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Class Review — Part 1
• Data representation


• Binary/Bits 
• Integer 
• Floating Point 

• Assembly programing

• ISA basics 
• Assembly basics 

• Memory, architectural states, pointers 
• Instructions (mov, arithmetic, jump) 
• Condition codes 

• Functions

• Stack & frame 

• Data structures and buffer overflow

• Instruction Encoding


• How does the assembler work?
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Class Review —Part 2
• CPU design


• Single-cycle CPU 
• Pipelining 

• Memory system

• Memory technologies 
• Trade-offs 
• Memory hierarchy 
• Cache 

• Set-associative and direct-mapped cache 
• Replacement policy 

• Processes

• Signals (not in final)

• Interrupts and exceptions (not in final)

• Virtual memory


• Page table 
• TLB 

• Dynamic memory allocation

• Implicit allocator and explicit allocator 

• Multi-threading
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CPU Design
• Single-cycle CPU


• How it works? 
• The drawback of it? 

• Pipelining

• Basic ideas 
• The advantage of it 
• Throughput and unbalanced pipeline 
• Problems to solve 

• Control dependency 
• Data dependency
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Combinational Logic

Single-Cycle Microarchitecture
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• state set according to second 
irmovq instruction 

• combinational logic starting to 
react to state changes
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 0x014:   addq %rdx,%rbx      # %rbx <-- 0x300 CC <-- 000

 0x016:   je dest             # Not taken

 0x01f:   rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a:   irmovq $0x200,%rdx  # %rdx <-- 0x200Cycle 2:

 0x000:   irmovq $0x100,%rbx  # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Combinational
logic

Data
memory

Register
file

%rbx = 0x100

PC
0x014

CC
100

Read
ports

Write
ports

Read Write
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• state set according to second 
irmovq instruction 

• combinational logic generates 
results for addq instruction
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 0x014:   addq %rdx,%rbx      # %rbx <-- 0x300 CC <-- 000

 0x016:   je dest             # Not taken

 0x01f:   rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a:   irmovq $0x200,%rdx  # %rdx <-- 0x200Cycle 2:

 0x000:   irmovq $0x100,%rbx  # %rbx <-- 0x100Cycle 1:
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• state set according to addq 
instruction 

• combinational logic starting 
to react to state changes
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• state set according to addq 
instruction 

• combinational logic generates 
results for je instruction
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 0x014:   addq %rdx,%rbx      # %rbx <-- 0x300 CC <-- 000

 0x016:   je dest             # Not taken

 0x01f:   rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:
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Limitations of a Single-Cycle CPU
• Cycle time


• Every instruction finishes in one cycle.

• The absolute time takes to execute each instruction varies. 

Consider for instance an ADD instruction and a JMP instruction.

• But the cycle time is uniform across instructions, so the cycle time 

needs to accommodate the worst case, i.e., the slowest 
instruction.


• How do we shorten the cycle time (increase the frequency)?

• CPI


• The entire hardware is occupied to execute one instruction at a 
time. Can’t execute multiple instructions at the same time.


• How do execute multiple instructions in one cycle?
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Pipelining

• Computation requires total of 300 picoseconds 
• Additional 20 picoseconds to save result in register 
• Must have clock cycle time of at least 320 ps

11
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3-Stage Pipelined Version

• Divide combinational logic into 3 stages of 100 ps each 
• Insert registers between stages to store intermediate data between 

stages. These are call pipeline registers (ISA-invisible) 
• Can begin a new instruction as soon as the previous one finishes 

stage A and has stored the intermediate data. 
• Begin new operation every 120 ps 
• Cycle time can be reduced to 120 ps
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3-Stage Pipelined Version
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Comparison
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Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

320
320

320

3-Stage Pipelined

Unpipelined
• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps
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Benefits of Pipelining
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Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

Reduce the cycle time from 320 ps to 120 ps 

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps
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One Requirement of Pipelining
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Time

A B C
A B C

A B C

OP1
OP2
OP3

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps

• The stages need to be using different hardware structures.

• That is, Stage A, Stage B, and Stage C need to exercise 

different parts of the combination logic.
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Throughput
• The rate at which the processor can finish executing an 

instruction (at the steady state).
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Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the 

cycle time and the throughput
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Pipeline Stages
Fetch


• Select current PC 
• Read instruction 
• Compute incremented PC 

Decode

• Read program registers 

Execute

• Operate ALU 

Memory

• Read or write data memory 

Write Back

• Update register file

19
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Stage Computation: Arith/Log. Ops
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OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
 
PC ← valP
valP ← PC+2Fetch

Read instruction byte
Read register byte
 Compute next PC
PC ← valP

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

  Memory   
R[rB] ← valE
 

Write
back

Write back result
 

OPq rA, rB 6 fn rA rB
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Making the Pipeline Really Work
• Control Dependencies


• What is it? 
• Software mitigation: Inserting Nops 
• Software mitigation: Delay Slots 

• Data Dependencies

• What is it? 
• Software mitigation: Inserting Nops

21
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Control Dependency
• Definition: Outcome of instruction A determines whether or not 

instruction B should be executed. 
• Jump instruction example below: 

• jne L1 determines whether irmovq $1, %rax should be 
executed 

• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Control Dependency

1

F

• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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  nop
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Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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  nop
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Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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L1  irmovq $4, %rcx   # Target

  nop



Carnegie Mellon

  nop

22

Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Resolving Control Dependencies
• Software Mechanisms


• Adding NOPs: requires compiler to insert nops, which also take 
memory space — not a good idea 

• Delay slot: insert instructions that do not depend on the effect 
of the preceding instruction. These instructions will execute 
even if the preceding branch is taken — old RISC approach 

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops) 
• Branch Prediction 
• Return Address Stack

23
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Hardware Generated Nops (Bubble and 
Stalling) 
 ·  Stall : the pipeline register shouldn’t be written

 ·  Bubble : signals correspond to a nop

 ·  Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5
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Hardware Generated Nops (Bubble and 
Stalling) 
 ·  Stall : the pipeline register shouldn’t be written

 ·  Bubble : signals correspond to a nop

 ·  Why is it good for the hardware to do so anyways?
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Hardware Generated Nops (Bubble and 
Stalling) 
 ·  Stall : the pipeline register shouldn’t be written

 ·  Bubble : signals correspond to a nop

 ·  Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back

 R

 e

 g

 5

 jle xorq



Carnegie Mellon

Hardware Generated Nops (Bubble and 
Stalling) 
 ·  Stall : the pipeline register shouldn’t be written

 ·  Bubble : signals correspond to a nop

 ·  Why is it good for the hardware to do so anyways?
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Hardware Generated Nops (Bubble and 
Stalling) 
 ·  Stall : the pipeline register shouldn’t be written

 ·  Bubble : signals correspond to a nop

 ·  Why is it good for the hardware to do so anyways?

 Fetch
 R

 e

 g

 Decode
 R

 e

 g

 Execute
 R

 e

 g

 Memory
 R

 e

 g

 Write

 back
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 e
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 Stall  (Bubble)

 nop

 jle  xorq



Carnegie Mellon

29

Branch Prediction
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    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

6

W
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FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of 
the jump direction
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    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of 
the jump direction
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Branch Prediction
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    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of 
the jump direction
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Branch Prediction
Idea: instead of waiting, why not just guess the direction of jump?

If prediction is correct: pipeline moves forward without stalling 
If mispredicted: kill mis-executed instructions, start from the correct target 

Static Prediction

• Always Taken 
• Always Not-taken 

Dynamic Prediction

• Dynamically predict taken/not-taken for each specific jump instruction

30



 Carnegie Mellon

 Return Address Stack (RAS) 

Branch Predictor


 A hardware stack;

different from the

stack in memory.

 17
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Data Dependencies

• Result from one instruction used as operand for another 
• Read-after-write (RAW) dependency 

• Very common in actual programs 
• Must make sure our pipeline handles these properly 

• Get correct results 
• Minimize performance impact

32

1    irmovq $50,  %rax

2    addq   %rax, %rbx

3    mrmovq 100(%rbx),  %rdx
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Resolving Data Dependencies
• Software Mechanisms


• Adding NOPs: requires compiler to insert nops, which also take 
memory space — not a good idea 

• Hardware mechanisms

• Stalling 
• Forwarding 
• Out-of-order execution

33
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Data Forwarding Example 

Register %rdx 
• Forward from the memory stage 

Register %rax 
• Forward from the execute stage

34

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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Data Forwarding Example 

Register %rdx 
• Forward from the memory stage 

Register %rax 
• Forward from the execute stage

34

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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Data Forwarding Example 

Register %rdx 
• Forward from the memory stage 

Register %rax 
• Forward from the execute stage

34

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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Memory System
• Memory technology

• Memory trade-offs

• Memory hierarchy

• Cache


• Basic ideas 
• Different design choices 
• Replacement policy
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Memory Technology: RAM

• Random access memory

• Random access means you can supply an arbitrary address to the 

memory and get a value back

36

Address
n

CE (chip enable)

WE (write enable)

k

Content
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Summary of Trade-Offs

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte 
• DRAM, < 1$ per Megabyte 
• Hard Disk < 1$ per Gigabyte 

• Larger capacity is slower

• Flip-flops/Small SRAM, sub-nanosec 
• SRAM,  KByte~MByte, ~nanosec 
• DRAM, Gigabyte, ~50 nanosec 
• Hard Disk, Terabyte, ~10 millisec 

• Other technologies have their place as well 

• PC-RAM, MRAM, RRAM

37
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Memory Hierarchy

38
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Memory Hierarchy

38
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Register File (DFF) 
32 words, sub-nsec 

L1 cache (SRAM) 
~32 KB, ~nsec 

L2 cache (SRAM) 
512 KB ~ 1MB, many nsec 

L3 cache (SRAM) 
..... 

Main memory (DRAM),  
GB, ~100 nsec 

Hard Disk 
100 GB, ~10 msec

A Modern Memory Hierarchy

39
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General Cache Organization (S, E, B)

40

E = 2e lines per set

S = 
2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size: 
C = S x E x B data bytes 
Overhead: 
Tag, valid bit, dirty bit. 
Plus bits for implementing 
replacement policy 
(not shown).

valid bit

d

dirty bit 
(if write-back)
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Cache Access

41

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set 
index

Line 
offset
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Cache Access

41

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set 
index

Line 
offset

• Locate set
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Cache Access

41

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set 
index

Line 
offset

• Locate set
• Check if any line in set 

has matching tag
• Yes + line valid: hit
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Cache Access

41

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set 
index

Line 
offset

data begins at this offset

• Locate set
• Check if any line in set 

has matching tag
• Yes + line valid: hit
• Locate data starting 

at offset
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Example: Direct Mapped Cache

42

S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654
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Example: Direct Mapped Cache

42

S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache

43

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache

43

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

tag

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache

43

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache

44

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache

44

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

45

E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654
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E-way Set Associative Cache (Here: E = 2)

45

E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

46

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

47

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

47

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match:  
• One line in set is selected for eviction and replacement 
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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Eviction/Replacement Policy

• Which cache line should be replaced for associative cache?

• Any invalid cache line first 
• If all are valid, consult the replacement policy 
• Randomly pick one??? 
• Ideally: Replace the cache line that’s least likely going to be 

used again 
• Approximation: Least recently used (LRU) 

• Essentially have to track the ordering of all cache lines 
• In reality, true LRU is never implemented. Too complex. 
• “Pseudo-LRU” is usually used in real processors.

48
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49

Processes
• Definition

• Create a process

• Terminate a process

• Reap a process
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Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users 

• Web browsers, email clients, editors, … 
• Background tasks 

• Monitoring network & I/O devices

50

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data
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Context Switching
• Processes are managed by a shared chunk of memory-resident 

OS code called the kernel 
• Important: the kernel is not a separate process, but rather runs as part of 

some existing process. 

• Control flow passes from one process to another via a context 
switch

51

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Creating Processes
• Parent process creates a new running child process by calling 
fork


•int fork(void) 
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:


• Child get an identical (but separate) copy of the parent’s (virtual) 
address space (i.e., same stack copies, code, etc.)


• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent


• fork is interesting (and often confusing) because  
it is called once but returns twice

52
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Terminating Processes 
• Process becomes terminated for one of three reasons:


• Receiving a signal whose default action is to terminate 
• Returning from the main routine 

• Calling the exit function 

•void exit(int status) 
• Terminates with an exit status of status 
• Convention: normal return status is 0, nonzero on error 
• Another way to explicitly set the exit status is to return an integer value 

from the main routine 

•exit is called once but never returns.

53
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wait: Synchronizing with Children

• Parent reaps a child by calling the wait function


•int wait(int *child_status) 
• Suspends current process until one of its children terminates 
• Return value is the pid of the child process that terminated 

• If child_status != NULL, then the integer it points to will be set to  
a value that indicates reason the child terminated and the exit status: 

• Checked using macros defined in wait.h 
• WIFEXITED, WEXITSTATUS, WIFSIGNALED, 
WTERMSIG, WIFSTOPPED, WSTOPSIG, 
WIFCONTINUED 

• See textbook for details

54
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55

  char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”}; 
  char *environ[] = {“USER=droh”, “PWD=“/usr/droh”}; 
   
  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

execve: Loading and Running Programs
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Virtual Memory
• Page table

• Page hit

• Page fault


• TLB

• Address translation process

• Multi-level page tables
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VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount 

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called 

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

57

Physical memory
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On-disk

VP 0
VP 1

VP7 

Virtual memory

Unallocated
In-memory

On-disk
Unallocated
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31

15

0

Virtual pages (VPs) Physical pages (PPs)  
cached in DRAM

PP 2
PP 3



Carnegie Mellon

VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount 

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called 

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).
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VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount 

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called 

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).
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VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount 

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called 

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).
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VM Concepts
• Virtual memory is an array of N contiguous pages (each page has a certain amount 

of continuous bytes).

• Physical memory is also divided into pages. Each physical page (sometimes called 

frames) has the same size as a virtual page. Physical memory has way fewer pages.

• A page can either be on the (“uncached”) disk or in the physical memory (“cached”).

57

Physical memory

Unoccupied

On-disk
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Virtual memory

Unallocated
In-memory
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0
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Virtual pages (VPs) Physical pages (PPs)  
cached in DRAM

What programmers see Assuming page size is 4B 
Virtual memory size is 32B 
Physical memory size is 16B

offsetVirtual page number
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Page Table

58
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null

null

Memory resident 
page table 

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

59
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null

null

Memory resident 
page table 

(DRAM)

Valid

0
1

0
1
0

1
0

1

PTE 0

PTE 7

Enabling Data Structure: Page Table
• A page table is an array of page table entries (PTEs) that maps every virtual 

page to its physical page, i.e., virtual to physical address translation.

• One PTE for each virtual page.

