
CSC 252/452: Computer Organization
 Fall 2024: Lecture 3

Instructor: Yanan Guo
Department of Computer Science

University of Rochester

Carnegie Mellon

2

Announcement
• Programming Assignment 1 is out

• Details:
https://www.cs.rochester.edu/courses/252/fall2024/labs/
assignment1.html

• Due on Sep 16th, 11:59 PM
• You have 3 slip days

https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html

Carnegie Mellon

3

Announcement
• Programming Assignment 1 is in C language.
• Seek help from TAs.

• TAs are best positioned to answer your questions about
programming assignments!!!

• Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

• Pay attention to Blackboard announcements
• There are changes about the office hour locations/time…
• I have to move my office hour tomorrow to early next

week.

Carnegie Mellon

4

Last Lecture
• Why Binary (bits)?
• Bit-level manipulations
• Integers

• Representation: unsigned and signed
• Conversion, casting
• Expanding, truncating
• Addition, negation, multiplication, shifting
• Summary

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3 4 5 6 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

b2b1b0

Weights in
Unsigned 202122

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

1012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

1012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

1012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

5

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

1012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

6

Two-Complement Implications
• Only 1 zero
• There is (still) a bit that represents sign!
• Unsigned arithmetic still works

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

6

Two-Complement Implications
• Only 1 zero
• There is (still) a bit that represents sign!
• Unsigned arithmetic still works

010
+) 101

111

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

6

Two-Complement Implications
• Only 1 zero
• There is (still) a bit that represents sign!
• Unsigned arithmetic still works

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

6

Two-Complement Implications
• Only 1 zero
• There is (still) a bit that represents sign!
• Unsigned arithmetic still works

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• 3 + 1 becomes -4 (called overflow. More on it later.)

Carnegie Mellon

7

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

Carnegie Mellon

7

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?
• Integer
• Non-negative
• Between 0 and 255 (8 bits)

Carnegie Mellon

7

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?
• Integer
• Non-negative
• Between 0 and 255 (8 bits)

• Define a data type that captures all these attributes:
unsigned char in C
• Internally, an unsigned char variable is represented as a 8-bit,

non-negative, binary number

Carnegie Mellon

8

Data Types (in C)
• What if you want to define a variable that could take

negative values?

Carnegie Mellon

8

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data types (e.g., int, short, etc.) are for

Carnegie Mellon

8

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data types (e.g., int, short, etc.) are for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement
• The C language designers chose two’s complement

Carnegie Mellon

9

Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

Carnegie Mellon

9

Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

• C Language
•#include <limits.h>

•Declares constants, e.g.,
•ULONG_MAX
•LONG_MAX
•LONG_MIN

•Values platform specific

Carnegie Mellon

• Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

10

Mapping Between Signed & Unsigned

Signed
0
1
2
3
-4
-3
-2
-1

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

11

Mapping Signed « Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

U2T

T2U

=

+/- 16

Carnegie Mellon

12

Today: Representing Information in Binary

• Why Binary (bits)?
• Bit-level manipulations
• Integers

• Representation: unsigned and signed
• Conversion, casting
• Expanding, truncating
• Addition, negation, multiplication, shifting
• Summary

Carnegie Mellon

13

The Problem
short int x = 15213;

 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data Type 64-bit

char 1

short 2

int 4

long 8

Carnegie Mellon

13

The Problem
short int x = 15213;

 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data Type 64-bit

char 1

short 2

int 4

long 8

• Converting from smaller to larger integer data type
• Should we preserve the value?
• Can we preserve the value?
• How?

Carnegie Mellon

13

The Problem
short int x = 15213;

 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data Type 64-bit

char 1

short 2

int 4

long 8

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

• Converting from smaller to larger integer data type
• Should we preserve the value?
• Can we preserve the value?
• How?

