeline lllustration

Fetch

Decode

Inst4

Execute

Inst3

Memory

Inst2

Write
back

23

Pipeline lllustration

Fetch

Decode

Execute

Inst4

Memory

Inst3

Write
back

23

Pipeline lllustration

Fetch

Decode

Execute

Memory

Inst4

Write
back

23

Another lllustration

239

Clock
OP1
OP2 A B C
OP3 A B C
0 120 240 360 480 640
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb. R
= logic —> logic F==je
A C g
Clock

24

Another lllustration

241

Clock

OP1
OP2 A B

C
OP3 B C
0 120 240 360 480 640
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. Comb. R
= logic =I>el=y logic logic =I>e
A g B C g
Clock

25

Another lllustration

300
Clock | B
OP1 _
OP2 A 3 C
OP3 B C
IO 1|20 2|40 3|60 4180 6|»4O
Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Com. R Comb. : R
= logic =eF=1 logi — e
A g B g

Clock

26

Another lllustration

359
Clock | B
OP1 _
OP2 A B C
OP3 A B C
Io 1I20 2|4o 3|60 4180 é4o

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb.
= logic —D e —> logic
A g B

Clock

27

Making the Pipeline Really Work

e Control Dependencies
e What is it?
» Software mitigation: Inserting Nops
» Software mitigation: Delay Slots

28

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

X0rg %srax, Ssrax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

]

X0rg %rax, srax F
jne L1 # Not taken
irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2

X0rg %rax, srax F D

jne L1 # Not taken F

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3
X0rg %srax, srax F D | E
jne L1 # Not taken F D

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:
e Jne L1 determines whether irmovg $1, %rax should be

executed

« But yne doesn’t know its outcome until after its Execute stage

X0rg %srax, Ssrax

jne L1

nop

irmovg $1, %rax
L1 irmovg $4, S%rcx

irmovg $3, %rax

1 2 3

F|D|E

Not taken F D
F

Fall Through
Target
Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be

executed

« But yne doesn’t know its outcome until after its Execute stage

X0rg %srax, Ssrax

jne L1

nop

irmovg $1, %rax
L1 irmovg $4, S%rcx

irmovg $3, %rax

1 2 3 4

F D E M

Not taken F| | D E
F D

Fall Through
Target
Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.

o Jump instruction example below:

L1

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4
X0rg %srax, Ssrax F D E M
jne L1 # Not taken F D|E
nop F D
nop F
irmovg $1, %rax # Fall Through
irmovg $4, %rcx # Target

irmovg $3, %rax # Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4 5

X0rg %srax, srax F' D E M W
jne L1 # Not taken F D E M
nop F D E
nop F D
irmovg $1, %rax # Fall Through F

L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4 5

X0rg %srax, srax F' D E M W
jne L1 # Not taken F D E M
nop F D\ E
nop F \D
irmovg $1, %rax # Fall Through

L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

29

Control Dependency

e Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.
o Jump instruction example below:

« jne L1 determines whether irmovg $1,

executed

« But yne doesn’t know its outcome until after its Execute stage

]

Srax should be

2

3

4

5

X0rg %srax, Ssrax F

D

6

jne L1 # Not taken

nop

nop

irmovg $1, %rax
L1 irmovg $4, S%rcx

irmovg $3, %rax

Fall Through
Target
Target + 1

F

7

m O m

8

m O/ mZ

omZ S

9

mom=Z s

<

Mmoo mZZ S

om=zZ =

29

Delay Slots

XO0rg %Srax, srax

==

L1l irmovg $4, %r
irmovg $3, %rax

1

F

N, Can we make use of
the 2 wasted slots?

Fall Through
Target

Target + 1

m| O m

mo mZ

W

M | W

E MW

Dl E M W

F D E| M| W
F I D E M
F| D E

30

Delay Slots

1 2 3 4 5 6 7 8 9
XO0rg %Srax, srax F D E M W
Jae L1 I F D E M W
’ ™, Can we make use of F 1D E MW
the 2 wasted slots?
F D E M W
1 T O g™ # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D E
1f (cond) {
do_A();
} else {
do_B() 7
}
do C();

30

Delay Slots

1 2 3 4 5 6 7 8 9

XOrg %rax, %srax F D E M W
! ™ Can we make use of " :::) E '\é \|</|V W
the 2 wasted slots?
F/ D E M| W
fffffffff o ST .2 # Fall Through F/' D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D E

if (cond) {

do_A();
Have to make sure do C doesn’t \ elge {
dependon do Aand do B!!!
do_B() 7
}
do C();

30

Delay Slots

1

XO0rg %Srax, srax F

N, Can we make use of
the 2 wasted slots?

Fall Through
CxX # Target

Target + 1

L1 dirmovg $4;<%

do C() ;
_ if (cond) {
A less obvious
example do A();
} else {
do_B() 7
}

m| O m

Mmoo mZ

W
M | W
E MW
Dl E M W
F D E| M| W
F I D E M
F | D | E

31

Delay Slots

XO0rg %Srax, srax

= =y 1 o .
/// ~

L1 dirmovg $4,<%

do C() ;
_ if (cond)
A less obvious
example do A();
} else {
do_B() 7

™, Can we make use of
the 2 wasted slots?

