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Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/courses/252/
spring2021/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 4 soon to be released later today.
• Final exam: Wednesday, May 12, 19:15 PM. 3 hours.

Today

Due

https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
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General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size: 
C = S x E x B data bytes 
Overhead: 
Tag, valid bit, dirty bit. 
Plus bits for implementing 
replacement policy 
(not shown).

valid bit

d

dirty bit
(if write-back)
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E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

•Locate set
•Check if any line in set 
has matching tag
•Yes + line valid: hit
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Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

•Locate set
•Check if any line in set 
has matching tag
•Yes + line valid: hit
•Locate data starting 
at offset
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Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654
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Example: Direct Mapped Cache
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S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

tag

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
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x
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xx x

0 ? ?
v Tag Line
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
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Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1
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E-way Set Associative Cache (Here: E = 2)
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E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654
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E-way Set Associative Cache (Here: E = 2)
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E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

Set 0

Set 1
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Set 0
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
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0

0 0

miss

1 00 M[0-1]Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
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x x

0 ? ?
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0

0 0
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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Today
• Processes and Signals: running multiple programs concurrently


• Processes 
• Process Control 
• Signals
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Processes
• Definition: A process is an instance of a running 

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key 
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main 

memory. 
• Provided by OS through “virtual memory”

!14

CPU
Registers

Memory
Stack
Heap

Code
Data



Carnegie Mellon

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

!15

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap
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Data
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Multiprocessing Example

• Running program “top” on Unit/Linux

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

!16
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Memory
Process 1

Multiprocessing Illustration

!17
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Context switch 
managed by the OS. 
Not controllable by 
programmers.
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Multiprocessing: The Multi-Core Case

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of the 

caches)
• Each can execute a separate process

• Scheduling of processors onto 
cores done by kernel
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C

!19
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User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in 

time


• However, we can think of concurrent processes as running in 
parallel with each other

!20
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Context Switching
• Processes are managed by a shared chunk of memory-resident 

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as 

part of some existing process.

• Control flow passes from one process to another via a context 
switch

!21
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Today
• Processes and Signals: running multiple programs concurrently


• Processes 
• Process Control 
• Signals

!22
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Obtaining Process IDs
•pid_t getpid(void) 

• Returns PID of current process

•pid_t getppid(void) 
• Returns PID of parent process

!23
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Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as 
being in one of three states


• Running	 

• Process is either executing, or waiting to be executed and will 

eventually be scheduled (i.e., chosen to execute) by the kernel 

• Stopped

• Process execution is suspended and will not be scheduled until 

further notice (through something call signals) 

• Terminated

• Process is stopped permanently 

!24
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Terminating Processes 
• Process becomes terminated for one of three reasons:


• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function

•void exit(int status) 
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer 

value from the main routine

•exit is called once but never returns.
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Creating Processes
• Parent process creates a new running child process by calling 
fork


•int fork(void) 
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent


• fork is interesting (and often confusing) because  
it is called once but returns twice
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fork Example

!27

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

linux> ./fork 
parent: x=0 
child : x=2

fork.c
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int main() 
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address space

• x has a value of 1 when fork 
returns in parent and child

• Subsequent changes to x 
are independent
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fork Example

!27

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

linux> ./fork 
parent: x=0 
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution 
order of parent and child

• Duplicate but separate 
address space

• x has a value of 1 when fork 
returns in parent and child

• Subsequent changes to x 
are independent

• Shared open files
• stdout is the same in both 

parent and child
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Process Address Space

!28

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp 
(stack 
pointer)

Memory
invisible to 
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded  from  
the  executable 
file

Program 
Counter



Carnegie Mellon

Process Address Space
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What Happens at fork()?

!29

Code Segment
int main() 
{ 
  pid_t pid; 
  int x = 1; 

  pid = Fork();  
  if (pid == 0) { 
    /* Child */ 
    x++; // 2 
    exit(0); 
  } 

  /* Parent */ 
  x--; // 0 
  exit(0); 
}
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What Happens at fork()?
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  exit(0); 
}

Parent Address Space



Carnegie Mellon

What Happens at fork()?
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Creating Processes
• Parent process creates a new child process by calling fork 
• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

•int fork(void) 

• Returns 0 to the child process 
• Returns child’s PID to the parent process
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Process Graph Example

!31

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c
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Interpreting Process Graphs
• Original graph:


• Abstracted graph:

!32
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Interpreting Process Graphs
• Original graph:


• Abstracted graph:
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