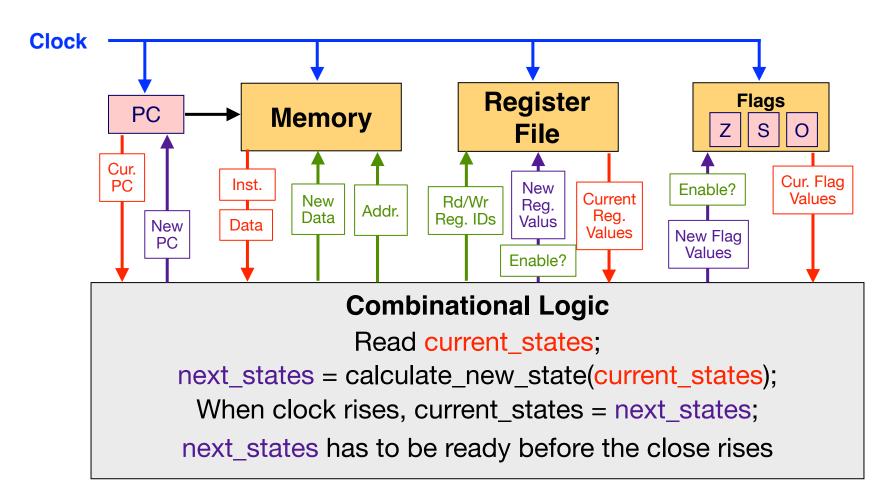
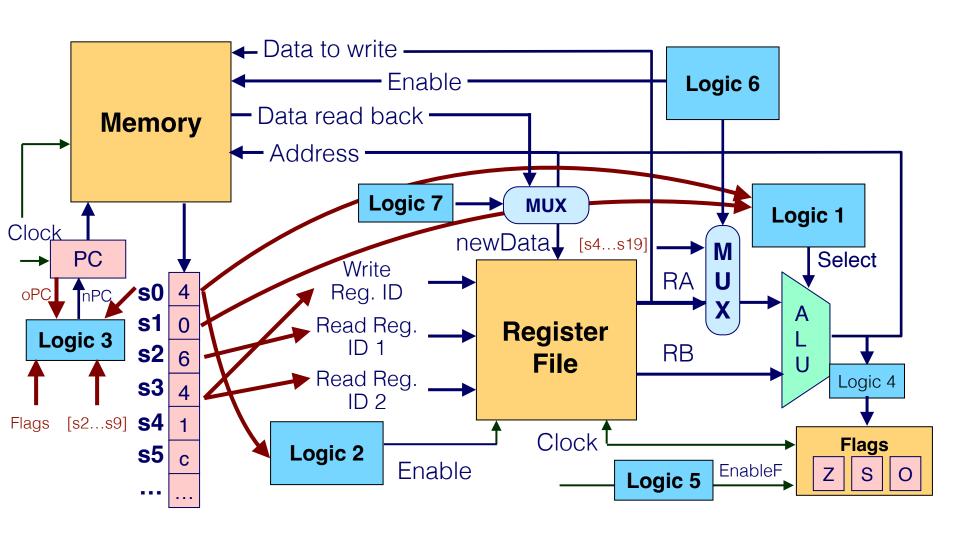
CSC 252/452: Computer Organization Fall 2024: Lecture 13

Instructor: Yanan Guo

Department of Computer Science
University of Rochester


Announcement

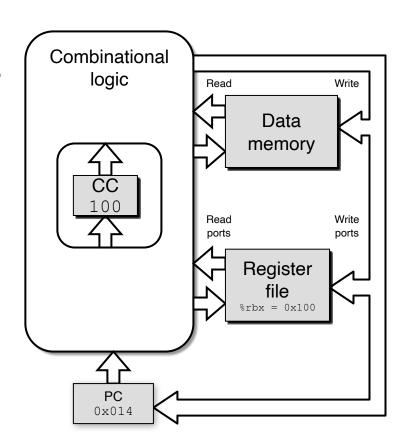
- Programming assignment 3 is out
 - Details: https://www.cs.rochester.edu/courses/252/fall2024/labs/assignment3.html
 - Due on **Oct. 25th**, 11:59 PM
 - You (may still) have 3 slip days

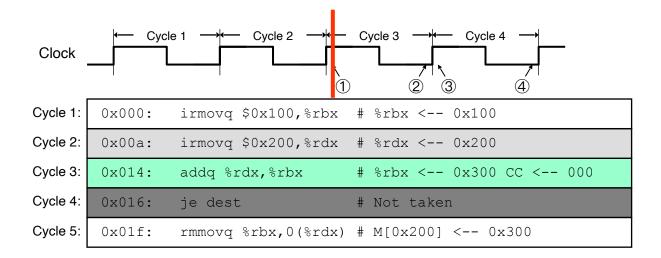

Announcement

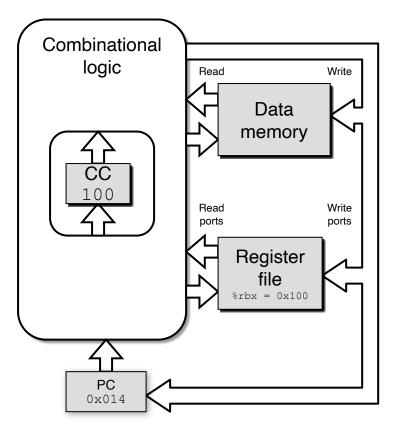
- Programming assignment 3 is in x86 assembly language. Seek help from TAs.
- TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials.
 They ask you to synthesize what you have learned from the lectures and work out something new.

Single-Cycle Microarchitecture

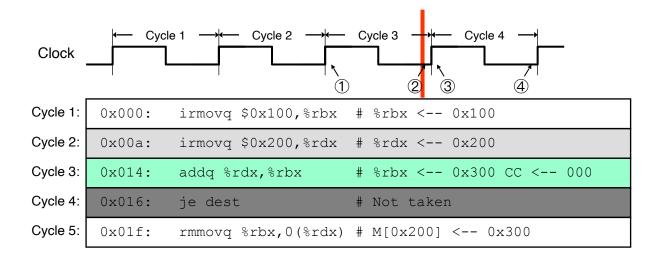
Single-Cycle Microarchitecture

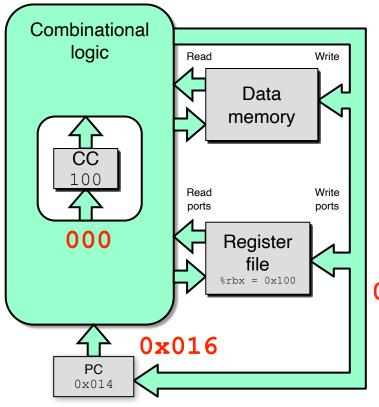

Single-Cycle Microarchitecture: Illustration

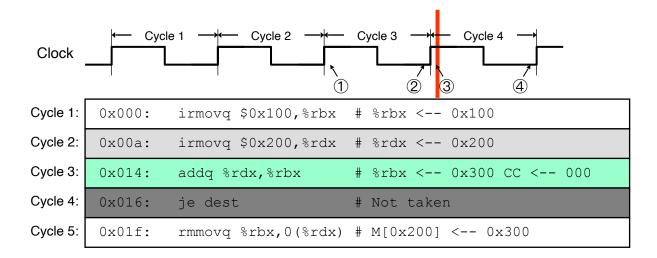

Think of it as a state machine

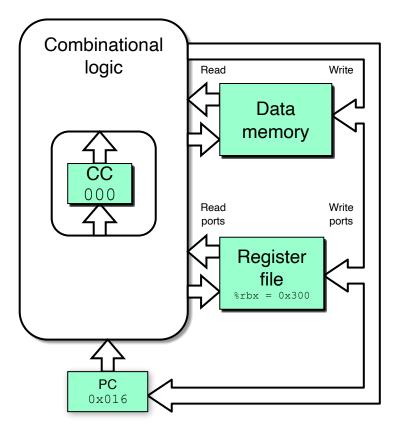

Every cycle, one instruction gets executed. At the end of the cycle, architecture states get modified.

