CSC 252/452: Computer Organization Fall 2024: Lecture 3

Instructor: Yanan Guo Department of Computer Science University of Rochester

Announcement

- Programming Assignment 1 is out
 - Details:

https://www.cs.rochester.edu/courses/252/fall2024/labs/ assignment1.html

- Due on Sep 16th, 11:59 PM
- You have 3 slip days

Announcement

- Programming Assignment 1 is in C language.
- Seek help from TAs.
 - TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.
- Pay attention to Blackboard announcements
 - There are changes about the office hour locations/time...
 - I have to move my office hour tomorrow to early next week.

Last Lecture

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary

Two's Complement

• Two's Complement

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

• Two's Complement

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Two's Complement

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Two's Complement

-4 -3 -2 -1 0 1 2 3

 $b_2b_1b_0$

22 21 20

Weights in Unsigned

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Two's Complement

-4 -3 -2 -1 0 1 2 3

Weights in Unsigned

Weights in

Signed

2² 2¹ 2⁰

-2² 2¹ 2⁰

 $b_2b_1b_0$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Two's Complement

-4 -3 -2 -1 0 1 2 3

 $b_2b_1b_0$

↗↑₹

Weights in Unsigned 2² 2¹ 2⁰

Weights in **-2² 2¹ 2⁰** Signed

 $101_2 = 1^*2^0 + 0^*2^1 + (-1^*2^2) = -3_{10}$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Two's Complement

-4 -3 -2 -1 0 1 2 3

Weights in Unsigned

Weights in Signed -2²

-2² 2¹ 2⁰

 $b_2b_1b_0$

2² 2¹ 2⁰

$$101_2 = 1^* 2^0 + 0^* 2^1 + (-1^* 2^2) = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Two's Complement

-4 -3 -2 -1 0 1 2 3

Weights in Unsigned

Weights in Signed -2²

-2² 2¹ 2⁰

 $b_2b_1b_0$

2² 2¹ 2⁰

$$101_2 = 1^* 2^0 + 0^* 2^1 + (-1^* 2^2) = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Two's Complement

-4 -3 -2 -1 0 1 2 3

Weights in Unsigned

Weights in Signed -2²

-2² 2¹ 2⁰

 $b_2b_1b_0$

2² 2¹ 2⁰

$$101_2 = 1^* 2^0 + 0^* 2^1 + (-1^* 2^2) = -3_{10}$$

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

- Only 1 zero
- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

•	Only	1 zero
---	------	--------

- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

010 +) 101 111

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

•	Only	1	zero
---	------	---	------

- There is (still) a bit that represents sign!
- Unsigned arithmetic still works

	010	2
+)	101	+) -3
	111	-1

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

• Only 1 zero)		Signed	Binary
• There is (at		onvocanto signal	0	000
There is (st	iii) a bit that r	epresents sign:	1	001
• Unsigned arithmetic still works			2	010
-			3	011
			-4	100
01	0	2	-3	101
+) 10	1	+) -3	-2	110
11	1	-1	-1	111

• 3 + 1 becomes -4 (called overflow. More on it later.)

 Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)

- Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?
 - Integer
 - Non-negative
 - Between 0 and 255 (8 bits)
- Define a data type that captures all these attributes: unsigned char in C
 - Internally, an **unsigned char** variable is represented as a 8-bit, non-negative, binary number

• What if you want to define a variable that could take negative values?

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., **int**, **short**, etc.) are for

- What if you want to define a variable that could take negative values?
 - That's what signed data types (e.g., **int**, **short**, etc.) are for
- How are int values internally represented?
 - Theoretically could be either signed-magnitude or two's complement
 - The C language designers chose two's complement

		W			
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

C Data Type		32-bit	64-bit
(unsigned) c	har	1	1
(unsigned) s	hort	2	2
(unsigned) i	nt	4	4
(unsigned) 1	ong	4	8

		W			
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

C Data Type	32-bit	64-bit
(unsigned) char	1	1
(unsigned) short	2	2
(unsigned) int	4	4
(unsigned) long	4	8

- C Language
 - •#include <limits.h>
 - •Declares constants, e.g.,

• ULONG MAX

- LONG MAX
- LONG_MIN

Values platform specific

Mapping Between Signed & Unsigned

 Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Mapping Signed \leftrightarrow Unsigned

Bits	Signed	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	—→T2U—→
0110	6	
0111	7	
1000	-8	← <u>U2I</u> ←
1001	-7	
1010	-6	+/- 16
1011	-5	\longleftrightarrow
1100	-4	
1101	-3	
1110	-2	
1111	-1	

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary

The Problem

short	int x =	=	15213;
int	ix =	=	(int) x;
short	int y =	=	-15213;
int	iy =	=	(int) y;

C Data Type	64-bit
char	1
short	2
int	4
long	8

The Problem

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

C Data Type	64-bit
char	1
short	2
int	4
long	8

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

The Problem

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

C Data Type	64-bit
char	1
short	2
int	4
long	8

- Converting from smaller to larger integer data type
- Should we preserve the value?
- Can we preserve the value?
- How?

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	0000000 0000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 1111111 11000100 10010011

Signed Extension

- Task:
 - Given *w*-bit signed integer *x*
 - Convert it to (w+k)-bit integer with same value

Signed Extension

- Task:
 - Given *w*-bit signed integer *x*
 - Convert it to (*w*+*k*)-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

•
$$X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$$

k copies of MSB

Signed Extension

- Task:
 - Given *w*-bit signed integer *x*
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

•
$$X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$$

Another Problem

unsigned short x = 47981; unsigned int ux = x;

	Decimal	Hex	Binary
x	47981	BB 6D	10111011 01101101
ux	47981	00 00 BB 6D	00000000 00000000 10111011 01101101
Unsigned (Zero) Extension

- Task:
 - Given *w*-bit unsigned integer *x*
 - Convert it to (w+k)-bit integer with same value
- Rule:
 - Simply pad zeros:

•
$$X' = 0, ..., 0, x_{w-1}, x_{w-2}, ..., x_0$$

Yet Another Problem

int x = 53191; short sx = (short) x;

	Decimal	Hex	Binary
x	53191	00 00 CF C7	0000000 0000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

Yet Another Problem

int	х	=	53191;	1;	
short	sx	=	(short)	x	

	Decimal	Hex	Binary
x	53191	00 00 CF C7	0000000 0000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

- Truncating (e.g., int to short OR unsigned int to unsigned short)
 - C's implementation: leading bits are truncated, results reinterpreted
 - So can't always preserve the numerical value

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

• Similar to Decimal Addition

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)

	010	2	
Normal	+) 101	+) 5	
Case	111	7	

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal	010 +) 101	2 +) 5
Case	111	7
Overflow	110 +) 101	6 +) 5
Case	1011	11

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal	010 +) 101	2 +) 5	6 7
Case	111	7	
Overflow	110 +) 101	6 +) 5	
Case	1011	11	True Sum

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Similar to Decimal Addition
- Suppose we have a new data type that is 3-bit wide (c.f., short has 16 bits)
- Might overflow: result can't be represented within the size of the data type

Normal Case	010	2 +) 5	6 7	110 111
	111	<u>+) 5</u> 7		
Overflow	110 +) 101	6 +) 5		
Case	1011 011	11 3	 True \$ Sum \$ 	Sum with same bits

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Unsigned Addition in C

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)

		010	2
Normal	+)	101	+) -3
Case		111	-1

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

NI	010	2
Normal	+) 101	+) -3
Case	111	-1
0 1	110	-2
Overflow	+) 101	+) -3
Case	1011	-5

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

	010	2
Normal	+) 101	+) -3
Case	111	-1
O	110	-2
Overtiow	+) 101	+) -3
Case	1011	-5
	011	3

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

	010	2
Normal	+) 101	+) -3
Case	111	-1
Overflow	110	-2
Overnow	+) 101	+) -3
Case	1011	-5
	011	3

IS	Signed	Binary
	0	000
iye	1	001
	2	010
	3	011
Min>	-4	100
	-3	101
	-2	110
	-1	111

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal	010 +) 101	2 +) -3	Min	100 101 110
Case	111 110	-1 -2	-1	111 3
Overflow Case	+) 101 1011 011	+) -3 -5 3	+) 001 0100	+) 1 4

Signed

0

2

3

Binary

000

001

010

011

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal Case	010 +) 101	2 +) -3	Min	100 101 110
	111	-1	-1	111
Overflow Case	110 +) 101	-2 +) -3	011 +) 001	3 +) 1
	1011 011	-5 3	0100	4 - 4