{

Fall Through
CxX # Target

Target + 1

i 2 3 4 5 6 7 8 9
F D E M W
F D E | M | W
F D E | M W
F D E M W
F D E M W
F D E M
F D E
add A, B
or C, D
sub E, F
Jle 0x200
add A, C

31

Delay Slots

1 2 3 4 5 6 7 8
XO0rg %Srax, srax F D E M W
e Ll }}“"Can we make use of — :3 E '\é VI\X W
the 2 wasted slots?
F D E M| W
Ottt # Fall Through F D E M| W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D
do C(); add A, B add A, B
_ if (cond) { or C, D sub E, F
A less obvious ,
examp'e dO_A(); sub E, F jle 0x200
} else { Jle 0x200 or C, D
do B(); add A, C add A, C
}

31

Delay Slots

1 2 3 4 5 6 7 8 9

XO0rg %Srax, srax F D E M W
AT ! \ Can we make use of — :::) E '\é K/IV W
the 2 wasted slots?
F D E M| W
~~~~~~~~ <7 K - # Fall Through F/ D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F| D|E
do C(); add A, B add A, B
_ if (cond) { or C, D sub E, F
A less obvious ,
examp'e dO_A(); sub E, F jle 0x200
} else { Jle 0x200 or C, D
do B(); add A, C add A, C
J Why don’t we move

the sub instruction?

31



Resolving Control Dependencies

o Software Mechanisms

« Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
o Stalling (Think of it as hardware automatically inserting nops)
e Branch Prediction
e Return Address Stack

32



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written

« Bubble: signals correspond to a nop

« Why is it good for the hardware to do so anyways”?

Fetch

Decode

Execute

Memory

Write
back

33



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written

« Bubble: signals correspond to a nop

« Why is it good for the hardware to do so anyways”?

xorq

Fetch

Decode

Execute

Memory

Write
back

33



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written

« Bubble: signals correspond to a nop

« Why is it good for the hardware to do so anyways”?

jle

Fetch

xorq

Decode

Execute

Memory

Write
back

33



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written

« Bubble: signals correspond to a nop

« Why is it good for the hardware to do so anyways”?

Stall

Fetch

jle

Decode

xorq

Execute

Memory

Write
back

33



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written

« Bubble: signals correspond to a nop

« Why is it good for the hardware to do so anyways”?

Stall

Fetch

(Bubble)
nop

Decode

jle

Execute

xorq

Memory

Write
back

33



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add (Bubble) (Bubble) jle xorq
nop nop
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add (Bubble) (Bubble) jle
nop nop
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add (Bubble) (Bubble)
nop nop
Fetch el Decode |e| Execute |e| Memory |e Write e
9 g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written

« Bubble: signals correspond to a nop

« Why is it good for the hardware to do so anyways”?

Fetch

Decode

Execute

add

Memory

(Bubble)
nop

Write
back

33



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g

33



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written

« Bubble: signals correspond to a nop

« Why is it good for the hardware to do so anyways”?

Fetch

Decode

Execute

Memory

Write
back

33



How are Stall and Bubble Implemented in Hardware?

34



How are Stall and Bubble Implemented in Hardware?

Input =y Output = x

Normal =DIX—>

stall ﬁ bubble

=0 =0



How are Stall and Bubble Implemented in Hardware?

] Risin T
Input =y Output = x |:> cIocl? |:> Output =y

Normal —Dix— — —D y—=>

stall ﬁ bubble —

=0 =0



How are Stall and Bubble Implemented in Hardware?

Rising

Input =y Output = x |:> clock |:> Output =y
Normal —DIX—> - =D y—>
stall bubble —
= O _ﬁ_ = O

Input =y Output = x

Stall =DIX =D

stall bubble
stall_yy_bubble



How are Stall and Bubble Implemented in Hardware?

Risin
Input =y Output = x |:> cIocl? |:> Output =y
Normal —DIX—> - =D y—>
stall bubble —
Pl e
] Risin ]
Input =y Output = x |:> cIockg |:> Output = x
Stall =DIX = — = =D

stall bubble
stall_yy_bubble

34



How are Stall and Bubble Implemented in Hardware?

Normal

Stall

Bubble

Input =y

Input =y

Output = x

=DIX =D

stall ﬁ bubble

=0 =0

Output = x

=X —>

stall bubble
stall_yy_bubble

Input =y Output = x

=X —>

stall bubble

=0—’.;— =1

=

=

Rising
clock

Rising
clock

=

—>

Output =y

y—>

Output = x

34



How are Stall and Bubble Implemented in Hardware?

Input =y

Output = x

—>

Normal =—DiX

=0

Input =y

stall ﬁ bubble

=0

Output = x

Stall =DIX =D

Input =y

stall bubble
stall_yy_bubble

Output = x

Bubble —DIX >

bubble

stall
=0 j— =1

=

=

=

Rising
clock

Rising
clock

Rising
clock

Output =y
=
=Dy
Output = x
=
=D X—
|:> _n Output =nop
—Df o>
p

34