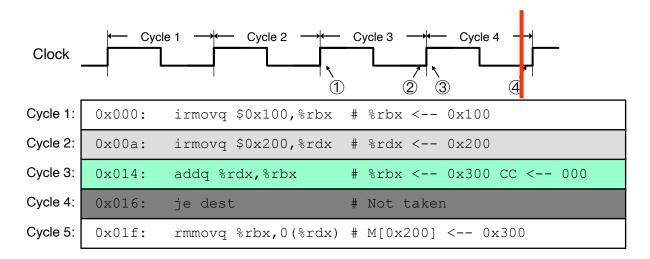
States (All updated as clock rises)

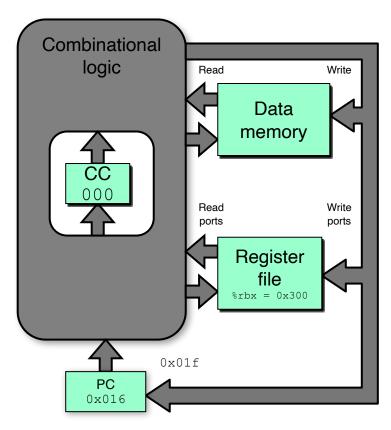

- PC register
- Cond. Code register
- Data memory
- Register file






- state set according to second irmovg instruction
- combinational logic starting to react to state changes




- state set according to second irmovg instruction
- combinational logic generates results for addq instruction

- state set according to addq instruction
- combinational logic starting to react to state changes

- state set according to addq instruction
- combinational logic generates results for je instruction

Processor Microarchitecture

- Sequential, single-cycle microarchitecture implementation
 - Basic idea
 - Hardware implementation
- Pipelined microarchitecture implementation
 - Basic Principles
 - Difficulties: Control Dependency
 - Difficulties: Data Dependency

Performance Model

```
Execution time of a program (in seconds)
```

```
= # of <u>Dynamic</u> Instructions
```

X # of cycles taken to execute an instruction (on average)

Performance Model

```
Execution time of a program (in seconds)

= # of Dynamic Instructions

CPI

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second
```

Performance Model

```
Execution time of a program (in seconds) = # of Dynamic Instructions

CPI

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second Clock Frequency (1/cycle time)
```

```
Execution time of a program (in seconds)
```

= # of <u>Dynamic</u> Instructions

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second

 1. Reduce the total number of instructions executed (mainly done by the compiler and/or programmer).

```
Execution time of a program (in seconds)
```

= # of <u>Dynamic</u> Instructions

X # of cycles taken to execute an instruction (on average)

- 1. Reduce the total number of instructions executed (mainly done by the compiler and/or programmer).
- 2. Increase the clock frequency (reduce the cycle time). Has huge power implications.

```
Execution time of a program (in seconds)
```

= # of <u>Dynamic</u> Instructions

X # of cycles taken to execute an instruction (on average)

- 1. Reduce the total number of instructions executed (mainly done by the compiler and/or programmer).
- 2. Increase the clock frequency (reduce the cycle time). Has huge power implications.
- 3. Reduce the CPI, i.e., execute more instructions in one cycle.

```
Execution time of a program (in seconds)
```

```
= # of <u>Dynamic</u> Instructions
```

X # of cycles taken to execute an instruction (on average)

- 1. Reduce the total number of instructions executed (mainly done by the compiler and/or programmer).
- 2. Increase the clock frequency (reduce the cycle time). Has huge power implications.
- 3. Reduce the CPI, i.e., execute more instructions in one cycle.
- We will talk about one technique that simultaneously achieves 2 & 3.

Cycle time

- Cycle time
 - Every instruction finishes in one cycle.

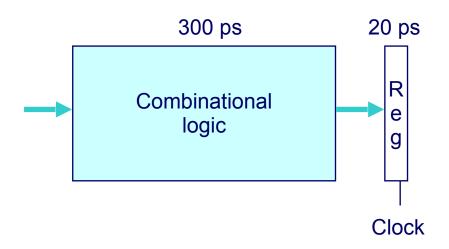
- Cycle time
 - Every instruction finishes in one cycle.
 - The absolute time takes to execute each instruction varies.
 Consider for instance an ADD instruction and a JMP instruction.

- Cycle time
 - Every instruction finishes in one cycle.
 - The absolute time takes to execute each instruction varies.
 Consider for instance an ADD instruction and a JMP instruction.
 - But the cycle time is uniform across instructions, so the cycle time needs to accommodate the worst case, i.e., the slowest instruction.

- Cycle time
 - Every instruction finishes in one cycle.
 - The absolute time takes to execute each instruction varies.
 Consider for instance an ADD instruction and a JMP instruction.
 - But the cycle time is uniform across instructions, so the cycle time needs to accommodate the worst case, i.e., the slowest instruction.
 - How do we shorten the cycle time (increase the frequency)?

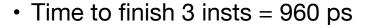
- Cycle time
 - Every instruction finishes in one cycle.
 - The absolute time takes to execute each instruction varies.
 Consider for instance an ADD instruction and a JMP instruction.
 - But the cycle time is uniform across instructions, so the cycle time needs to accommodate the worst case, i.e., the slowest instruction.
 - How do we shorten the cycle time (increase the frequency)?
- CPI

- Cycle time
 - Every instruction finishes in one cycle.
 - The absolute time takes to execute each instruction varies.
 Consider for instance an ADD instruction and a JMP instruction.
 - But the cycle time is uniform across instructions, so the cycle time needs to accommodate the worst case, i.e., the slowest instruction.
 - How do we shorten the cycle time (increase the frequency)?
- CPI
 - The entire hardware is occupied to execute one instruction at a time. Can't execute multiple instructions at the same time.

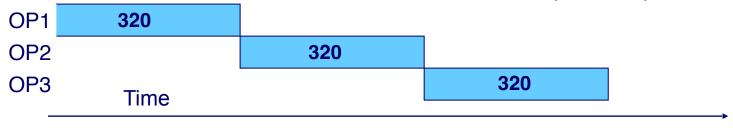

Cycle time

- Every instruction finishes in one cycle.
- The absolute time takes to execute each instruction varies.
 Consider for instance an ADD instruction and a JMP instruction.
- But the cycle time is uniform across instructions, so the cycle time needs to accommodate the worst case, i.e., the slowest instruction.
- How do we shorten the cycle time (increase the frequency)?

CPI

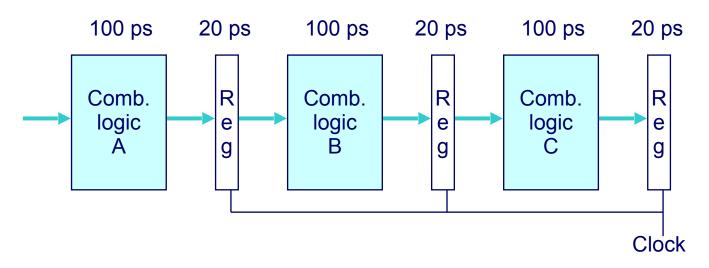

- The entire hardware is occupied to execute one instruction at a time. Can't execute multiple instructions at the same time.
- How do execute multiple instructions in one cycle?

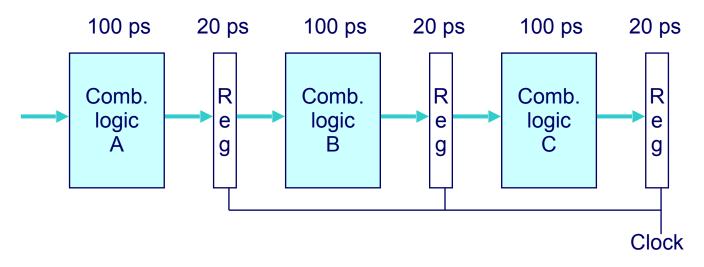
A Motivating Example



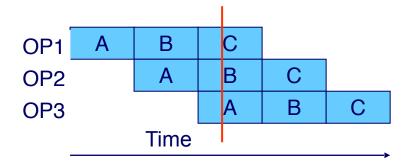
- Computation requires total of 300 picoseconds
- Additional 20 picoseconds to save result in register
- Must have clock cycle time of at least 320 ps

Pipeline Diagrams



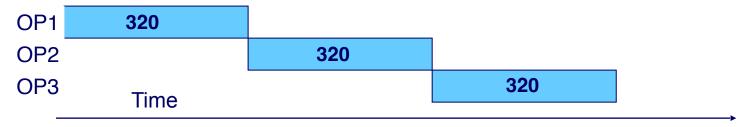

- 3 instructions will take 960 ps to finish
 - First cycle: Inst 1 takes 300 ps to compute new state,
 20 ps to store the new states
 - Second cycle: Inst 2 starts; it takes 300 ps to compute new states, 20 ps to store new states
 - And so on...

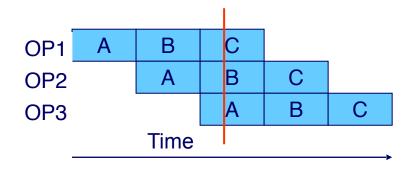
3-Stage Pipelined Version



- Divide combinational logic into 3 stages of 100 ps each
- Insert registers between stages to store intermediate data between stages. These are call pipeline registers (ISA-invisible)
- Can begin a new instruction as soon as the previous one finishes stage A and has stored the intermediate data.
 - Begin new operation every 120 ps
 - Cycle time can be reduced to 120 ps

3-Stage Pipelined Version

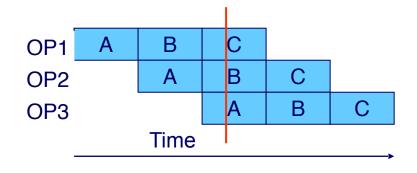

3-Stage Pipelined


Comparison

Unpipelined

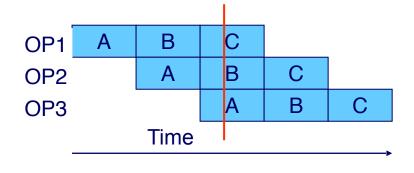
- Time to finish 3 insts = 960 ps
- Each inst.'s latency is 320 ps

3-Stage Pipelined


- Time to finish 3 insets = 120 *
 5 = 600 ps
- But each inst.'s latency increases: 120 * 3 = 360 ps

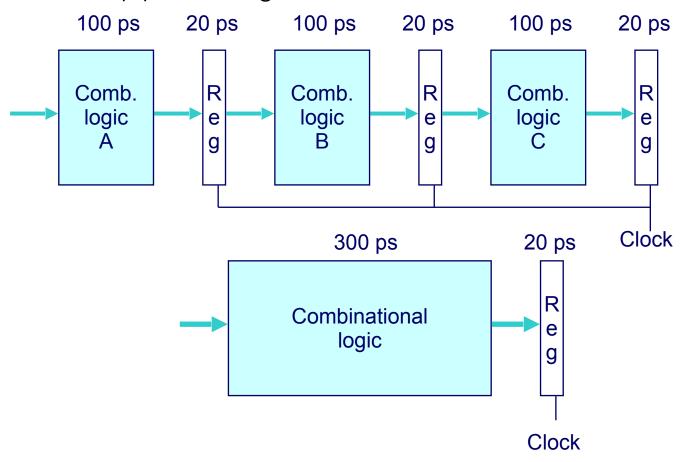
Benefits of Pipelining

- Time to finish 3 insts = 960 ps
- Each inst.'s latency is 320 ps

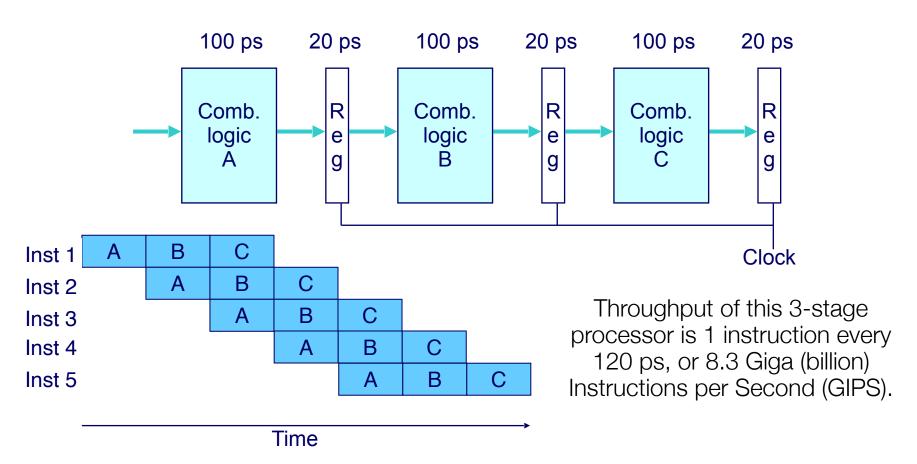

Reduce the cycle time from 320 ps to 120 ps

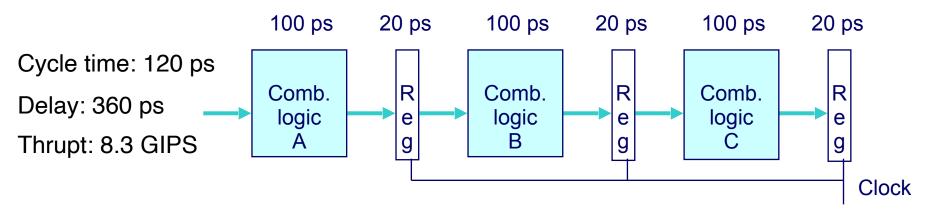
- Time to finish 3 insets = 120 *
 5 = 600 ps
- But each inst.'s latency increases: 120 * 3 = 360 ps

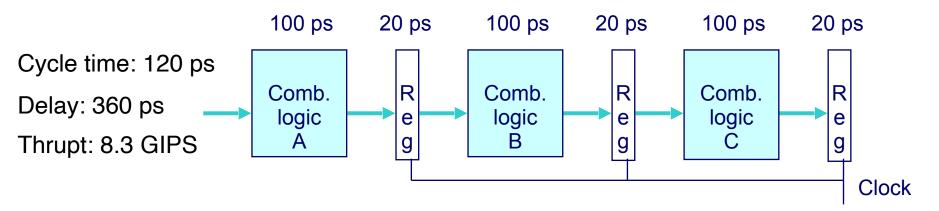
One Requirement of Pipelining

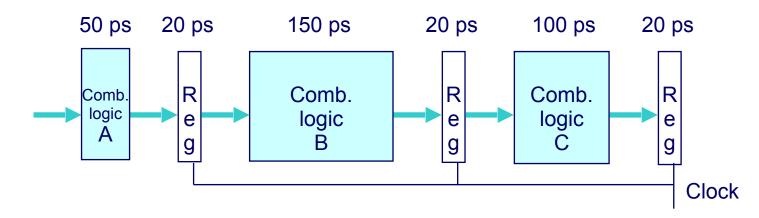

- The stages need to be using different hardware structures.
- That is, Stage A, Stage B, and Stage C need to exercise different parts of the combination logic.

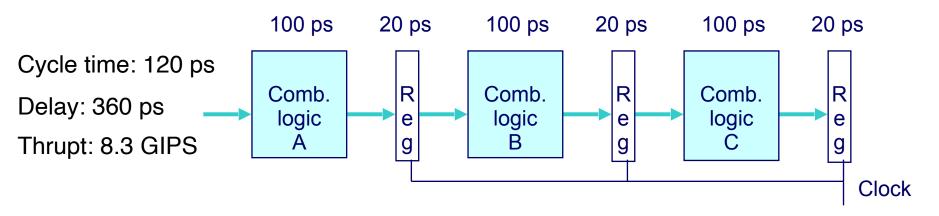
- Time to finish 3 insets = 120 *
 5 = 600 ps
- But each inst.'s latency increases: 120 * 3 = 360 ps

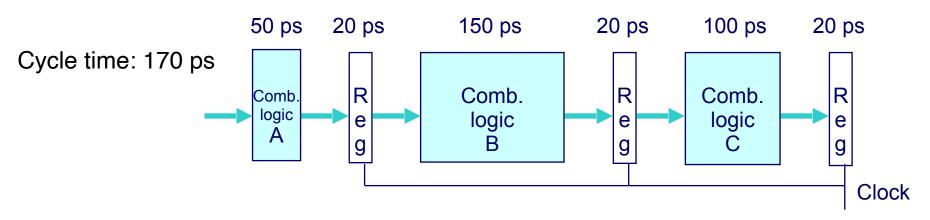

Pipeline Trade-offs

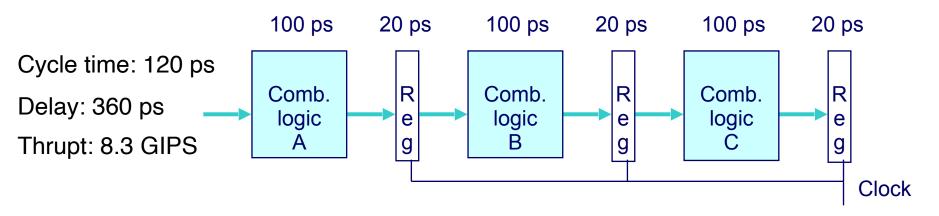

- Pros: Decrease the total execution time (Increase the "throughput").
- Cons: Increase the latency of each instruction as new registers are needed between pipeline stages.

