
CSC 252: Computer Organization 
 Spring 2021: Lecture 18 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/courses/252/
spring2021/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 4 soon to be released later today.
• Final exam: Wednesday, May 12, 19:15 PM. 3 hours.

Today

Due

https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)valid bit

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size:
C = S x E x B data bytes
Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing
replacement policy
(not shown).

valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

•Locate set

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

•Locate set
•Check if any line in set 
has matching tag
•Yes + line valid: hit

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

•Locate set
•Check if any line in set 
has matching tag
•Yes + line valid: hit
•Locate data starting 
at offset

Carnegie Mellon

Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

Carnegie Mellon

Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!9

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!9

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

!13

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

!14

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:

!14

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space

!14

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main

memory.

!14

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main

memory.
• Provided by OS through “virtual memory”

!14

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

!15

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing Example

• Running program “top” on Unit/Linux

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

!16

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Context switch
managed by the OS.
Not controllable by
programmers.

Carnegie Mellon

Multiprocessing: The Multi-Core Case

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of the

caches)
• Each can execute a separate process

• Scheduling of processors onto
cores done by kernel

!18

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

!19

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

!19

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C

!19

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C

!19

Process A Process B Process C

Time

Carnegie Mellon

User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in

time

• However, we can think of concurrent processes as running in
parallel with each other

!20

Time

Process A Process B Process C

Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as

part of some existing process.

• Control flow passes from one process to another via a context
switch

!21

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

!22

Carnegie Mellon

Obtaining Process IDs
•pid_t getpid(void)

• Returns PID of current process

•pid_t getppid(void)
• Returns PID of parent process

!23

Carnegie Mellon

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as
being in one of three states

• Running	

• Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

• Stopped

• Process execution is suspended and will not be scheduled until

further notice (through something call signals)

• Terminated

• Process is stopped permanently

!24

Carnegie Mellon

Terminating Processes
• Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function

•void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer

value from the main routine

•exit is called once but never returns.

!25

Carnegie Mellon

Creating Processes
• Parent process creates a new running child process by calling
fork

•int fork(void)
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent

• fork is interesting (and often confusing) because  
it is called once but returns twice

!26

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

• Shared open files
• stdout is the same in both

parent and child

Carnegie Mellon

Process Address Space

!28

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Process Address Space

!28

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

What Happens at fork()?

!29

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Child
Process

Program

Counter

Carnegie Mellon

Creating Processes
• Parent process creates a new child process by calling fork
• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

•int fork(void)

• Returns 0 to the child process
• Returns child’s PID to the parent process

!30

Carnegie Mellon

Process Graph Example

!31

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!32

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!32

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!32

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:

