
CSC 252/452: Computer Organization 
 Fall 2024: Review Lecture 

Instructor: Yanan Guo

Department of Computer Science

University of Rochester

Carnegie Mellon

2

Class Review — Part 1
• Data representation

• Binary/Bits
• Integer
• Floating Point

• Assembly programing

• ISA basics
• Assembly basics

• Memory, architectural states, pointers
• Instructions (mov, arithmetic, jump)
• Condition codes

• Functions

• Stack & frame

• Data structures and buffer overflow

• Instruction Encoding

• How does the assembler work?

Carnegie Mellon

3

Class Review —Part 2
• CPU design

• Single-cycle CPU
• Pipelining

• Memory system

• Memory technologies
• Trade-offs
• Memory hierarchy
• Cache

• Set-associative and direct-mapped cache
• Replacement policy

• Processes

• Signals (not in final)

• Interrupts and exceptions (not in final)

• Virtual memory

• Page table
• TLB

• Dynamic memory allocation

• Implicit allocator and explicit allocator

• Multi-threading

Carnegie Mellon

4

CPU Design
• Single-cycle CPU

• How it works?
• The drawback of it?

• Pipelining

• Basic ideas
• The advantage of it
• Throughput and unbalanced pipeline
• Problems to solve

• Control dependency
• Data dependency

Carnegie Mellon

Combinational Logic

Single-Cycle Microarchitecture

5

Register
File

Flags
Z S O

PC

Clock

Memory

Inst.
Rd/Wr

Reg. IDs
Current

Reg.
Values

Cur. Flag
ValuesEnable?

New Flag
Values

Cur.
PC

New
PC

New
Reg.
Valus

Enable?

Read current_states;
next_states = calculate_new_state(current_states);

When clock rises, current_states = next_states;

Data
New
Data Addr.

next_states has to be ready before the close rises

Carnegie Mellon

• state set according to second
irmovq instruction

• combinational logic starting to
react to state changes

6

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Combinational
logic

Data
memory

Register
file

%rbx = 0x100

PC
0x014

CC
100

Read
ports

Write
ports

Read Write

Carnegie Mellon

• state set according to second
irmovq instruction

• combinational logic generates
results for addq instruction

7

Combinational
logic

Data
memory

Register
file

%rbx = 0x100

PC
0x014

CC
100

Read
ports

Write
ports

0x016

000 %rbx
<--

0x300

Read Write

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Carnegie Mellon

• state set according to addq
instruction

• combinational logic starting
to react to state changes

8

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Combinational
logic

Data
memory

Register
file

%rbx = 0x300

PC
0x016

CC
000

Read
ports

Write
ports

Read Write

Carnegie Mellon

• state set according to addq
instruction

• combinational logic generates
results for je instruction

9

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Combinational
logic

Data
memory

Register
file

%rbx = 0x300

PC
0x016

CC
000

Read
ports

Write
ports

0x01f

Read Write

Carnegie Mellon

10

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.

• The absolute time takes to execute each instruction varies.

Consider for instance an ADD instruction and a JMP instruction.

• But the cycle time is uniform across instructions, so the cycle time

needs to accommodate the worst case, i.e., the slowest
instruction.

• How do we shorten the cycle time (increase the frequency)?

• CPI

• The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

• How do execute multiple instructions in one cycle?

Carnegie Mellon

Pipelining

• Computation requires total of 300 picoseconds
• Additional 20 picoseconds to save result in register
• Must have clock cycle time of at least 320 ps

11

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Carnegie Mellon

3-Stage Pipelined Version

• Divide combinational logic into 3 stages of 100 ps each
• Insert registers between stages to store intermediate data between

stages. These are call pipeline registers (ISA-invisible)
• Can begin a new instruction as soon as the previous one finishes

stage A and has stored the intermediate data.
• Begin new operation every 120 ps
• Cycle time can be reduced to 120 ps

12

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Carnegie Mellon

3-Stage Pipelined Version

13

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Time

A B C
A B C

A B C

OP1
OP2
OP3

3-Stage Pipelined

Carnegie Mellon

Comparison

14

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

320
320

320

3-Stage Pipelined

Unpipelined
• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 *
5 = 600 ps

• But each inst.’s latency
increases: 120 * 3 = 360 ps

Carnegie Mellon

Benefits of Pipelining

15

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

Reduce the cycle time from 320 ps to 120 ps

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 *
5 = 600 ps

• But each inst.’s latency
increases: 120 * 3 = 360 ps

Carnegie Mellon

One Requirement of Pipelining

16

Time

A B C
A B C

A B C

OP1
OP2
OP3

• Time to finish 3 insets = 120 *
5 = 600 ps

• But each inst.’s latency
increases: 120 * 3 = 360 ps

• The stages need to be using different hardware structures.

• That is, Stage A, Stage B, and Stage C need to exercise

different parts of the combination logic.

Carnegie Mellon

Throughput
• The rate at which the processor can finish executing an

instruction (at the steady state).

17

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Throughput of this 3-stage
processor is 1 instruction every

120 ps, or 8.3 Giga (billion)
Instructions per Second (GIPS).

Time

A B C
A B C

A B C

Inst 1
Inst 2
Inst 3

A B C
A B C

Inst 4
Inst 5

Carnegie Mellon

Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

18

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Carnegie Mellon

Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

18

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Carnegie Mellon

Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

18

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps

Cycle time: 170 ps

Thrupt: 8.3 GIPS

Carnegie Mellon

Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

18

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps

Cycle time: 170 ps

Delay: 510 ps

Thrupt: 8.3 GIPS

Carnegie Mellon

Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

18

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps

Cycle time: 170 ps

Delay: 510 ps

Thrupt: 8.3 GIPS

Thrupt: 5.9 GIPS

Carnegie Mellon

Pipeline Stages
Fetch

• Select current PC
• Read instruction
• Compute incremented PC

Decode

• Read program registers

Execute

• Operate ALU

Memory

• Read or write data memory

Write Back

• Update register file

19

Carnegie Mellon

Stage Computation: Arith/Log. Ops

20

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

PC ← valP
valP ← PC+2Fetch

Read instruction byte
Read register byte
 Compute next PC
PC ← valP

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory
R[rB] ← valE

Write
back

Write back result

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Making the Pipeline Really Work
• Control Dependencies

• What is it?
• Software mitigation: Inserting Nops
• Software mitigation: Delay Slots

• Data Dependencies

• What is it?
• Software mitigation: Inserting Nops

21

Carnegie Mellon

22

Control Dependency
• Definition: Outcome of instruction A determines whether or not

instruction B should be executed.
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be
executed

• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

22

Control Dependency

1

F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

22

Control Dependency

1

F

2

D
F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

22

Control Dependency

1

F

2

D
F

3

E
D

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

22

Control Dependency

1

F

2

D
F

3

E
D
F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

22

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

22

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

22

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

22

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

22

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Carnegie Mellon

Resolving Control Dependencies
• Software Mechanisms

• Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

• Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops)
• Branch Prediction
• Return Address Stack

23

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)
 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)
 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

xorq

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)
 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 jle xorq

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)
 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 Stall jle xorq

Carnegie Mellon

Hardware Generated Nops (Bubble and
Stalling)
 · Stall : the pipeline register shouldn’t be written

 · Bubble : signals correspond to a nop

 · Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 Stall (Bubble)

 nop

 jle xorq

Carnegie Mellon

29

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of
the jump direction

Carnegie Mellon

29

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction

Carnegie Mellon

29

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

Carnegie Mellon

Branch Prediction
Idea: instead of waiting, why not just guess the direction of jump?

If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

• Always Taken
• Always Not-taken

Dynamic Prediction

• Dynamically predict taken/not-taken for each specific jump instruction

30

 Carnegie Mellon

 Return Address Stack (RAS)

Branch Predictor

 A hardware stack;

different from the

stack in memory.

 17

Carnegie Mellon

Data Dependencies

• Result from one instruction used as operand for another
• Read-after-write (RAW) dependency

• Very common in actual programs
• Must make sure our pipeline handles these properly

• Get correct results
• Minimize performance impact

32

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Resolving Data Dependencies
• Software Mechanisms

• Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

• Hardware mechanisms

• Stalling
• Forwarding
• Out-of-order execution

33

Carnegie Mellon

Data Forwarding Example

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

34

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

34

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

34

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

35

Memory System
• Memory technology

• Memory trade-offs

• Memory hierarchy

• Cache

• Basic ideas
• Different design choices
• Replacement policy

Carnegie Mellon

Memory Technology: RAM

• Random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

36

Address
n

CE (chip enable)

WE (write enable)

k

Content

Carnegie Mellon

Summary of Trade-Offs

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte

• Larger capacity is slower

• Flip-flops/Small SRAM, sub-nanosec
• SRAM, KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Other technologies have their place as well

• PC-RAM, MRAM, RRAM

37

Carnegie Mellon

Memory Hierarchy

38

fast

small

big but slow

backup

everything

here

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

CPU

Carnegie Mellon

Memory Hierarchy

38

fast

small

big but slow

backup

everything

here

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

CPU

Carnegie Mellon

Memory Hierarchy

38

fast

small

big but slow

move what you use here

backup

everything

here

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

CPU

Carnegie Mellon

Register File (DFF)
32 words, sub-nsec

L1 cache (SRAM)
~32 KB, ~nsec

L2 cache (SRAM)
512 KB ~ 1MB, many nsec

L3 cache (SRAM)
.....

Main memory (DRAM),
GB, ~100 nsec

Hard Disk
100 GB, ~10 msec

A Modern Memory Hierarchy

39

Carnegie Mellon

General Cache Organization (S, E, B)

40

E = 2e lines per set

S =
2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size:
C = S x E x B data bytes
Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing
replacement policy
(not shown).

valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

Cache Access

41

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

Carnegie Mellon

Cache Access

41

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

• Locate set

Carnegie Mellon

Cache Access

41

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit

Carnegie Mellon

Cache Access

41

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

Carnegie Mellon

Example: Direct Mapped Cache

42

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

Carnegie Mellon

Example: Direct Mapped Cache

42

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

Example: Direct Mapped Cache

43

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

43

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

43

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

44

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

44

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

45

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

45

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

47

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

47

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

Eviction/Replacement Policy

• Which cache line should be replaced for associative cache?

• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be

used again
• Approximation: Least recently used (LRU)

• Essentially have to track the ordering of all cache lines
• In reality, true LRU is never implemented. Too complex.
• “Pseudo-LRU” is usually used in real processors.

48

Carnegie Mellon

49

Processes
• Definition

• Create a process

• Terminate a process

• Reap a process

Carnegie Mellon

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

50

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as part of

some existing process.

• Control flow passes from one process to another via a context
switch

51

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Creating Processes
• Parent process creates a new running child process by calling
fork

•int fork(void)
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual)
address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent

• fork is interesting (and often confusing) because  
it is called once but returns twice

52

Carnegie Mellon

Terminating Processes
• Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate
• Returning from the main routine

• Calling the exit function

•void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer value

from the main routine

•exit is called once but never returns.

53

Carnegie Mellon

wait: Synchronizing with Children

• Parent reaps a child by calling the wait function

•int wait(int *child_status)
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated

• If child_status != NULL, then the integer it points to will be set to
a value that indicates reason the child terminated and the exit status:

• Checked using macros defined in wait.h
• WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

• See textbook for details

54

Carnegie Mellon

55

 char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”};
 char *environ[] = {“USER=droh”, “PWD=“/usr/droh”};

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

execve: Loading and Running Programs

Carnegie Mellon

56

Virtual Memory
• Page table

• Page hit

• Page fault

• TLB

• Address translation process

• Multi-level page tables

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

57

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

57

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

57

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see Assuming page size is 4B
Virtual memory size is 32B
Physical memory size is 16B