Carnegie Mellon

14

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

Carnegie Mellon

14

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

• Rule:
• Make k copies of sign bit:
• X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

Carnegie Mellon

14

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

• Rule:
• Make k copies of sign bit:
• X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ¢ • • • • • •

• • •

w

wk

Carnegie Mellon

15

Another Problem

Decimal Hex Binary
x 47981 BB 6D 10111011 01101101
ux 47981 00 00 BB 6D 00000000 00000000 10111011 01101101

unsigned short x = 47981;
 unsigned int ux = x;

Carnegie Mellon

16

Unsigned (Zero) Extension
• Task:

• Given w-bit unsigned integer x
• Convert it to (w+k)-bit integer with same value

• Rule:
• Simply pad zeros:
• X ′ = 0 ,…, 0 , xw–1 , xw–2 ,…, x0

k copies of 0

• • •X

X ¢ • • • 0000 • • •

• • •

w

wk

Carnegie Mellon

17

Yet Another Problem

int x = 53191;
 short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Carnegie Mellon

17

Yet Another Problem

int x = 53191;
 short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

• Truncating (e.g., int to short OR unsigned int to unsigned short)
• C’s implementation: leading bits are truncated, results reinterpreted
• So can’t always preserve the numerical value

Carnegie Mellon

18

Today: Representing Information in Binary

• Why Binary (bits)?
• Bit-level manipulations
• Integers

• Representation: unsigned and signed
• Conversion, casting
• Expanding, truncating
• Addition, negation, multiplication, shifting
• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

19

Unsigned Addition
Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

19

Unsigned Addition
• Similar to Decimal Addition Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

19

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)

010
+) 101

111

2
+) 5

7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Carnegie Mellon

19

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
• Might overflow: result can’t be

represented within the size of the data type

010
+) 101

111

2
+) 5

7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

110
+) 101

1011

6
+) 5

11

Carnegie Mellon

19

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
• Might overflow: result can’t be

represented within the size of the data type

010
+) 101

111

2
+) 5

7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

110
+) 101

1011

6
+) 5

11 True Sum

Carnegie Mellon

19

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
• Might overflow: result can’t be

represented within the size of the data type

010
+) 101

111

2
+) 5

7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

110
+) 101

1011

6
+) 5

11 True Sum
011 3 Sum with same bits

Carnegie Mellon

20

Unsigned Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

Carnegie Mellon

21

Two’s Complement Addition
Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

110
+) 101

1011

-2
+) -3

-5

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

110
+) 101

1011

-2
+) -3

-5
011 3

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

110
+) 101

1011

-2
+) -3

-5
011 3

Negative Overflow

Min

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

110
+) 101

1011

-2
+) -3

-5
011 3

011
+) 001

0100

3
+) 1

4

Negative Overflow

Min

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

110
+) 101

1011

-2
+) -3

-5
011 3

011
+) 001

0100

3
+) 1

4
100 -4

Negative Overflow

Min

Carnegie Mellon

21

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

010
+) 101

111

2
+) -3

-1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

110
+) 101

1011

-2
+) -3

-5

Max

011 3

011
+) 001

0100

3
+) 1

4
100 -4

Negative Overflow Positive Overflow

Min

Carnegie Mellon

22

Two’s Complement Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Carnegie Mellon

23

Is This Signed Addition an Overflow?

111
+) 110

1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

23

Is This Signed Addition an Overflow?

111
+) 110

1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

23

Is This Signed Addition an Overflow?

111
+) 110

1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Truncate

Carnegie Mellon

23

Is This Signed Addition an Overflow?

111
+) 110

1101

-1
+) -2

-3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Truncate

Carnegie Mellon

23

Is This Signed Addition an Overflow?

111
+) 110

1101

-1
+) -2

-3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• This is not an overflow by definition

Truncate

Carnegie Mellon

23

Is This Signed Addition an Overflow?

111
+) 110

1101

-1
+) -2

-3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• This is not an overflow by definition
• Because the actual result can be represented using

the bit width of the datatype (3 bits here)

Truncate

Carnegie Mellon

24

Multiplication

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits)

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

0

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

0

PMax

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product
22w-2

0

OMin2PMax

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product
22w-2

0

OMin2PMax

PMin

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

–22w–2 + 2w–1

22w-2

0

OMin2

OMin * OMax

PMax

PMin

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

–22w–2 + 2w–1

22w-2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)

Carnegie Mellon

24

Multiplication
• Goal: Computing Product of w-bit numbers x, y
• Exact results can be bigger than w bits

• Up to 2w bits (both signed and unsigned)

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

–22w–2 + 2w–1

22w-2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)

Carnegie Mellon

25

Unsigned Multiplication in C

• Standard Multiplication Function
• Ignores high order w bits

•Effectively Implements the following:
UMultw(u , v) = u · v mod 2w

• • •
• • •

u
v*

• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits

• • •

Carnegie Mellon

25

Unsigned Multiplication in C

• Standard Multiplication Function
• Ignores high order w bits

•Effectively Implements the following:
UMultw(u , v) = u · v mod 2w

• • •
• • •

u
v*

• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits

• • •

1110 1001
* 1101 0101
**** **** 1101 1101

1101 1101

E9
* D5
C1DD
DD

223
* 213
47499
221

Carnegie Mellon

26

Signed Multiplication in C
• • •
• • •

u
v*

• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits

• • •

• Standard Multiplication Function
• Ignores high order w bits
• Some of which are different for signed vs. unsigned multiplication
• Lower bits are the same

Carnegie Mellon

26

Signed Multiplication in C
• • •
• • •

u
v*

• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits

• • •

• Standard Multiplication Function
• Ignores high order w bits
• Some of which are different for signed vs. unsigned multiplication
• Lower bits are the same

-23
* -43

989
-35

1110 1001
* 1101 0101
**** **** 1101 1101

1101 1101

E9
* D5
03DD
DD

Carnegie Mellon

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• Both signed and unsigned • • •

0 0 1 0 0 0•••

u
2k*

Operands: w bits
•••

k

Carnegie Mellon

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• Both signed and unsigned • • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits
•••

k

• • • 0 0 0•••

Carnegie Mellon

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• Both signed and unsigned • • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits

•••

k

• • • 0 0 0•••

0 0 0••••••

Carnegie Mellon

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• Both signed and unsigned

• Examples
• u << 3 == u * 8
• (u << 5) – (u << 3) == u * 24

• Most machines shift and add faster than multiply
• Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits

•••

k

• • • 0 0 0•••

0 0 0••••••

Carnegie Mellon

28

Today: Representing Information in Binary

• Why Binary (bits)?
• Bit-level manipulations
• Integers

• Representation: unsigned and signed
• Conversion, casting
• Expanding, truncating
• Addition, negation, multiplication, shifting
• Summary

Carnegie Mellon

Arithmetic: Basic Rules
• Addition:

• Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

• Multiplication:
• Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level
• Shift: Power-of-2 Multiply

Carnegie Mellon

Why Should I Use Unsigned?

• Don’t use without understanding implications
• Easy to make mistakes

unsigned int i;

for (i = cnt-2; i >= 0; i--)

 a[i] += a[i+1];

• Can be very subtle
#define DELTA sizeof(int)
int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

 . . .

Carnegie Mellon

Why Should I Use Unsigned? – Bit Set
• Use bits to represent my availability of the week

b6 b5 b4 b3 b2 b1 b0
Sun Mon Tue Wed Thu Fri Sat

1 0 1 1 0 0 1

• Use 1 bit per day, 7 bits in total.
• If bit x is set to 1 then I’m available on day mapped to bit x.

Carnegie Mellon

Why Should I Use Unsigned? – Bit Set
• Use bits to represent my availability of the week

b6 b5 b4 b3 b2 b1 b0
Sun Mon Tue Wed Thu Fri Sat

1 0 1 1 0 0 1

• Use 1 bit per day, 7 bits in total.
• If bit x is set to 1 then I’m available on day mapped to bit x.

• In C: unsigned int aval;

Carnegie Mellon

Why Should I Use Unsigned? – Bit Set
• Use bits to represent my availability of the week

b6 b5 b4 b3 b2 b1 b0
Sun Mon Tue Wed Thu Fri Sat

1 0 1 1 0 0 1

• Use 1 bit per day, 7 bits in total.
• If bit x is set to 1 then I’m available on day mapped to bit x.

• In C: unsigned int aval;

aval = 1*20 + 0*21 + 0*22 + 1*23 + 1*24 + 0*25 + 1*26 = 8910

Carnegie Mellon

33

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point
• Floating point representation
• IEEE 754 standard
• Rounding, addition, multiplication
• Floating point in C
• Summary

Carnegie Mellon

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

34

Can We Represent Fractions in Binary?
• What does 10.012 mean?

• C.f., Decimal

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

= 2.2510

Carnegie Mellon

35

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• • •

Carnegie Mellon

36

Can We Represent Fractions in Binary?
• What does 10.012 mean?
• C.f., Decimal

• 12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

• 10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

Carnegie Mellon

36

Can We Represent Fractions in Binary?
• What does 10.012 mean?
• C.f., Decimal

• 12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

• 10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

0 1 2 3 4 5 6 7 …. 15

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Carnegie Mellon

37

Can We Represent Fractions in Binary?
• What does 10.012 mean?
• C.f., Decimal

• 12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

• 10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

Decimal Binary
0 00.00
0.25 00.01
0.5 00.10
0.75 00.11
1 01.00
1.25 01.01
1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10
3.75 11.11

0 1 2 3

Carnegie Mellon

37

Can We Represent Fractions in Binary?
• What does 10.012 mean?
• C.f., Decimal

• 12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

• 10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

Decimal Binary
0 00.00
0.25 00.01
0.5 00.10
0.75 00.11
1 01.00
1.25 01.01
1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10
3.75 11.11

0 1 2 3

01.10
+ 01.01

10.11

1.50
+ 1.25

2.75

Carnegie Mellon

37

Can We Represent Fractions in Binary?
• What does 10.012 mean?
• C.f., Decimal

• 12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

• 10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

Decimal Binary
0 00.00
0.25 00.01
0.5 00.10
0.75 00.11
1 01.00
1.25 01.01
1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10
3.75 11.11

0 1 2 3

01.10
+ 01.01

10.11

1.50
+ 1.25

2.75

Integer Arithmetic Still Works!

Carnegie Mellon

38

Fixed-Point Representation
Decimal Binary
0 00.00
0.25 00.01
0.5 00.10
0.75 00.11
1 01.00
1.25 01.01
1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10
3.75 11.11

• Binary point stays fixed
• Fixed interval between two representable

numbers as long as the binary point stays fixed
• The interval in this example is 0.2510

• Fixed-point representation of numbers
• Integer is one special case of fixed-point

0 1 2 3

Carnegie Mellon

38

Fixed-Point Representation
Decimal Binary
0 00.00
0.25 00.01
0.5 00.10
0.75 00.11
1 01.00
1.25 01.01
1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10
3.75 11.11

• Binary point stays fixed
• Fixed interval between two representable

numbers as long as the binary point stays fixed
• The interval in this example is 0.2510

• Fixed-point representation of numbers
• Integer is one special case of fixed-point

0 1 2 3

Decimal Binary
0 0000.
1 0001.
2 0010.
3 0011.
4 0100.
5 0101.
6 0110.
7 0111.
8 1000.
9 1001.
10 1010.
11 1011.
12 1100.
13 1101.
14 1110.
15 1111.

4 5 6 7 …. 15

Carnegie Mellon

39

Carnegie Mellon

Limitations of Fixed-Point (#1)

Carnegie Mellon

39

Carnegie Mellon

Limitations of Fixed-Point (#1)
• Can exactly represent numbers only of the form x/2k

•

Carnegie Mellon

39

Carnegie Mellon

Limitations of Fixed-Point (#1)
• Can exactly represent numbers only of the form x/2k

•

0 1/4 1/2 3/4 5/4 3/2 7/4 2 …. 15/4
b3b2.b1b0

Carnegie Mellon

39

Carnegie Mellon

Limitations of Fixed-Point (#1)
• Can exactly represent numbers only of the form x/2k

• Other rational numbers have repeating bit representations

0 1/4 1/2 3/4 5/4 3/2 7/4 2 …. 15/4
b3b2.b1b0

Carnegie Mellon

39

Carnegie Mellon

Limitations of Fixed-Point (#1)
• Can exactly represent numbers only of the form x/2k

• Other rational numbers have repeating bit representations

0 1/4 1/2 3/4 5/4 3/2 7/4 2 …. 15/4
b3b2.b1b0

Decimal Value Binary Representation

1/3 0.0101010101[01]…
1/5 0.001100110011[0011]…
1/10 0.0001100110011[0011]…

Carnegie Mellon

40

Limitations of Fixed-Point (#2)

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time
• To represent very large numbers, the (fixed) interval needs to be

large, making it hard to represent small numbers

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time
• To represent very large numbers, the (fixed) interval needs to be

large, making it hard to represent small numbers

0 ….
+∞

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time
• To represent very large numbers, the (fixed) interval needs to be

large, making it hard to represent small numbers

0 ….

A Large
Number

+∞

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time
• To represent very large numbers, the (fixed) interval needs to be

large, making it hard to represent small numbers

0 ….

A Large
Number

Unrepresentable
small numbers

+∞

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time
• To represent very large numbers, the (fixed) interval needs to be

large, making it hard to represent small numbers
• To represent very small numbers, the (fixed) interval needs to

be small, making it hard to represent large numbers

0
+∞

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time
• To represent very large numbers, the (fixed) interval needs to be

large, making it hard to represent small numbers
• To represent very small numbers, the (fixed) interval needs to

be small, making it hard to represent large numbers

0

A Small
Number

+∞

Carnegie Mellon

40

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time
• To represent very large numbers, the (fixed) interval needs to be

large, making it hard to represent small numbers
• To represent very small numbers, the (fixed) interval needs to

be small, making it hard to represent large numbers

0

A Small
Number

+∞

Unrepresentable
large numbers

Carnegie Mellon

41

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point
• Floating point representation
• IEEE 754 standard
• Rounding, addition, multiplication
• Floating point in C
• Summary

Carnegie Mellon

42

Primer: (Normalized) Scientific Notation
• In decimal: M × 10E

• E is an integer
• Normalized form: 1<= |M| < 10

Carnegie Mellon

42

Primer: (Normalized) Scientific Notation
• In decimal: M × 10E

• E is an integer
• Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

Carnegie Mellon

42

Primer: (Normalized) Scientific Notation
• In decimal: M × 10E

• E is an integer
• Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

M × 10E

Carnegie Mellon

42

Primer: (Normalized) Scientific Notation
• In decimal: M × 10E

• E is an integer
• Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

M × 10E

Significand

Carnegie Mellon

42

Primer: (Normalized) Scientific Notation
• In decimal: M × 10E

• E is an integer
• Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

M × 10E

Significand Base

Carnegie Mellon

42

Primer: (Normalized) Scientific Notation
• In decimal: M × 10E

• E is an integer
• Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

M × 10E

Significand Base

Exponent

Carnegie Mellon

43

Primer: (Normalized) Scientific Notation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3…

Binary Value Scientific Notation

1110110110110 (-1)0 1.110110110110 x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3

(-1)s M × 2E

Base

ExponentSign

Significand
Fraction

Carnegie Mellon

44

Primer: (Normalized) Scientific Notation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3… (-1)s M × 2E

Base

ExponentSign

Significand
Fraction

• If I tell you that there is a number where:
• Fraction = 0101
• s = 1
• E = 10
• You could reconstruct the number as (-1)11.0101x210

Carnegie Mellon

45

Primer: Floating Point Representation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3… (-1)s M × 2E

Base

ExponentSign

Significand
Fraction

Carnegie Mellon

• Encoding

45

Primer: Floating Point Representation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3… (-1)s M × 2E

Base

ExponentSign

Significand
Fraction

Carnegie Mellon

• Encoding

45

Primer: Floating Point Representation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3…

s exp frac

(-1)s M × 2E

Base

ExponentSign

Significand
Fraction

Carnegie Mellon

• Encoding
• MSB s is sign bit s

45

Primer: Floating Point Representation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3…

s exp frac

(-1)s M × 2E

Base

ExponentSign

Significand
Fraction

Carnegie Mellon

• Encoding
• MSB s is sign bit s
• exp field encodes Exponent (but not exactly the same, more later)

45

Primer: Floating Point Representation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3…

s exp frac

(-1)s M × 2E

Base

ExponentSign

Significand
Fraction

Carnegie Mellon

• Encoding
• MSB s is sign bit s
• exp field encodes Exponent (but not exactly the same, more later)
• frac field encodes Fraction (but not exactly the same, more later)

45

Primer: Floating Point Representation
• In binary: (–1)s M 2E

• Normalized form:
• 1<= M < 2
• M = 1.b0b1b2b3…

s exp frac

(-1)s M × 2E

Base

ExponentSign

Significand
Fraction

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2
• exp has 3 bits, interpreted as an unsigned value

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2
• exp has 3 bits, interpreted as an unsigned value

• If exp were E, we could represent exponents from 0 to 7

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2
• exp has 3 bits, interpreted as an unsigned value

• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2
• exp has 3 bits, interpreted as an unsigned value

• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2
• exp has 3 bits, interpreted as an unsigned value

• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

• Example when we use 3 bits for exp (i.e., k = 3):

• exp has 3 bits, interpreted as an unsigned value
• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

• Example when we use 3 bits for exp (i.e., k = 3):
• bias = 3

• exp has 3 bits, interpreted as an unsigned value
• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

• Example when we use 3 bits for exp (i.e., k = 3):
• bias = 3
• If E = -2, exp is 1 (0012)

• exp has 3 bits, interpreted as an unsigned value
• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

• Example when we use 3 bits for exp (i.e., k = 3):
• bias = 3
• If E = -2, exp is 1 (0012)

• exp has 3 bits, interpreted as an unsigned value
• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

• Example when we use 3 bits for exp (i.e., k = 3):
• bias = 3
• If E = -2, exp is 1 (0012)
• Reserve 000 and 111 for other purposes (more on this later)

• exp has 3 bits, interpreted as an unsigned value
• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

46

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

• Example when we use 3 bits for exp (i.e., k = 3):
• bias = 3
• If E = -2, exp is 1 (0012)
• Reserve 000 and 111 for other purposes (more on this later)
• We can now represent exponents from -2 (exp 001) to 3 (exp 110)

• exp has 3 bits, interpreted as an unsigned value
• If exp were E, we could represent exponents from 0 to 7
• How about negative exponent?
• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

v = (–1)s M 2E s exp frac

1 3 2

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2
1

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2
1

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2
1

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2
1 100

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2
1 100

Carnegie Mellon

47

Carnegie Mellon

6-bit Floating Point Example

• frac has 2 bits, append them after “1.” to form M
• frac = 10 implies M = 1.10

• Putting it Together: An Example:

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

-10.12 = (-1)1 1.01 x 21

v = (–1)s M 2E s exp frac

1 3 2
1 100 01