59
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Page Hit
•Page hit: reference to VM word that is in physical memory

60
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Page Hit
•Page hit: reference to VM word that is in physical memory

60
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Page Fault
•Page fault: reference to VM word that is not in physical memory

61
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Page Fault
•Page fault: reference to VM word that is not in physical memory

61
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Handling Page Fault
• Page miss causes page fault (an exception)

62
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Handling Page Fault
• Page miss causes page fault (an exception) 
• Page fault handler selects a victim to be evicted (here VP 4)

63
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Handling Page Fault
• Page miss causes page fault (an exception) 
• Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
• Page miss causes page fault (an exception) 
• Page fault handler selects a victim to be evicted (here VP 4) 
• Offending instruction is restarted: page hit!

65
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Key point: Waiting until the miss to copy the page to 
DRAM is known as demand paging

Disk
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Allocating Pages
• Allocating a new page (VP 5) of virtual memory.

66
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Allocating Pages
• Allocating a new page (VP 5) of virtual memory.
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Allocating Pages
• Allocating a new page (VP 5) of virtual memory.
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Calculate Bits in VA and PA

67

• In a 64-bit machine, VA is 64-bit long. Assuming PM is 4 GB. 
Assuming 4 KB page size.


• How many bits for page offset?

• 12. Same for VM and PM 

• How many bits for Virtual Page Number?

• 52, i.e., 252 virtual pages 

• How many bits for Physical Page Number?

• 20, i.e., 220 physical pages

offsetVirtual Page Number

offsetPhysical Page Number
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Calculate the Page Table Size
• Assume 4KB page, 4GB virtual memory, each PTE is 8 Bytes


• 4GB/4KB = 1M virtual pages 
• 1M PTEs in a page table 
• 8MB total size per page table

68
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VM Provides Further Protection Opportunities

• Extend PTEs with permission bits

• MMU checks these bits on each access (read/write/executable/

accessible only in supervisor mode?)

• Remember buffer overflow attack?

69

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

• 
• 
•

Process j:
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Address Space
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PP 11

EXEC
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EXEC
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A System Using Virtual Memory

• The memory management unit (MMU) does the VA to PA 
translation, and moves data between physical memory and disk.

70

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address 
(PA)

Data word

8:
...

CPU

Virtual address 
(VA)

CPU Chip

44100
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Address Translation: Page Hit

1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in memory 

4) MMU sends physical address to cache/memory 

5) Cache/memory sends data word to processor

71

MMU
Memory

CPU

CPU Chip

VA
1

PTEA
2

PTE

3

PA

4

Data
5

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Address Translation: Page Fault

1) Processor sends virtual address to MMU  
2-3) MMU fetches PTE from page table in memory 
4) Valid bit is zero, so MMU triggers page fault exception 
5) Handler identifies victim (and, if dirty, pages it out to disk) 
6) Handler pages in new page and updates PTE in memory 
7) Handler returns to original process, restarting faulting instruction
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Cache

Integrating VM and Cache
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Speeding up Address Translation
• Problem: Every memory load/store requires two memory 

accesses: one for PTE, another for real

• The PTE access is kind of an overhead 
• Can we speed it up? 

• Page table entries (PTEs) are already cached in cache like any 
other memory data. But:


• PTEs may be evicted by other data references 
• PTE hit still requires a small cache delay
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Speeding up Translation with a TLB
• Solution: Translation Lookaside Buffer (TLB)


• Think of it as a dedicated cache for page table 
• Small set-associative hardware cache in MMU 
• Contains complete page table entries for a small number of pages
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Accessing the TLB
• MMU uses the Virtual Page Number portion of the virtual 

address to access the TLB:
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Accessing the TLB
• MMU uses the Virtual Page Number portion of the virtual 

address to access the TLB:
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TLB tag (TLBT) TLB index (TLBI)
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TLB Hit
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TLB Miss
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Where Does Page Table Live?
• It needs to be at a specific location where we can find it


• In main memory, with its start address stored in a special 
register (PTBR) 

• Assume 4KB page, 48-bit virtual memory, each PTE is 8 Bytes

• 236 PTEs in a page table 
• 512 GB total size per page table??!! 