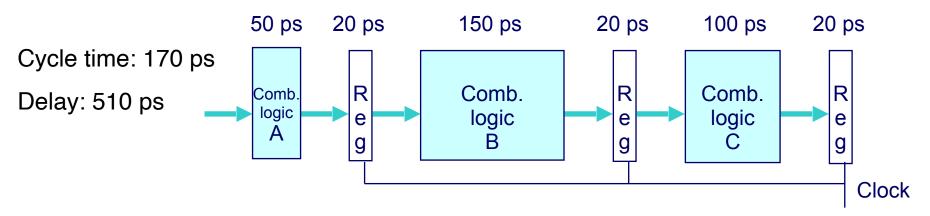


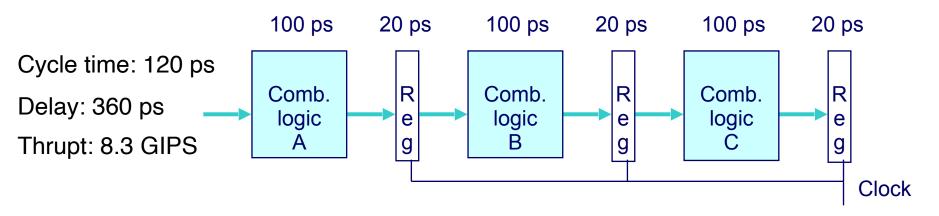

Throughput

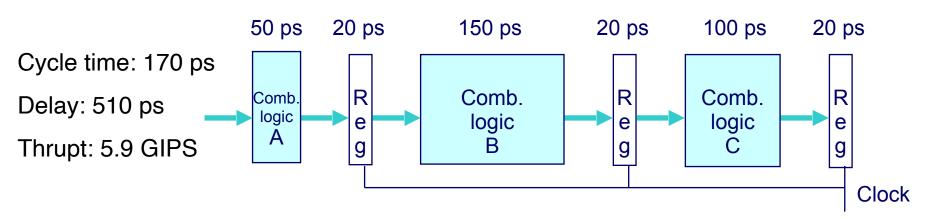

 The rate at which the processor can finish executing an instruction (at the steady state).

