
CSC 252: Computer Organization 
 Spring 2022: Lecture 21 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/courses/
252/spring2022/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 4 due April 8.

Today Due

https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html

Carnegie Mellon

A System Using Physical Memory Only

• Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

!3

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

4

Carnegie Mellon

A System Using Virtual Memory

• Used in all modern servers, laptops, and smart phones

• One of the great ideas in computer science (back in the 60s)

•MMU: Memory Management Unit; part of the OS

!4

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

CPU
Virtual address

(VA)

CPU Chip

44100

Carnegie Mellon

Virtual Memory

!5

Physical/Main
Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table
of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…

…

…

…

…

…

…

…

O

P

Q

R

Data 2

99

Process 2

Virtual Memory
of Process 2…

…

Data 3

…

Unallocated

…

…

…

Page Table
of Process 2

…

…
O

3

P

Unallocated

Q

R

4

100

101

102

103

104

105

Carnegie Mellon

The Big Idea: Virtual Memory

!6

Carnegie Mellon

The Big Idea: Virtual Memory
•What does a programmer want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

!6

Carnegie Mellon

The Big Idea: Virtual Memory
•What does a programmer want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue

• On a 64-bit machine, the VM size for each process is 2^64 bytes (~infinite)
• Data in virtual memory by default stays in disk (~TBs), which limits the

actual amount of data you can store (on a local machine).
• Data moves to physical memory (DRAM) “on demand”
• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.
• Effectively, virtual memory system transparently share the physical memory

across different processes
• Manage the sharing automatically: hardware-software collaborative

strategy (too complex for hardware alone)

!6

Carnegie Mellon

Today
• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!7

Carnegie Mellon

High Level Ideas
• Use physical memory as a “cache” for the hard drive, just like

how caches are used w.r.t. physical memory.

!8

Carnegie Mellon

High Level Ideas
• Use physical memory as a “cache” for the hard drive, just like

how caches are used w.r.t. physical memory.
• Goal: store the data a program will need in the near future in

physical memory

!8

Carnegie Mellon

High Level Ideas
• Use physical memory as a “cache” for the hard drive, just like

how caches are used w.r.t. physical memory.
• Goal: store the data a program will need in the near future in

physical memory
• Moving data back and forth between physical memory and hard

drive is hidden from programmers. OS does it.

!8

Carnegie Mellon

High Level Ideas
• Use physical memory as a “cache” for the hard drive, just like

how caches are used w.r.t. physical memory.
• Goal: store the data a program will need in the near future in

physical memory
• Moving data back and forth between physical memory and hard

drive is hidden from programmers. OS does it.
• So need to exploit spatial and temporal locality.

!8

Carnegie Mellon

High Level Ideas
• Use physical memory as a “cache” for the hard drive, just like

how caches are used w.r.t. physical memory.
• Goal: store the data a program will need in the near future in

physical memory
• Moving data back and forth between physical memory and hard

drive is hidden from programmers. OS does it.
• So need to exploit spatial and temporal locality.

• Exploiting spatial locality: in what granularity are we moving data
between physical memory and hard drive? One byte?

!8

Carnegie Mellon

High Level Ideas
• Use physical memory as a “cache” for the hard drive, just like

how caches are used w.r.t. physical memory.
• Goal: store the data a program will need in the near future in

physical memory
• Moving data back and forth between physical memory and hard

drive is hidden from programmers. OS does it.
• So need to exploit spatial and temporal locality.

• Exploiting spatial locality: in what granularity are we moving data
between physical memory and hard drive? One byte?

• Exploiting temporal locality: replacement policy (e.g., LRU).

!8

Carnegie Mellon

VM Concepts
• Divide the virtual memory to N contiguous pages.
• Each page has a certain amount of continuous bytes, e.g., 4 KB.

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

!9

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory
Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Divide the virtual memory to N contiguous pages.
• Each page has a certain amount of continuous bytes, e.g., 4 KB.

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

!9

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory
Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Divide the virtual memory to N contiguous pages.
• Each page has a certain amount of continuous bytes, e.g., 4 KB.

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

!9

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory
Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see Assuming page size is 4B
Virtual memory size is 32B
Physical memory size is 16B

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Divide the virtual memory to N contiguous pages.
• Each page has a certain amount of continuous bytes, e.g., 4 KB.

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

!9

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory
Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see Assuming page size is 4B
Virtual memory size is 32B
Physical memory size is 16B

offsetVirtual page number

2-bit3-bit

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Divide the virtual memory to N contiguous pages.
• Each page has a certain amount of continuous bytes, e.g., 4 KB.