• Problem: Page tables are huge

• One table per process! 
• Storing them all in main memory wastes space
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Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are 

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

80
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Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are 

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data
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How to Access a 2-Level Page Table?
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Page table  
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Dynamic Memory Allocation
• General idea

• Explicit allocator

• Implicit allocator
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Dynamic Memory Allocation 
• Programmers use dynamic 

memory allocators (such as 
malloc) to acquire VM at 
run time. 


• Dynamic memory 
allocators manage an area 
of process virtual memory 
known as the heap. 
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Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

Top of heap 
 (brk ptr)
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The malloc/free Functions
#include <stdlib.h> 

void *malloc(size_t size) 
• Successful: 

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary 

• If size == 0, returns NULL 

• Unsuccessful: returns NULL (0) and sets errno 

void free(void *p) 
• Returns the block pointed at by p to pool of available memory 

• p must come from a previous call to malloc or realloc 

Other functions

• calloc: Version of malloc that initializes allocated block to zero.  

• realloc: Changes the size of a previously allocated block. 

• sbrk: Used internally by allocators to grow or shrink the heap
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Explicit Allocator
• Key Issues


• Free: 
• How do we know how much memory to free given just a pointer? 
• How do we keep track of the free blocks? 

• The advantages and disadvantages of each free list? 
• How do we reinsert freed block? 

• Allocation: 
• What do we do with the extra space when allocating a structure 

that is smaller than the free block it is placed in? 
• How do we pick a block to use for allocation -- many might fit? 

• Performance Issues 
• Throughput 
• Memory utilization (fragmentation)

85



Carnegie Mellon

Implicit Allocator
• Garbage Collection


• Mark and Sweep 
• Mark Sweep Compact 
• How does GC affect performance?
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Multi-Threading
• General idea

• Pthread library

• Thread synchronization
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A Process With Multiple Threads
• Multiple threads can be associated with a process


• Each thread has its own logical control flow  
• Each thread shares the same code, data, and kernel context 
• Each thread has its own stack for local variables  

• but not protected from other threads 
• Each thread has its own thread id (TID)
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Thread 1 context: 
    Data registers 
    Condition codes 
    SP1 
    PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context: 
   VM structures 
   Descriptor table 
   brk pointer

Thread 2 context: 
    Data registers 
    Condition codes 
    SP2 
    PC2

stack 2

Thread 2 (peer thread)
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The Pthreads "hello, world" Program

89

void *thread(void *vargp) /* thread routine */ 
{ 
    printf("Hello, world!\n"); 
    return NULL;                  
} 

/*                                                                                                                
 * hello.c - Pthreads "hello, world" program                                                                      
 */ 
#include "csapp.h" 
void *thread(void *vargp);                     

int main() 
{ 
    pthread_t tid;                             
    Pthread_create(&tid, NULL, thread, NULL);  
    Pthread_join(tid, NULL);                   
    exit(0);                                   
}

Thread attributes  
(usually NULL)

Thread arguments 
(void *p) 

Return value 
(void **p)

hello.c

Thread ID

Thread routine

hello.c
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Using Semaphores for Mutual Exclusion
• Basic idea:


• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1. 

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value to 
0 (through a P operation) and enters the critical section. If it’s 0, wait. 

• Every time a thread exits the critical section, it increments the 
semaphore value to 1 (through a V operation) so that other threads are 
now allowed to enter the critical section. 

• No more than one thread can be in the critical section at a time. 

• Terminology

• Binary semaphore is also called mutex (i.e., the semaphore value 

could only be 0 or 1) 
• Think of P operation as “locking”, and V as “unlocking”.
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Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for 

a condition that will never be true

• General to concurrent/parallel programming (threads, 

processes)

• Typical Scenario


• Processes 1 and 2 needs two resources (A and B) to proceed 
• Process 1 acquires A, waits for B 
• Process 2 acquires B, waits for A 
• Both will wait forever!
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