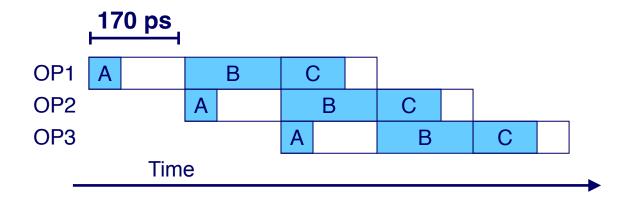


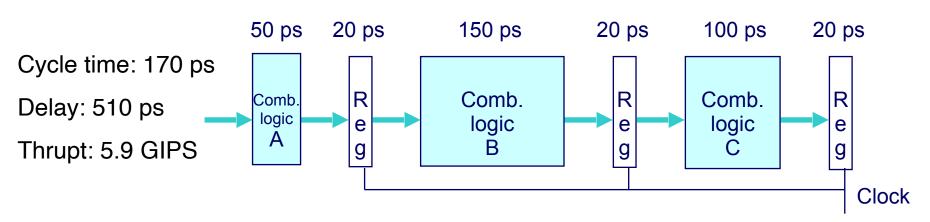


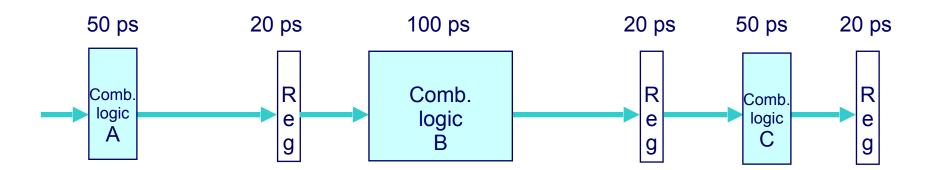


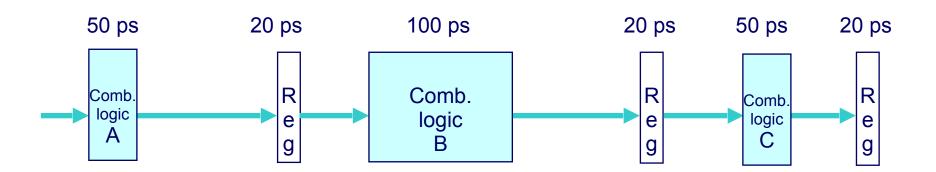


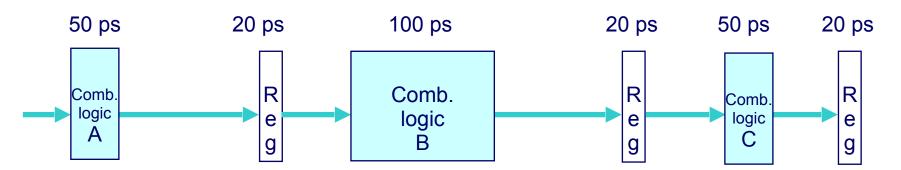


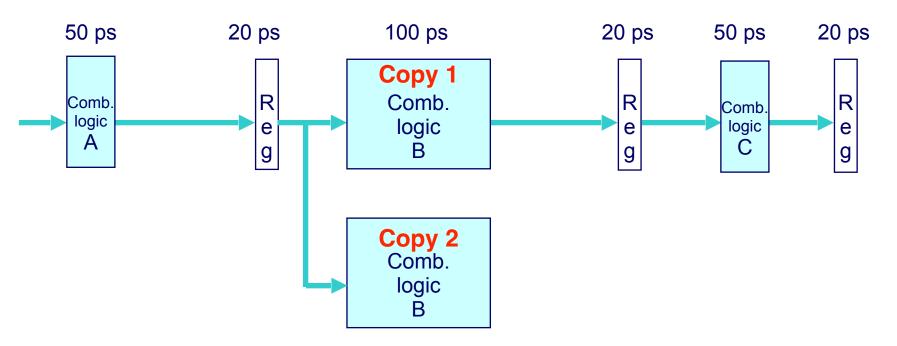


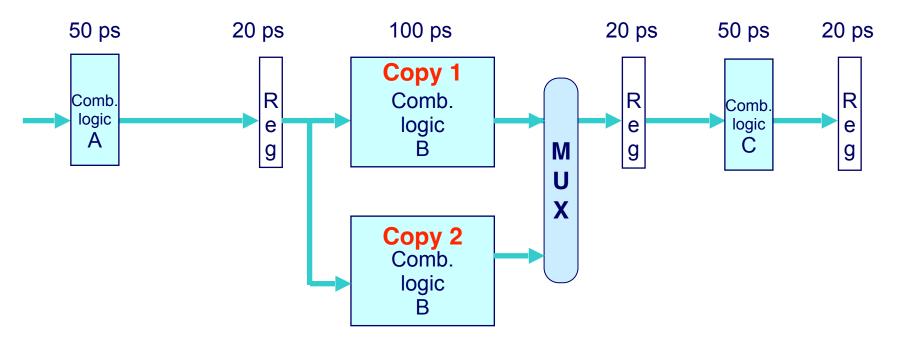


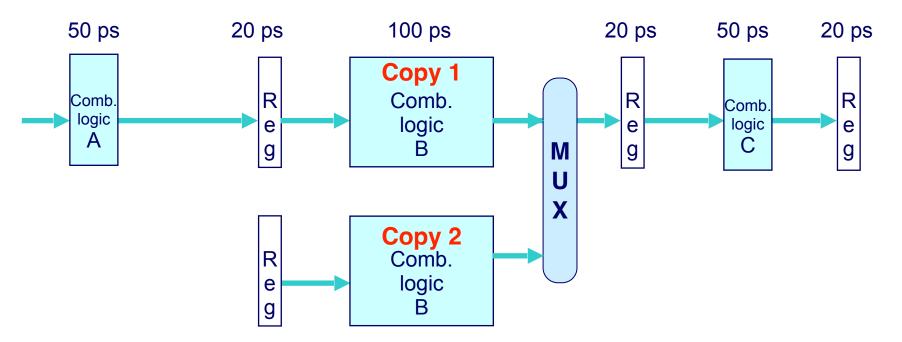


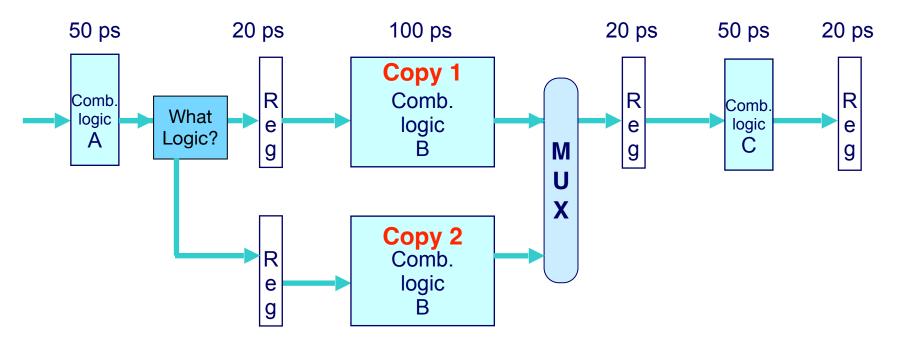


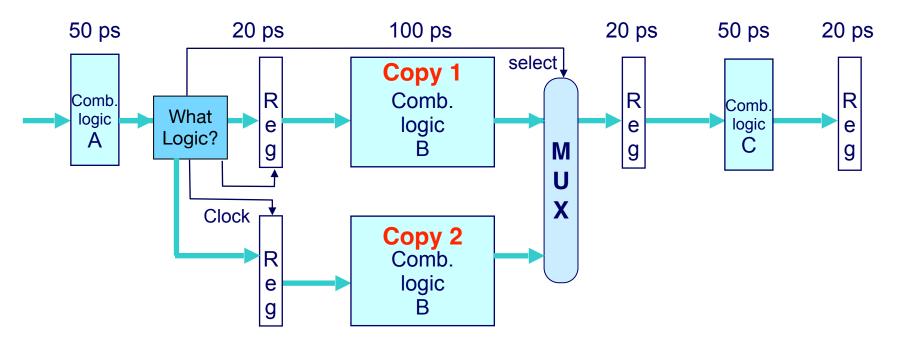

Solution 1: Further pipeline the slow stages

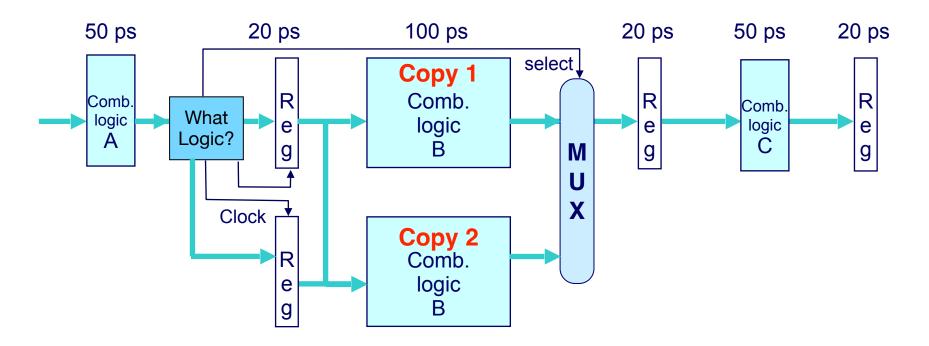

- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?

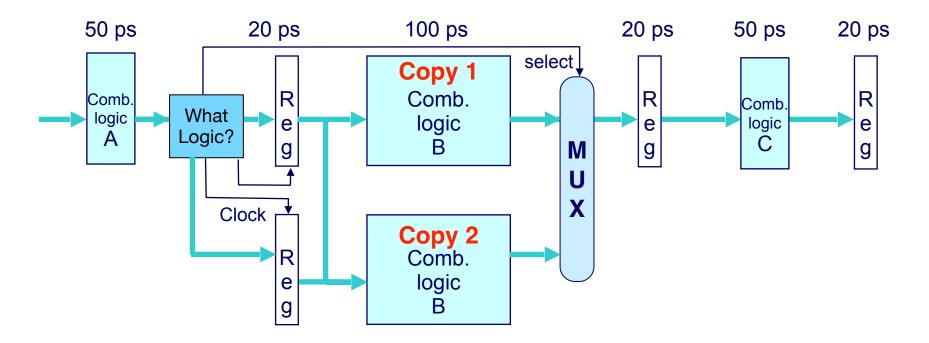

- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?
- Solution 2: Use multiple copies of the slow component

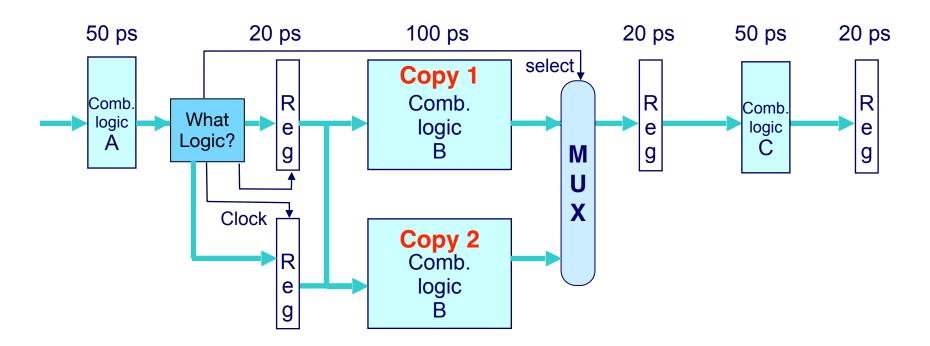

- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?
- Solution 2: Use multiple copies of the slow component


- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?
- Solution 2: Use multiple copies of the slow component


- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?
- Solution 2: Use multiple copies of the slow component


- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?
- Solution 2: Use multiple copies of the slow component


- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?
- Solution 2: Use multiple copies of the slow component


Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

- Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
- This is called 2-way interleaving. Effectively the same as pipelining Comb. logic B into two sub-stages.

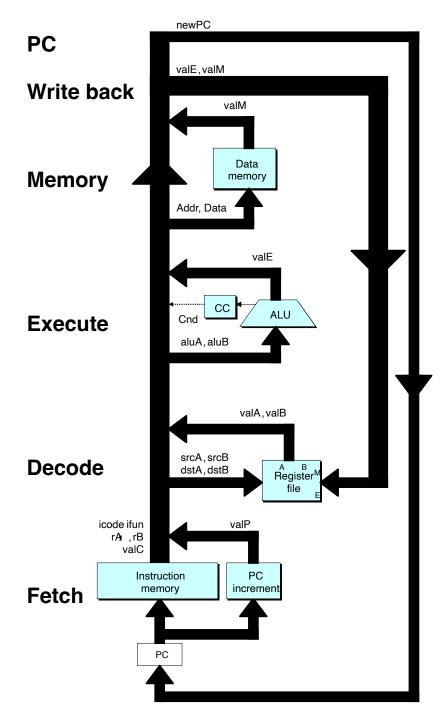
- Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
- This is called 2-way interleaving. Effectively the same as pipelining Comb. logic B into two sub-stages.
- The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost of extra hardware.

Another Way to Look At the Microarchitecture

Principles:

- Execute each instruction one at a time, one after another
- Express every instruction as series of simple steps
- Dedicated hardware structure for completing each step
- Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory


Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

Fetch

Read instruction from instruction memory

Decode

Read program registers

Execute

Compute value or address

Memory

Read or write data

Write Back

Write program registers

PC

Update program counter

	OPq rA, rB
	icode:ifun ← M₁[PC]
Fetch	rA:rB ← M ₁ [PC+1]
	valP ← PC+2

Read instruction byte Read register byte

Compute next PC

	OPq rA, rB
Fetch	icode:ifun ← M ₁ [PC] rA:rB ← M ₁ [PC+1]
	valP ← PC+2
Decode	valA ← R[rA]
	valB ← R[rB]

Read instruction byte Read register byte

Compute next PC
Read operand A
Read operand B

	OPq rA, rB
Fetch	icode:ifun ← M ₁ [PC] rA:rB ← M ₁ [PC+1]
	valP ← PC+2
Decode	valA ← R[rA]
	valB ← R[rB]
Execute	valE ← valB OP valA
	Set CC

Read instruction byte Read register byte

Compute next PC
Read operand A
Read operand B
Perform ALU operation
Set condition code register

	OPq rA, rB
Fetch	icode:ifun ← M ₁ [PC] rA:rB ← M ₁ [PC+1]
	valP ← PC+2
Decode	valA ← R[rA]
Decode	valB ← R[rB]
Execute	valE ← valB OP valA
	Set CC
Memory	

Read instruction byte Read register byte

Compute next PC
Read operand A
Read operand B
Perform ALU operation
Set condition code register

	OPq rA, rB
Fetch	icode:ifun ← M ₁ [PC] rA:rB ← M ₁ [PC+1]
	valP ← PC+2
Decode	valA ← R[rA]
	valB ← R[rB]
Execute	valE ← valB OP valA
	Set CC
Memory	
Write	R[rB] ← valE
back	

Read instruction byte Read register byte

Compute next PC
Read operand A
Read operand B
Perform ALU operation
Set condition code register

