
1

Mid-Term Exam

CSC 252/452 Fall 2024
University of Rochester

Oct. 9th, 2024

Instructions:

1. This exam has 13 pages including this page. Check that your copy has all the pages.
2. Do not start the exam until 3:25 pm and do not continue working after 4:40 pm. You may

ask a proctor if you are unsure of the time.
3. For fairness, the instructor and proctors will not answer questions about the exam

content. If an exam question is unclear to you, make assumptions and write down any
assumptions with your answer.

4. For students who are taking 452, all problems, including those marked as extra credit,
are part of the total score.

5. “I don’t know” is given 15% partial credit, but you must erase everything else. This does
not apply to extra credit questions.

6. Your answers to all questions must be contained in the given boxes. Use spare space to
show all supporting work to earn partial credit.

7. List of problems (75 points total + 3 points extra credit):
● Problem 0 (2 points)
● Problem 1 (17 points)
● Problem 2 (14 points + 3 points extra credit)
● Problem 3 (16 points)
● Problem 4 (16 points)
● Problem 5 (10 points)

Your name:

Signature:

Good luck!!!

2

Problem 0: Warm-up (2 Points)

Select all the options that apply. Multiple selections are allowed.

¨ I have been to TA office hours.
¨ I have asked a question on Piazza.
¨ I have found answers to my question on Piazza.
¨ I like programming in Assembly.

Problem 1: Integer Arithmetic (17 points)

Part a) (4 points) Represent the decimal number 74 in hexadecimal form.

Part b) (4 points) Represent the hexadecimal number 0xA8 in decimal form and binary form.

Part c) (4 points) What are the 2's complement representations of the decimal numbers -15 and
23? Assume an 8-bit representation.

Part d) (3 points) Assume the bit stream bnbn−1bn−2…b1b0 represents a number in 2’s
complement format. What is the result if we perform the following operations sequentially?

1. Flip all the bits in the bit stream.
2. Add 1 to the resulting bit stream from step 1.
3. Add the bit stream from step 2 to the original bit stream.

3

Part e) (2 points) Consider two 4-bit registers R1 and R2; R1=1100, R2=0100 (both values are
in binary form). What are the values of the carry, overflow, zero, and sign flags after the
operation “add R1, R2”?

4

Problem 2: Floating-Point Arithmetic (14 points + 3 points extra credit)

Part a) (6 points) Consider a decimal number F = 89.50

(2 points) Put F into the normalized scientific notation (in decimal).

(2 points) Give the binary representation of F. Use as many bits as needed to precisely represent
the result.

Part b) (8 points) Assume we are using a new 14-bit floating-point standard whose
characteristics are compliant with the floating-point representations we discussed in the class.
For this representation, the exponent bias is 15.

(2 points) How many bits are used for exponent and fraction, respectively?

(2 points) With this standard, what is the floating-point representation of 0xB?

(2 points) What is the smallest positive number that can be represented? Write it in this 14-bit
floating-point format.

5

(4 points) Given two numbers, A and B, represented using this 14-bit floating-point format:
• A = 11101100001111
• B = 00001000100001

Calculate A+B and provide the result in the 14-bit floating-point format.

(3 points extra credit) Using the IEEE 754 single-precision floating-point format, what is the
smallest positive integer that cannot be precisely represented? You can write the answer in
mathematical expression without evaluating it.

6

Problem 3: Assembly Programming (16 points)

Conventions:

1. For this section, the assembly shown uses the AT&T/GAS syntax opcode src, dst for
instructions with two arguments where src is the source argument and dst is the
destination argument. For example, this means that mov a, b moves the value a into b,
and cmp a, b then jge c would compare b to a then jump to c if b ≥ a (signed
comparison).

2. All C code is compiled on a 64-bit machine, where arrays grow toward higher addresses.

3. We use the x86 calling convention. That is, for functions that take two arguments, the first
argument is stored in %edi (%rdi) and the second is stored in %esi (%rsi) at the time
the function is called; the return value of a function is stored in %eax (%rax) at the time
the function returns.

4. We use the Little Endian byte order when storing multi-byte variables in memory. We use
Row-Major Ordering for 2D arrays.

Part a) (11 points)

Consider the following function p0. Its C code and assembly code are both partially given.
Assume that the input arguments to p0 are x=0, y=4.