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

!9

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory
Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see Assuming page size is 4B
Virtual memory size is 32B
Physical memory size is 16B

offsetVirtual page number

2-bit3-bit

offsetPhysical page number

2-bit2-bit

PP 2
PP 3

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?

!10

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry

!10

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory

!10

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?

!10

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

!10

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?

!10

Carnegie Mellon

Enabling Data Structure: Page Table
• How do we track which virtual pages are mapped to physical

pages, and where they are mapped?
• Use a table to track this. The table is called page table, in which

each virtual page has an entry
• Each entry records whether the corresponding virtual page is

mapped to the physical memory
• If mapped, where in the physical memory it is mapped to?
• If not mapped, where on the disk is the virtual page?

• Do you need a page table for each process?
• Per-process data structure; managed by the OS kernel

!10

Carnegie Mellon

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

!11

Carnegie Mellon

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

!11

Disk

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

!11

Disk

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

!11

Disk

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Physical page
number (PPN) or

disk address

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

!11

Physical memory
(DRAM)

VP 7
VP 4

Disk

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Physical page
number (PPN) or

disk address

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

!11

Physical memory
(DRAM)

VP 7
VP 4

Disk

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Physical page
number (PPN) or

disk address

Carnegie Mellon

Page Hit
• Page hit: reference to VM word that is in physical memory

!12

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Disk

Carnegie Mellon

Page Hit
• Page hit: reference to VM word that is in physical memory

!12

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Page Fault
• Page fault: reference to VM word that is not in physical memory

!13

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Disk

Carnegie Mellon

Page Fault
• Page fault: reference to VM word that is not in physical memory

!13

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)

!14

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)

!15

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)

!16

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)
• Offending instruction is restarted: page hit!

!17

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4
VP 6
VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

!18

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4

VP 6
VP 7

VP 3

VP 5

null
Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

!18

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4

VP 6
VP 7

VP 3

VP 5

Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

!18

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1
VP 2

VP 4

VP 6
VP 7

VP 3

VP 5

Disk

Carnegie Mellon

Virtual Memory Exploits Locality (Again!)
• Virtual memory seems terribly inefficient, but it works because

of locality.

• At any point in time, programs tend to access a set of active
virtual pages called the working set

• Programs with better temporal locality will have smaller working sets

• If (working set size < main memory size)

• Good performance for one process after initial misses

• If (SUM(working set sizes) > main memory size)

• Thrashing: Performance meltdown where pages are swapped

(copied) in and out continuously

!19

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

!20

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.

!20

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM

!20

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N

!20

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

!20

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)
• 15-inch Macbook Pro 2017: 16 GB (234)

!20

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)
• 15-inch Macbook Pro 2017: 16 GB (234)

• Store only the most frequently used pages in the physical memory

!20

Carnegie Mellon

VM Concepts Summary
• Conceptually, virtual memory is an array of N pages

• Each virtual page is either in physical memory, or on disk, or
unallocated

• The physical memory (PM) is an array of M pages stored in DRAM.
• Page size is the same for VM and PM
• M << N
• On a 64-bit machine, virtual memory size = 264

• Physical memory size is much much smaller:

• iPhone 8: 2 GB (231)
• 15-inch Macbook Pro 2017: 16 GB (234)

• Store only the most frequently used pages in the physical memory
• If a page is not on the physical memory, have to first swap it from

the disk to the DRAM.

!20

Carnegie Mellon

Calculate Bits in VA and PA

!21

• In a 64-bit machine, VA is 64-bit long. Assuming PM is 4 GB.
Assuming 4 KB page size.

offsetVirtual Page Number

offsetPhysical Page Number

Carnegie Mellon

Calculate Bits in VA and PA

!21

• In a 64-bit machine, VA is 64-bit long. Assuming PM is 4 GB.
Assuming 4 KB page size.

• How many bits for page offset?

• 12. Same for VM and PM

offsetVirtual Page Number

offsetPhysical Page Number

Carnegie Mellon

Calculate Bits in VA and PA

!21

• In a 64-bit machine, VA is 64-bit long. Assuming PM is 4 GB.
Assuming 4 KB page size.

• How many bits for page offset?

• 12. Same for VM and PM

• How many bits for Virtual Page Number?

• 52, i.e., 252 virtual pages

offsetVirtual Page Number

offsetPhysical Page Number

Carnegie Mellon

Calculate Bits in VA and PA

!21

• In a 64-bit machine, VA is 64-bit long. Assuming PM is 4 GB.
Assuming 4 KB page size.

• How many bits for page offset?

• 12. Same for VM and PM

• How many bits for Virtual Page Number?

• 52, i.e., 252 virtual pages

• How many bits for Physical Page Number?