Write back result

	OPq rA, rB
	icode:ifun ← M₁[PC]
Fetch	rA:rB ← M ₁ [PC+1]
	valP ← PC+2
Dagada	valA ← R[rA]
Decode	valB ← R[rB]
Execute	valE ← valB OP valA
Execute	Set CC
Memory	
Write	R[rB] ← valE
back	
PC update	PC ← valP

Read instruction byte Read register byte

Compute next PC
Read operand A
Read operand B
Perform ALU operation
Set condition code register

Write back result

Update PC

rmmovq rA, D (rB) 4 0 rA rB D

rmmovq rA, D(rB) 4 0 rA rB D

	rmmovq rA, D(rB)
Fetch	icode:ifun ← M₁[PC]
	rA:rB ← M ₁ [PC+1]
	valC ← M ₈ [PC+2]
	valP ← PC+10

Read instruction byte
Read register byte
Read displacement D
Compute next PC

rmmovq rA, D(rB) 4 0 rA rB D

	rmmovq rA, D(rB)
Fetch	icode:ifun ← M₁[PC]
	rA:rB ← M ₁ [PC+1]
	valC ← M ₈ [PC+2]
	valP ← PC+10
Decode	valA ← R[rA]
	valB ← R[rB]

Read instruction byte
Read register byte
Read displacement D
Compute next PC
Read operand A
Read operand B

rmmovq rA, D(rB) 4 0 rA rB D

	rmmovq rA, D(rB)
Fetch	icode:ifun ← M₁[PC]
	rA:rB ← M ₁ [PC+1]
	valC ← M ₈ [PC+2]
	valP ← PC+10
Decode	valA ← R[rA]
	valB ← R[rB]
Execute	valE ← valB + valC

Read instruction byte
Read register byte
Read displacement D
Compute next PC
Read operand A
Read operand B
Compute effective address

rmmovq rA, D(rB) 4 0 rA rB D

	rmmovq rA, D(rB)
Fetch Decode	icode:ifun ← M₁[PC]
	rA:rB ← M ₁ [PC+1]
	valC ← M ₈ [PC+2]
	valP ← PC+10
	valA ← R[rA]
	valB ← R[rB]
Execute	valE ← valB + valC
Memory	M ₈ [valE] ← valA

Read instruction byte

Read register byte

Read displacement D

Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

rmmovq rA, D(rB) 4 0 rA rB D

	rmmovq rA, D(rB)
	icode:ifun ← M₁[PC]
Fetch	rA:rB ← M ₁ [PC+1]
reich	valC ← M ₈ [PC+2]
	valP ← PC+10
Decode	valA ← R[rA]
	valB ← R[rB]
Execute	valE ← valB + valC
Memory	M ₈ [valE] ← valA
Write	<u> </u>
back	

Read instruction byte
Read register byte
Read displacement D

Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

rmmovq rA, D (rB) 4 0 rA rB D

	rmmovq rA, D(rB)
	icode:ifun ← M₁[PC]
Fetch	rA:rB ← M ₁ [PC+1]
reten	valC ← M ₈ [PC+2]
Decode	valP ← PC+10
	valA ← R[rA]
	valB ← R[rB]
Execute	valE ← valB + valC
Memory	M ₈ [valE] ← valA
Write	
back	
PC update	PC ← valP

Read instruction byte

Read register byte

Read displacement D

Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

Stage Computation: Jumps

jXX Dest

- Compute both addresses
- Choose based on setting of condition codes and branch condition

Stage Computation: Jumps

	jXX Dest
Fetch	icode:ifun ← M ₁ [PC] valC ← M ₈ [PC+1] valP ← PC+9

Read instruction byte

Read destination address Fall through address

- Compute both addresses
- Choose based on setting of condition codes and branch condition

Stage Computation: Jumps

	jXX Dest
Fetch	icode:ifun $\leftarrow M_1[PC]$ valC $\leftarrow M_8[PC+1]$ valP $\leftarrow PC+9$
Decode	

Read instruction byte

Read destination address Fall through address

- Compute both addresses
- Choose based on setting of condition codes and branch condition

	jXX Dest
Fetch	icode:ifun $\leftarrow M_1[PC]$ valC $\leftarrow M_8[PC+1]$ valP $\leftarrow PC+9$
Decode	
Execute	Cnd ← Cond(CC,ifun)

Read instruction byte

Read destination address Fall through address

Take branch?

- Compute both addresses
- Choose based on setting of condition codes and branch condition

	jXX Dest
Fetch	icode:ifun $\leftarrow M_1[PC]$ valC $\leftarrow M_8[PC+1]$ valP $\leftarrow PC+9$
Decode	
Execute	Cnd ← Cond(CC,ifun)
Memory	

Read instruction byte

Read destination address Fall through address

Take branch?

- Compute both addresses
- Choose based on setting of condition codes and branch condition

_	_	_
	jXX Dest	
	icode:ifun ← M₁[PC]	Read instruction byte
Fetch	valC ← M ₈ [PC+1]	Read destination address
	valP ← PC+9	Fall through address
Decode		
Execute	Cnd ← Cond(CC,ifun)	Take branch?
Memory		
Write		
back		

- Compute both addresses
- Choose based on setting of condition codes and branch condition

	jXX Dest	
	icode:ifun ← M₁[PC]	Read instruction byte
Fetch		
	valC ← M ₈ [PC+1]	Read destination address
	valP ← PC+9	Fall through address
Decode		
Execute	Cnd ← Cond(CC,ifun)	Take branch?
Memory		
Write		
back		
PC update	PC ← Cnd ? valC : valP	Update PC

- Compute both addresses
- Choose based on setting of condition codes and branch condition

Pipeline Stages

Fetch

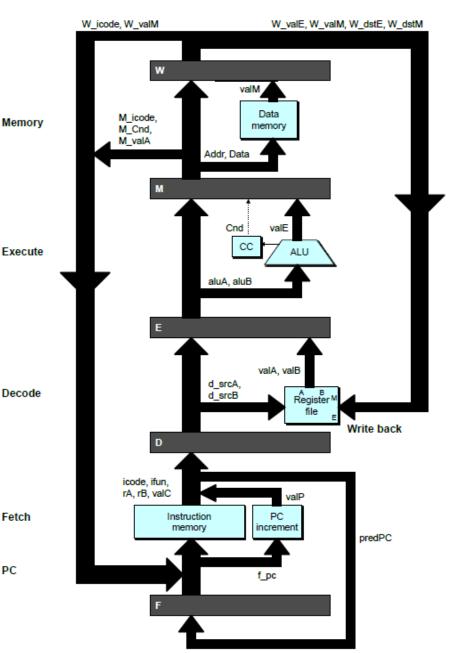
- Select current PC
- Read instruction
- Compute incremented PC

Decode

Read program registers

Execute

Operate ALU


Memory

Read or write data memory

PC

Write Back

Update register file

Sequential

Sequential

Pipelined

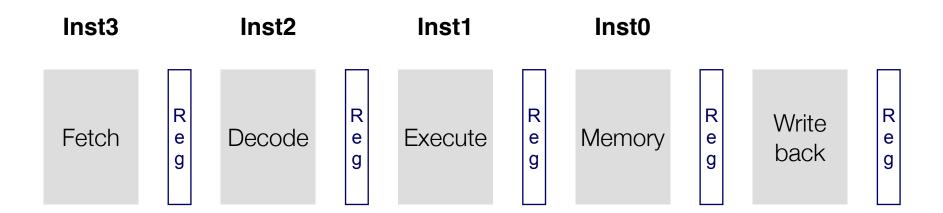
Sequential

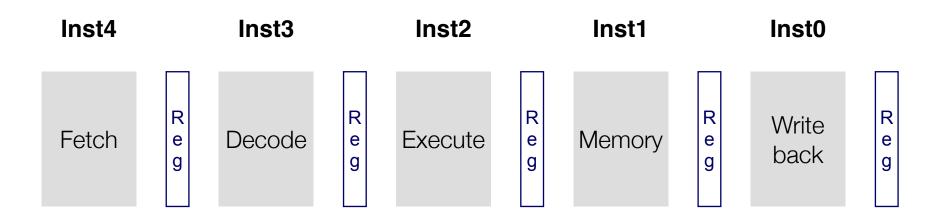


Pipelined

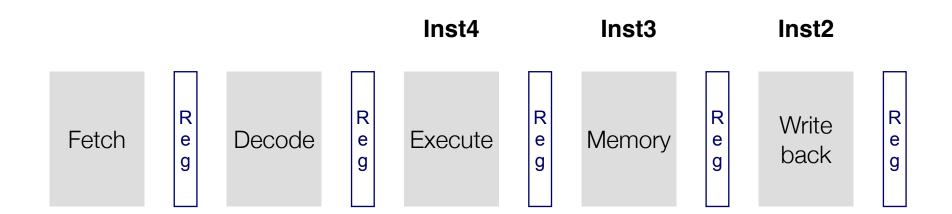
Idea

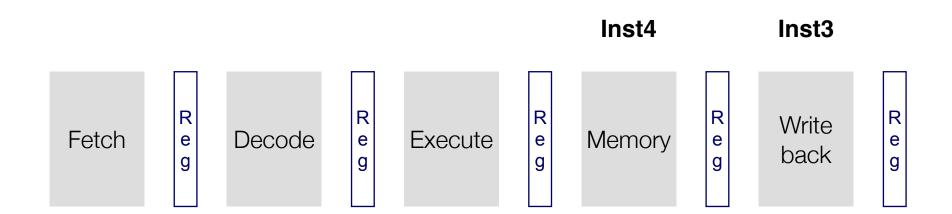
- Divide process into independent stages
- Move objects through stages in sequence
- At any given times, multiple objects being processed