C code:

 unsigned long p0 (unsigned long x, unsigned long y)

{
 unsigned long t1, t2, t3;
 t1 = x*24+7;
 t2 =; //intentionally hidden
 if (t1 > 10)
 t3 = t2+t1*4+3;
 else
 t3 = t1;
 return; //intentionally hidden

}

7

Assembly code:

 # some irrelevant instructions at the end omitted
 movq %rdi, -40(%rbp)
 movq %rsi, -48(%rbp)
 movq -40(%rbp), %rdx
 movq %rdx, %rax
 addq %rax, %rax
 addq %rdx, %rax
 A $3, %rax
 addq $7, %rax
 movq %rax, -16(%rbp)
 movq -16(%rbp), %rax
 addq $4, %rax
 movq %rax, -8(%rbp)
 cmpq $10, -16(%rbp)
 B .L2
 movq -16(%rbp), %rax
 leaq 0(, C , D), %rdx
 movq -8(%rbp), %rax
 addq %rdx, %rax
 addq $3, %rax
 movq %rax, -24(%rbp)
 jmp .L3
.L2:
 movq -16(%rbp), %rax
 movq %rax, -24(%rbp)
.L3:
 movq -24(%rbp), %rax
 addq $3, %rax

some irrelevant instructions at the end omitted
 ret

Complete the missing pieces in the assembly code.

(2 points) A:

8

(2 points) B:

(2 points) C:

(2 points) D:

(3 points) What is the return value of p0?

Part b) (5 points)

Consider the following assembly code for a mystery function in C. movq is move quadword (64
bits), movl is move longword (32 bits).

movq -4(%rdi), %rdx
movq -8(%rsi), %rax
movq %rax, (%rsi)
addq $4, %rdx
movl %edx, -12(%rdi)
ret

Suppose that the left table on the next page shows the state of the memory before this function is
called. Suppose that the registers are set to %rdi = 0x224c and %rsi = 0x2248.

9

 Memory status before the function. Memory status after the function.

In the right table above, fill in the state of the memory after the function is called.

Address Data Address Data

0x2240 0xaa 0x2240

0x2241 0x4 0x2241

0x2242 0xc 0x2242

0x2243 0xb0 0x2243

0x2244 0x1 0x2244

0x2245 0x5 0x2245

0x2246 0xf 0x2246

0x2247 0x9 0x2247

0x2248 0x10 0x2248

0x2249 0x20 0x2249

0x224a 0x30 0x224a

0x224b 0x0 0x224b

0x224c 0x6 0x224c

0x224d 0xe 0x224d

0x224e 0x4 0x224e

0x224f 0x3 0x224f

10

Problem 4: Data Structure (16 points)

Conventions: same with the ones in Problem 3.

Consider the following C code. CPU is a structure to represent the critical features of a CPU.

struct CPU {
 char cache[2][3];
 double clock_speed_GHz;
 int cores;

 char *name;
};

struct CPU CPU_List[10];

(4 points) Without data alignment, what will be the value printed when we run
printf("%d\n", sizeof(struct CPU));?

(4 points) If the start of CPU_List[0] is stored at -0x30(%rbp), where in memory is
CPU_List[0].cache[1][2] stored?

(4 points) With proper data alignment, assume CPU_List = 0x7fff0008, what is the value
of CPU_List+1?

11

(4 points) How to reorder the members in the structure to be more space efficient? Explain your
answer?

12

Problem 5: ISA (10 points)

The designers of Y86-64 are considering adding the leaq instruction to their ISA:

leaq D(Rb, Ri, S), Ra

This instruction calculates the effective address Rb+Ri*S+D, and stores the result in Ra. Here, Rb,
Ri, and Ra are registers, while S and D are both 4-bit constants. For example, the following
instruction calculates %rax+%rdx*4+12, and stores the result in %rcx:

leaq $12(%rax, %rdx, 4), %rcx

As we learned in class, D(Rb, Ri, S) represents the complete address mode. The elements Rb,
Ri, S, and D could be omitted if not needed.

The Y86-64 designers proposed the following encoding format for this instruction:

100110 Rb Ri Ra S D

Bit: 0 5 6 9 10 13 14 17 18 21 22 25

The entire leaq instruction is 26 bits long. Bits 0-5 are used for the opcode, bits 6-9 are used for
Rb, bits 10-13 are used for Ri, bits 14-17 are used for Ra, bits 18-21 are used for S, bits 22-25
are used for D.

Assume that the registers in Y86-64 are encoded using the 4-bit values shown in the table below:

Register Encoding Register Encoding

%rax 0000 %r8 1000

%rbx 0001 %r9 1001

%rcx 0010 %r10 1010

%rdx 0011 %r11 1011

%rsi 0100 %r12 1100

%rdi 0101 %r13 1101

%rsp 0110 %r14 1110

%rbp 0111 No-register 1111

13

 (3 points) Give the assembly form of the instruction encoded as
10011000100100001101001111.

(3 points) When using the leaq instruction to compute the effective address of 4(%rax) and
store it in %rdx, what is the complete encoding of this instruction?

(4 points) Compared to fixed-length instruction encoding, what are the advantages and
disadvantages of variable-length instruction encoding?