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

57

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see Assuming page size is 4B
Virtual memory size is 32B
Physical memory size is 16B

offsetVirtual page number

2-bit3-bit

PP 2
PP 3

Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

57

Physical memory

Unoccupied

On-disk

VP 0
VP 1

VP7

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
In-memory

On-disk

PP 0
PP 1

In-memory

0

31

15

0

Virtual pages (VPs) Physical pages (PPs)
cached in DRAM

What programmers see Assuming page size is 4B
Virtual memory size is 32B
Physical memory size is 16B

offsetVirtual page number

2-bit3-bit

offsetPhysical page number

2-bit2-bit

PP 2
PP 3

Carnegie Mellon

Page Table

58

Physical/Main
Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table
of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…

…

…

…

…

…

…

…

O

P

Q

R

Data 2

99

Process 2

Virtual Memory
of Process 2…

…

Data 3

…

Unallocated

…

…

…

Page Table
of Process 2

…

…
O

3

P

Unallocated

Q

R

4

100

101

102

103

104

105

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

59

Physical memory
(DRAM)

VP 7
VP 4

Disk

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 3

Physical page
number (PPN) or

disk address

Carnegie Mellon

null

null

Memory resident
page table

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

59

Physical memory
(DRAM)

VP 7
VP 4

Disk

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Physical page
number (PPN) or

disk address

Carnegie Mellon

Page Hit
•Page hit: reference to VM word that is in physical memory

60

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Disk

Carnegie Mellon

Page Hit
•Page hit: reference to VM word that is in physical memory

60

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Page Fault
•Page fault: reference to VM word that is not in physical memory

61

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Disk

Carnegie Mellon

Page Fault
•Page fault: reference to VM word that is not in physical memory

61

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)

62

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)

63

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)

64

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Disk

Carnegie Mellon

Handling Page Fault
• Page miss causes page fault (an exception)
• Page fault handler selects a victim to be evicted (here VP 4)
• Offending instruction is restarted: page hit!

65

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

66

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

null
Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

66

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Disk

Carnegie Mellon

Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

66

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Disk

Carnegie Mellon

Calculate Bits in VA and PA

67

• In a 64-bit machine, VA is 64-bit long. Assuming PM is 4 GB.
Assuming 4 KB page size.

• How many bits for page offset?

• 12. Same for VM and PM

• How many bits for Virtual Page Number?

• 52, i.e., 252 virtual pages

• How many bits for Physical Page Number?

• 20, i.e., 220 physical pages

offsetVirtual Page Number

offsetPhysical Page Number

Carnegie Mellon

Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes

• 4GB/4KB = 1M virtual pages
• 1M PTEs in a page table
• 8MB total size per page table

68

Carnegie Mellon

VM Provides Further Protection Opportunities

• Extend PTEs with permission bits

• MMU checks these bits on each access (read/write/executable/

accessible only in supervisor mode?)

• Remember buffer overflow attack?

69

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•
•
•

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes

PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes
Yes

Yes

Yes

No

Carnegie Mellon

A System Using Virtual Memory

• The memory management unit (MMU) does the VA to PA
translation, and moves data between physical memory and disk.

70

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

CPU

Virtual address
(VA)

CPU Chip

44100

Carnegie Mellon

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

71

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE

3

PA

4

Data
5

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

72

MemoryCPU

CPU Chip

VA
1

PTEA
2

PTE

3
Disk

5

Victim page

4

Exception

New page

6

7
MMU

Page fault handler

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Cache

Integrating VM and Cache

73

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

Data

PA

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Speeding up Address Translation
• Problem: Every memory load/store requires two memory

accesses: one for PTE, another for real

• The PTE access is kind of an overhead
• Can we speed it up?