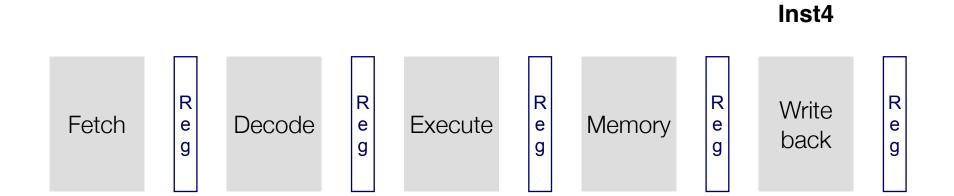


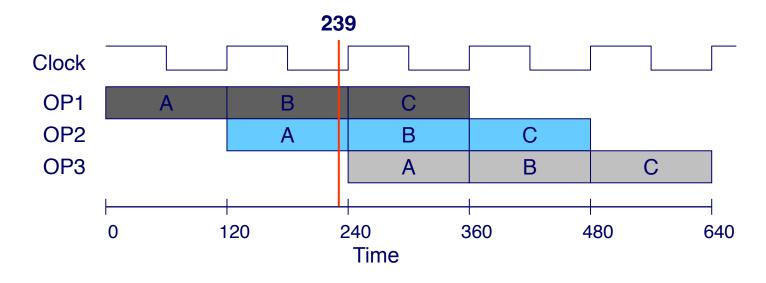

Inst0

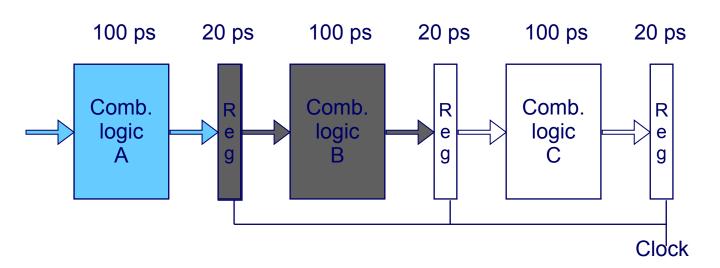
Fetch Reg Decode Reg Execute Reg Memory Reg back Reg g

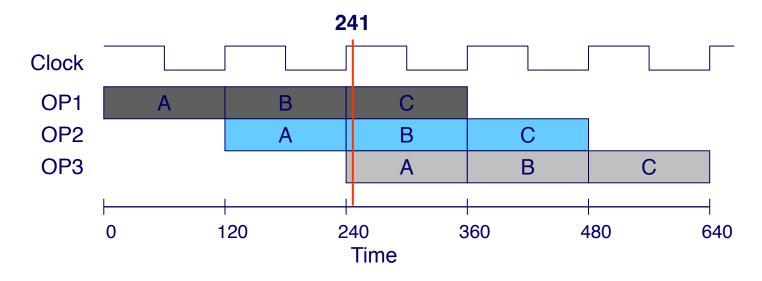

Inst1		Inst0							
Fetch	R e g	Decode	R e g	Execute	R e g	Memory	R e g	Write back	R e g

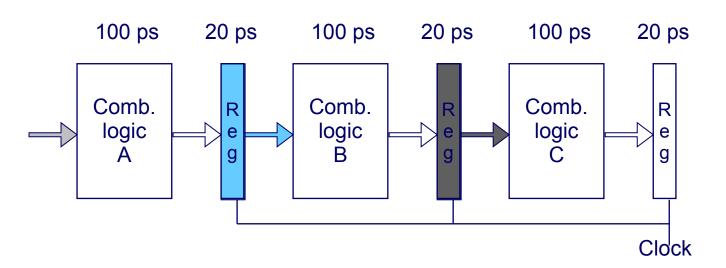

Inst2		Inst1		Inst0					
Fetch	R e g	Decode	R e g	Execute	R e g	Memory	R e g	Write back	R e g

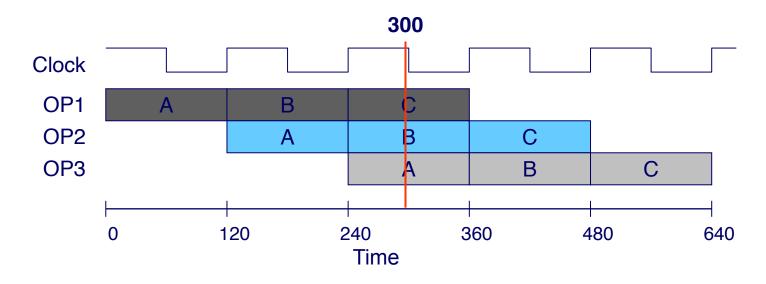


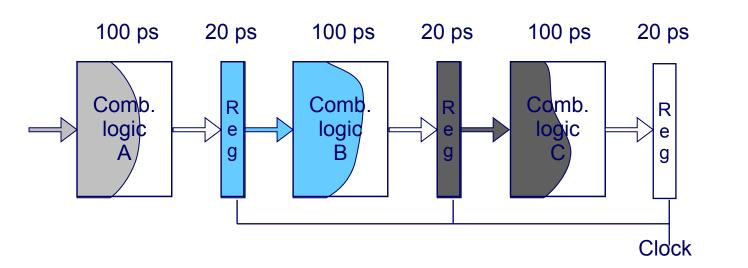


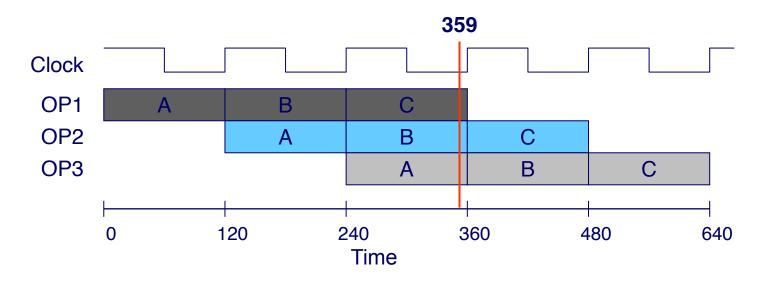

		Inst4		Inst3		Inst2		Inst1	
Fetch	R e g	Decode	R e g	Execute	R e g	Memory	R e g	Write back	R e g

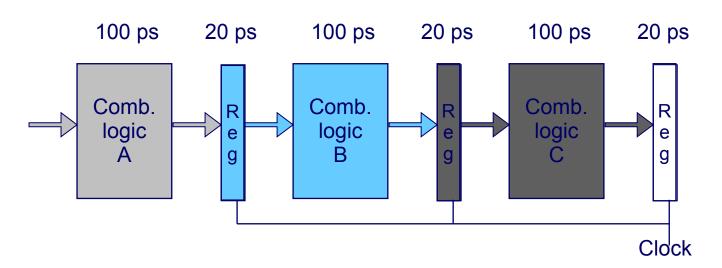












Making the Pipeline Really Work

- Control Dependencies
 - What is it?
 - Software mitigation: Inserting Nops
 - Software mitigation: Delay Slots
- Data Dependencies
 - What is it?
 - Software mitigation: Inserting Nops

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax
jne L1  # Not taken
irmovq $1, %rax  # Fall Through
L1 irmovq $4, %rcx  # Target
irmovq $3, %rax  # Target + 1
```

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax
jne L1  # Not taken
irmovq $1, %rax  # Fall Through
L1 irmovq $4, %rcx  # Target
irmovq $3, %rax  # Target + 1
```

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax

jne L1

irmovq $1, %rax

F

L1 irmovq $4, %rcx

irmovq $3, %rax

# Target

Target + 1
```

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax

jne L1

irmovq $1, %rax

F D

irmovq $4, %rcx

irmovq $3, %rax

# Target

Target + 1
```