Signed

0

2

3

Binary

000

001

010

011

Negative Overflow

- Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude)
- Overflow can also occur

Normal Case			Min> -4	100
	010	2	-3	101
	+) 101	+) -3	-2	110
	111	-1	-1	111
Overflow Case	110	-2	011	3
	+) 101	+) -3	+) 001	+) 1
	1011	-5	0100	4
	011	3	100	-4

Negative Overflow

Positive Overflow

Signed

U

2

З

Max

Binary

000

001

010

011

Operands: *W* bits

True Sum: W+1 bits

Discard Carry: W bits

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

+) 111 +) 110 1101

	111	
+)	110	_
1101		

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Cianad

			Signea	Binary	
			0	000	
			1	001	
111		-1	2	010	
+) 110		+) -2	3	011	
		·// _	-4	100	
1101		-3	-3	101	
	Truncate		-2	110	
			-1	111	

• This is not an overflow by definition

- This is not an overflow by definition
- Because the actual result can be represented using the bit width of the datatype (3 bits here)

• Goal: Computing Product of *w*-bit numbers *x*, *y*

Original Number (w bits)

$$\begin{array}{c} OMax \ 2^{w-1}-1 \\ 0 \\ OMin \ -2^{w-1} \end{array}$$

Multiplication

- Goal: Computing Product of *w*-bit numbers *x*, *y*
- Exact results can be bigger than w bits
 - Up to 2w bits (both signed and unsigned)

Product (2w bits) **Original Number (w bits) PMax** OMin² OMax ^{2w -1}– ، ا 0 OMin -2^{2w-2} + 2^{w-1} **PMin** OMin * OMax

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Effectively Implements the following:

 $UMult_w(u, v) = u \cdot v \mod 2^w$

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits

• Effectively Implements the following:

 $\mathsf{UMult}_w(u, v) = u \cdot v \mod 2^w$

		1110	1001		E9		223
*		1101	0101	*	D5	*	213
****	****	1101	1101	C	1DD	4	47499
		1101	1101		DD		221

Signed Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Signed Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

	1110	1001	E9		-23
*	1101	0101	* D5	*	-43
**** ****	1101	1101	03DD		989
	1101	1101	DD		-35

- Operation
 - u << k gives u * 2^k
 - Both signed and unsigned
 Operands: w bits

 $u \cdot 2^k$

k

. . .

0

00

0

0

...

010

U

 2^k

0

. . .

*

- Operation
 - u << k gives u * 2^k
 - Both signed and unsigned
 Operands: w bits

True Product: *w+k* bits

- Operation
 - $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} \ast 2^k$
 - Both signed and unsig Operands: w bits

True Product: *w*+*k* bits

Discard k bits: w bits

`					k		
gned		U			• • •		
	*	2^k	0	•••	010	•••	• 0 0
$u \cdot 2^k$		•	•••		0	•••	• 0 0
				••		•••	• 00

- Operation
 - u << k gives u * 2^k
 - Both signed and unsigned
 Operands: w bits

True Product: <u>w+k</u> bits

Discard k bits: w bits

••• 0 0

n

00

0

k

0110

U

 2^k

*

• Examples

- u << 3 == u * 8
- $(u \ll 5) (u \ll 3) == u \ast 24$
- Most machines shift and add faster than multiply

 $u \cdot 2^k$

• Compiler generates this code automatically

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary

Arithmetic: Basic Rules

- Addition:
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Multiplication:
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Shift: Power-of-2 Multiply

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned int i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

• Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . .
```

Why Should I Use Unsigned? – Bit Set

• Use bits to represent my availability of the week

b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀
Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	0	1	1	0	0	1

- Use 1 bit per day, 7 bits in total.
- If bit x is set to 1 then I'm available on day mapped to bit x.

Why Should I Use Unsigned? – Bit Set

• Use bits to represent my availability of the week

b ₆	b_5	b ₄	b ₃	b ₂	b ₁	b ₀
Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	0	1	1	0	0	1

- Use 1 bit per day, 7 bits in total.
- If bit x is set to 1 then I'm available on day mapped to bit x.
- In C: unsigned int aval;

Why Should I Use Unsigned? – Bit Set

• Use bits to represent my availability of the week

b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀
Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	0	1	1	0	0	1

- Use 1 bit per day, 7 bits in total.
- If bit x is set to 1 then I'm available on day mapped to bit x.
- In C: unsigned int aval;

 $aval = 1^{*}2^{0} + 0^{*}2^{1} + 0^{*}2^{2} + 1^{*}2^{3} + 1^{*}2^{4} + 0^{*}2^{5} + 1^{*}2^{6} = 89_{10}$

Today: Floating Point

- Background: Fractional binary numbers and fixed-point
- Floating point representation
- IEEE 754 standard
- Rounding, addition, multiplication
- Floating point in C
- Summary

- What does 10.012 mean?
 - C.f., Decimal

- What does 10.012 mean?
 - C.f., Decimal

$12.45 = 1^*10^1 + 2^*10^0 + 4^*10^{-1} + 5^*10^{-2}$

- What does 10.012 mean?
 - C.f., Decimal

$12.45 = 1^*10^1 + 2^*10^0 + 4^*10^{-1} + 5^*10^{-2}$

$10.01_2 = 1^*2^1 + 0^*2^0 + 0^*2^{-1} + 1^*2^{-2}$

- What does 10.012 mean?
 - C.f., Decimal

$12.45 = 1^*10^1 + 2^*10^0 + 4^*10^{-1} + 5^*10^{-2}$

- What does 10.012 mean?
 - C.f., Decimal

$12.45 = 1^*10^1 + 2^*10^0 + 4^*10^{-1} + 5^*10^{-2}$

- What does 10.012 mean?
 - C.f., Decimal

$12.45 = 1^*10^1 + 2^*10^0 + 4^*10^{-1} + 5^*10^{-2}$

- What does 10.012 mean?
 - C.f., Decimal

$12.45 = 1^*10^1 + 2^*10^0 + 4^*10^{-1} + 5^*10^{-2}$

- What does 10.012 mean?
 - C.f., Decimal

$12.45 = 1^*10^1 + 2^*10^0 + 4^*10^{-1} + 5^*10^{-2}$

$10.01_2 = 1^*2^1 + 0^*2^0 + 0^*2^{-1} + 1^*2^{-2}$ $= 2.25_{10}$

Fractional Binary Numbers

- What does 10.012 mean?
- C.f., Decimal
 - $12.45 = 1*10^1 + 2*10^0 + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^*2^1 + 0^*2^0 + 0^*2^{-1} + 1^*2^{-2} = 2.25_{10}$

- What does 10.012 mean?
- C.f., Decimal
 - $12.45 = 1*10^1 + 2*10^0 + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^*2^1 + 0^*2^0 + 0^*2^{-1} + 1^*2^{-2} = 2.25_{10}$

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

- What does 10.012 mean?
- C.f., Decimal
 - $12.45 = 1*10^1 + 2*10^0 + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^*2^1 + 0^*2^0 + 0^*2^{-1} + 1^*2^{-2} = 2.25_{10}$

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.012 mean?
- C.f., Decimal
 - $12.45 = 1 \times 10^{1} + 2 \times 10^{0} + 4 \times 10^{-1} + 5 \times 10^{-2}$
- $10.01_2 = 1^{*}2^{1} + 0^{*}2^{0} + 0^{*}2^{-1} + 1^{*}2^{-2} = 2.25_{10}$

$$\begin{array}{cccc}
01.10 & 1.50 \\
01.01 & + 1.25 \\
10.11 & 2.75 \end{array}$$

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- What does 10.012 mean?
- C.f., Decimal
 - $12.45 = 1*10^1 + 2*10^0 + 4*10^{-1} + 5*10^{-2}$
- $10.01_2 = 1^{*}2^{1} + 0^{*}2^{0} + 0^{*}2^{-1} + 1^{*}2^{-2} = 2.25_{10}$

╋╪╪╪╋┊╡╝╝

0 1 2 3

Integer Arithmetic Still Works!

01.10	1.50
+ 01.01	+ 1.25
10.11	2.75

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Fixed-Point Representation

	Decimai	Binary
 Binary point stays fixed 	0	00.00
 Fixed interval between two representable 	0.25	00.01
numbers as long as the binary point stays fixed	0.5	00.10
 The interval in this example is 0.2510 	0.75	00.11
		01.00
Fixed-point representation of numbers	1.25	01.01
 Integer is one special case of fixed-point 	1.5	01.10
	1.75	01.11
	2	10.00
0 1 2 3	2.25	10.01
	2.5	10.10
	2.75	10.11
	3	11.00
	3.25	11.01
	3.5	11.10
	3.75	11.11

Fixed-Point Representation

Decimal Binary Binary point stays fixed 0000.U Fixed interval between two representable 0001. numbers as long as the binary point stays fixed 2 0010. 3 0011. The interval in this example is 0.2510 4 0100. Fixed-point representation of numbers 0101. 5 0110. Integer is one special case of fixed-point 6 0111. 7 8 1000. 7 Ω 2 3 Δ 5 6 15 9 1001. 10 1010. 11 1011. 12 1100. 13 1101. 14 1110.