• 20, i.e., 220 physical pages

offsetVirtual Page Number

offsetPhysical Page Number

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

!22

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages

!22

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table

!22

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

!22

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

• Do you need a page table for each process?

!22

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

• Do you need a page table for each process?
• Yes

!22

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• Some special SRAM?
• In main memory?
• On disk?

!23

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• Some special SRAM?
• In main memory?
• On disk?

• ~MBs of a page table per process

• Too big for on-chip SRAM (c.f., a L1 cache is ~32 KB)
• Too slow to access in disk
• Put the page table in DRAM, with its start address stored in a

special register (Page Table Base Register). More on this later.

!23

Carnegie Mellon

Today
• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!24

Carnegie Mellon

VM as a Tool for Memory Management
• Each process has its own virtual address space

• It can view memory as a simple linear array
• Mapping scatters addresses through physical memory

• Well-chosen mappings can improve locality

!25

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

Virtual Memory Enables Sharing
• Simplifying memory allocation

• Each virtual page can be mapped to any physical page
• A virtual page can be stored in different physical pages at different times

• Sharing code and data among processes

• Map virtual pages to the same physical page (here: PP 6)

!26

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

VM Provides Further Protection Opportunities

• Extend PTEs with permission bits

• MMU checks these bits on each access (read/write/executable/

accessible only in supervisor mode?)

• Remember buffer overflow attack?

!27

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

• • •

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes
PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical
Address
Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes
Yes

Yes

Yes

No

Carnegie Mellon

Today
• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

!28

Carnegie Mellon

So Far…

!29

Magic Memory
Management
Unit (Part of OS)

User 1

User 2

User n

VA
data

PA

data

What does an MMU do?

• Translate address from a VA to PA

• Enforce permissions
• Fetch from disk

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!30

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (issued by CPU)

Physical address (what will be used to
access the DRAM)

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!30

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (issued by CPU)

Physical address (what will be used to
access the DRAM)

Valid Physical page number (PPN)
Page table (in the physical memory)

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!30

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (issued by CPU)

Physical address (what will be used to
access the DRAM)

Valid Physical page number (PPN)
Page table (in the physical memory)

Page table  
base register

(PTBR)

Physical page table
address for the current
process

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!30

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (issued by CPU)

Physical address (what will be used to
access the DRAM)

Valid Physical page number (PPN)
Page table (in the physical memory)

Page table  
base register

(PTBR)

Physical page table
address for the current
process

0p-1pn-1

0p-1pm-1

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!30

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (issued by CPU)

Physical address (what will be used to
access the DRAM)

Valid Physical page number (PPN)
Page table (in the physical memory)

Page table  
base register

(PTBR)

Physical page table
address for the current
process

0p-1pn-1

0p-1pm-1

PTEA = PTBR +
VPN * sizeof (PTE)

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!30

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (issued by CPU)

Physical address (what will be used to
access the DRAM)

Valid Physical page number (PPN)
Page table (in the physical memory)

Page table  
base register

(PTBR)

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

PTEA = PTBR +
VPN * sizeof (PTE)

Carnegie Mellon

Virtual page number (VPN)

Address Translation With a Page Table

!30

Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (issued by CPU)

Physical address (what will be used to
access the DRAM)

Valid Physical page number (PPN)
Page table (in the physical memory)

Page table  
base register

(PTBR)

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

PTEA = PTBR +
VPN * sizeof (PTE)

Carnegie Mellon

Address Translation: Page Hit

!31

MMU
Memory

CPU

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

!31

MMU
Memory

CPU

CPU Chip

VA
1

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

!31

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

!31

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

!31

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

PA
4

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

!31

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE
3

PA
4

Data
5

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

!32

MemoryCPU

CPU Chip

DiskMMU

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU

!32

MemoryCPU

CPU Chip

VA
1

DiskMMU

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU

!32

MemoryCPU

CPU Chip

VA
1

PTEA
2

DiskMMU

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory

!32

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 DiskMMU

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception

!32

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

4

Exception

MMU

Page fault handler

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)

!32

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

MMU

Page fault handler

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

!32

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

New page

6

MMU

Page fault handler

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

!32

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE
3 Disk

5

Victim page

4

Exception

New page

6

7
MMU

Page fault handler

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Integrating VM and Cache

!33

CPU MMU Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMU Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

Memory

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

Memory

PTEA

miss

PTEA

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

Memory

PTEA

miss

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

Memory

PTEA

miss

PTE

PTEA

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

PA
Memory

PTEA

miss

PTE

PTEA

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

PTEA

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

L1
cache

Integrating VM and Cache

!33

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

Data

PA

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