• Page table entries (PTEs) are already cached in cache like any
other memory data. But:

• PTEs may be evicted by other data references
• PTE hit still requires a small cache delay

74

Carnegie Mellon

Speeding up Translation with a TLB
• Solution: Translation Lookaside Buffer (TLB)

• Think of it as a dedicated cache for page table
• Small set-associative hardware cache in MMU
• Contains complete page table entries for a small number of pages

75

Datatagv

…
DatatagvSet 0

Datatagv DatatagvSet 1

Datatagv DatatagvSet T-1

Tag Set Index

Set Index
selects a set

Compare tag to
decide cache hit/miss

A Conventional
Data Cache

Carnegie Mellon

Accessing the TLB
• MMU uses the Virtual Page Number portion of the virtual

address to access the TLB:

76

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

Offset

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1 A Page Table
Cache

Virtual Page Number

Carnegie Mellon

Accessing the TLB
• MMU uses the Virtual Page Number portion of the virtual

address to access the TLB:

76

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

Offset

Virtual Page Number

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1 A Page Table
Cache

Carnegie Mellon

Accessing the TLB
• MMU uses the Virtual Page Number portion of the virtual

address to access the TLB:

76

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

Offset

Virtual Page Number

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

TLBI selects the set

A Page Table
Cache

Carnegie Mellon

Accessing the TLB
• MMU uses the Virtual Page Number portion of the virtual

address to access the TLB:

76

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

Offset

Virtual Page Number

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

TLBI selects the set

TLBT matches tag of line
within set

A Page Table
Cache

Carnegie Mellon

TLB Hit

77

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA

4

Data
5

A TLB hit eliminates a memory access

TLB

2

VPN

PTE

3

Carnegie Mellon

TLB Miss

78

MMU Cache/
Memory

CPU VA

CPU Chip

1

2

PA

5

Data
6

TLB

VPN

PTEA
3

PTE
4

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• In main memory, with its start address stored in a special
register (PTBR)

• Assume 4KB page, 48-bit virtual memory, each PTE is 8 Bytes

• 236 PTEs in a page table
• 512 GB total size per page table??!!

• Problem: Page tables are huge

• One table per process!
• Storing them all in main memory wastes space

79

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80

VM
PM

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80

VM
PM

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80

VM
PM

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80

VM
PM

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80

VM
PM

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80

VM
PM

Virtual address

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80

VM
PM

Virtual address

Carnegie Mellon

How to Access a 2-Level Page Table?

81

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

Level 1
page table

Level 2
page table

Carnegie Mellon

82

Dynamic Memory Allocation
• General idea

• Explicit allocator

• Implicit allocator

Carnegie Mellon

Dynamic Memory Allocation
• Programmers use dynamic

memory allocators (such as
malloc) to acquire VM at
run time.

• Dynamic memory
allocators manage an area
of process virtual memory
known as the heap.

83

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

Top of heap
 (brk ptr)

Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size)
• Successful:

• Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL

• Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
• Returns the block pointed at by p to pool of available memory

• p must come from a previous call to malloc or realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero.

• realloc: Changes the size of a previously allocated block.

• sbrk: Used internally by allocators to grow or shrink the heap

84

Carnegie Mellon

Explicit Allocator
• Key Issues

• Free:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?

• The advantages and disadvantages of each free list?
• How do we reinsert freed block?

• Allocation:
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we pick a block to use for allocation -- many might fit?

• Performance Issues
• Throughput
• Memory utilization (fragmentation)

85

Carnegie Mellon

Implicit Allocator
• Garbage Collection

• Mark and Sweep
• Mark Sweep Compact
• How does GC affect performance?

86

Carnegie Mellon

Multi-Threading
• General idea

• Pthread library

• Thread synchronization

87

Carnegie Mellon

A Process With Multiple Threads
• Multiple threads can be associated with a process

• Each thread has its own logical control flow
• Each thread shares the same code, data, and kernel context
• Each thread has its own stack for local variables

• but not protected from other threads
• Each thread has its own thread id (TID)

88

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

The Pthreads "hello, world" Program

89

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology

• Binary semaphore is also called mutex (i.e., the semaphore value

could only be 0 or 1)
• Think of P operation as “locking”, and V as “unlocking”.

90

Carnegie Mellon

Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for

a condition that will never be true

• General to concurrent/parallel programming (threads,

processes)

• Typical Scenario

• Processes 1 and 2 needs two resources (A and B) to proceed
• Process 1 acquires A, waits for B
• Process 2 acquires B, waits for A
• Both will wait forever!

91

Carnegie Mellon

92

Carnegie Mellon

93