1111.

15
• Can exactly represent numbers only of the form x/2^k

• Can exactly represent numbers only of the form x/2^k

- Can exactly represent numbers only of the form x/2^k
 - Other rational numbers have repeating bit representations

- Can exactly represent numbers only of the form x/2^k
 - Other rational numbers have repeating bit representations

Decimal Value	Binary Representation
1/3	0.0101010101[01]
1/5	0.001100110011[0011]
1/10	0.0001100110011[0011]

 Can't represent very small and very large numbers at the same time

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers
 - To represent very small numbers, the (fixed) interval needs to be small, making it hard to represent large numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers
 - To represent very small numbers, the (fixed) interval needs to be small, making it hard to represent large numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers
 - To represent very small numbers, the (fixed) interval needs to be small, making it hard to represent large numbers

Unrepresentable large numbers ++∞ 0 A Small Number

Today: Floating Point

- Background: Fractional binary numbers and fixed-point
- Floating point representation
- IEEE 754 standard
- Rounding, addition, multiplication
- Floating point in C
- Summary

- In decimal: $M \times 10^{E}$
 - E is an integer
 - Normalized form: $1 \le |M| \le 10$

- In decimal: $M \times 10^{E}$
 - E is an integer
 - Normalized form: $1 \le |M| \le 10$

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: $M \times 10^{E}$
 - E is an integer
 - Normalized form: $1 \le |M| \le 10$

$M \times 10^{E}$

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: M × 10^E
 - E is an integer
 - Normalized form: $1 \le |M| \le 10$

Significand

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: $M \times 10^{E}$
 - *E* is an integer
 - Normalized form: $1 \le |M| \le 10$

Significand Base

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: $M \times 10^{E}$
 - *E* is an integer
 - Normalized form: $1 \le |M| \le 10$

Significand Base

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	(-1) ¹ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction

- If I tell you that there is a number where:
 - Fraction = 0101
 - s = 1
 - E = 10
 - You could reconstruct the number as (-1)¹1.0101x2¹⁰

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction
- Encoding

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction
- Encoding

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction
- Encoding
 - MSB **s** is sign bit <mark>s</mark>

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction
- Encoding
 - MSB **s** is sign bit s
 - exp field encodes Exponent (but not exactly the same, more later)

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1<=*M* < 2
 - $M = 1.bob_1b_2b_3...$ Fraction
- Encoding
 - MSB **s** is sign bit s
 - *exp* field encodes Exponent (but not exactly the same, more later)
 - frac field encodes Fraction (but not exactly the same, more later)

• *exp* has 3 bits, interpreted as an unsigned value

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If *E* = -2, *exp* is 1 (001₂)

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If *E* = -2, *exp* is 1 (001₂)

E	ехр
-3	000
-2	001
-1	010
С	011
1	100
2	101
3	110
4	111

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If *E* = -2, *exp* is 1 (001₂)
 - Reserve 000 and 111 for other purposes (more on this later)

- *exp* has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: *E* = *exp bias* (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If *E* = -2, *exp* is 1 (001₂)
 - Reserve 000 and 111 for other purposes (more on this later)
 - We can now represent exponents from -2 (exp 001) to 3 (exp 110)

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$-10.1_2 = (-1)^1 \ 1.01 \ x \ 2^1$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^1 1.01 \times 2^1$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^1 1.01 \times 2^1$$

Į

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^1 1.01 \times 2^1$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^{1} 1.01 \times 2^{1}$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^{1} 1.01 \times 2^{1}$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^{1} 1.01 \times 2^{1}$$

I

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^{1} 1.01 \times 2^{1}$$

I