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax

jne L1

nop

irmovq $1, %rax  # Fall Through

irmovq $4, %rcx  # Target

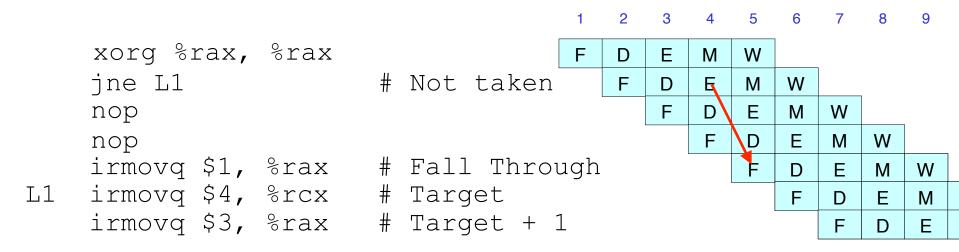
irmovq $3, %rax  # Target + 1
```

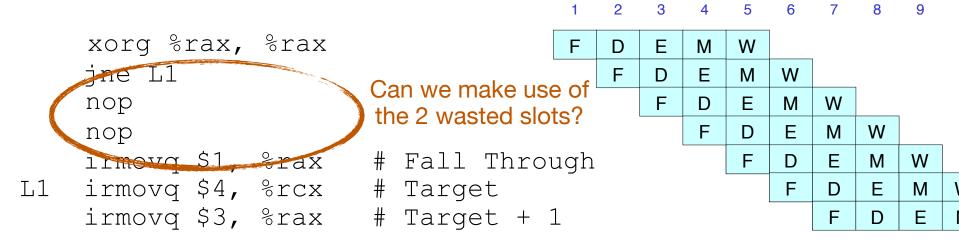
- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax
jne L1
nop
irmovq $1, %rax # Fall Through
irmovq $4, %rcx # Target
irmovq $3, %rax # Target + 1
```

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax
jne L1  # Not taken  F D E
nop
nop
irmovq $1, %rax  # Fall Through
irmovq $4, %rcx  # Target
irmovq $3, %rax  # Target + 1
```


- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage


```
xorg %rax, %rax
                                      D
                                         Е
                                              W
    jne L1
                      # Not taken
                                              M
                                         F
                                              Ε
    nop
    nop
                                              D
    irmovq $1, %rax # Fall Through
   irmovq $4, %rcx # Target
L1
    irmovq $3, %rax
                      # Target + 1
```

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage

```
xorg %rax, %rax
                                      D
                                         Е
                                               W
    jne L1
                       # Not taken
                                      F
                                         D
                                               M
                                         F
    nop
                                               D
    nop
    irmovq $1, %rax # Fall Through
   irmovq $4, %rcx # Target
L1
    irmovq $3, %rax
                      # Target + 1
```

- **Definition**: Outcome of instruction A determines whether or not instruction B should be executed.
- Jump instruction example below:
 - jne L1 determines whether irmovq \$1, %rax should be executed
 - But jne doesn't know its outcome until after its Execute stage


```
2
                                              3 4 5
                                                        7 8
    xorq %rax, %rax
                                       F
                                          D
                                              Ε
                                                 M
                                                    W
    ine L1
                                                 Ε
                                                    M
                                                       W
                         Can we make use of
    nop
                                              F
                                                    Ε
                                                 D
                                                       M
                                                          W
                         the 2 wasted slots?
    nop
                                                    D
                                                       Ε
                                                          M
                                                             W
                           Fall Through
    irmova $1, %rax
                                                    F
                                                                W
                                                          Ε
                                                             M
    irmovq $4, %rcx
L1
                         # Target
                                                             Ε
                                                          D
                                                                М
    irmovq $3, %rax
                         # Target + 1
                                                          F
                                                             D
                                                                Ε
                                    if (cond) {
                                       do A();
                                     } else {
                                       do B();
                                    do C();
```

```
xorq %rax, %rax
                                            F
                                               D
                                                   Ε
                                                      M
                                                          W
     ine L1
                                                      Ε
                                                          M
                                                             W
                            Can we make use of
     nop
                                                   F
                                                          Ε
                                                      D
                                                                 W
                                                             M
                            the 2 wasted slots?
     nop
                                                          D
                                                              Ε
                                                                 М
                                                                    W
                              Fall Through
     irmova $1, %rax
                                                          F
                                                                 Ε
                                                                    M
                                                                        W
T<sub>1</sub>1
     irmovq $4, %rcx
                            # Target
                                                                 D
                                                                    Ε
                                                                        М
     irmovq $3, %rax
                            # Target + 1
                                                                 F
                                                                    D
                                                                        Ε
```

Have to make sure do_C doesn't depend on do_A and do_B!!!

```
if (cond) {
   do_A();
} else {
   do_B();
}
do_C();
```

2

4 5

```
xorq %rax, %rax
                                          F
                                             D
                                                Ε
                                                    M
                                                       W
     ine L1
                                                D
                                                    Ε
                                                       M
                                                          W
                           Can we make use of
     nop
                                                F
                                                       Ε
                                                    D
                                                          M
                                                             W
                           the 2 wasted slots?
     nop
                                                       D
                                                          Ε
                                                              М
                                                                 W
                             Fall Through
     irmovg $1, %rax
                                                       F
                                                                    W
                                                              Ε
                                                                 M
L1
    irmovq $4, %rcx
                           # Target
                                                                 Ε
                                                              D
                                                                    М
                           # Target + 1
     irmovq $3, %rax
                                                              F
                                                                 D
                                                                    Ε
```

2

4 5

7 8

A less obvious example

```
do_C();
if (cond) {
   do_A();
} else {
   do_B();
}
```

```
xorq %rax, %rax
                                            F
                                               D
                                                   Ε
                                                      M
                                                          W
     ine L1
                                                      Ε
                                                          M
                                                             W
                            Can we make use of
     nop
                                                   F
                                                      D
                                                          Ε
                                                                W
                                                             M
                            the 2 wasted slots?
     nop
                                                          D
                                                             Ε
                                                                    W
                                                                 М
     irmovg $1, %rax
                              Fall Through
                                                          F
                                                                 Ε
                                                                    M
                                                                        W
     irmovq $4, %rcx
T<sub>1</sub>1
                            # Target
                                                                    Ε
                                                                        М
                                                                 D
     irmovq $3, %rax
                            # Target + 1
                                                                 F
                                                                    D
                                                                        Ε
```

A less obvious example

```
do_C();
if (cond) {
   do_A();
} else {
   do_B();
}
```

```
add A, B
or C, D
sub E, F
jle 0x200
add A, C
```

2

3 4 5

```
xorq %rax, %rax
                                          F
                                             D
                                                Ε
                                                   M
                                                       W
     ine L1
                                                   Ε
                                                       M
                                                          W
                          Can we make use of
                                                F
    nop
                                                   D
                                                       Ε
                                                             W
                                                          M
                           the 2 wasted slots?
     nop
                                                       D
                                                          Ε
                                                             M
                                                                W
     irmova $1 %rax
                             Fall Through
                                                       F
                                                             Ε
                                                                M
                                                                    W
    irmovq $4, %rcx
T.1
                           # Target
                                                                 Ε
                                                                    M
     irmovq $3, %rax
                             Target + 1
                                                             F
                                                                 D
                                                                    Ε
```

2

A less obvious example

```
do_C();
if (cond) {
   do_A();
} else {
   do_B();
}
```

```
add A, B

or C, D

sub E, F

sub E, F

jle 0x200

or C, D

add A, C

add A, C
```

4 5

```
xorq %rax, %rax
                                          F
                                             D
                                                 Ε
                                                    M
                                                       W
     ine L1
                                                    Ε
                                                       M
                                                          W
                           Can we make use of
                                                 F
     nop
                                                       Ε
                                                              W
                                                          M
                           the 2 wasted slots?
     nop
                                                       D
                                                           Ε
                                                              M
                                                                 W
     irmovg $1, %rax
                             Fall Through
                                                       F
                                                              Ε
                                                                 М
                                                                    W
    irmovq $4, %rcx
T.1
                             Target
                                                                 Ε
                                                                    M
     irmovg $3, %rax
                             Target + 1
                                                              F
                                                                 D
                                                                     Ε
```

2

A less obvious example

```
do_C();
if (cond) {
   do_A();
} else {
   do_B();
}
```

```
add A, B add A, B

or C, D sub E, F

sub E, F jle 0x200

jle 0x200 or C, D

add A, C add A, C

Why don't we move the sub instruction?
```

4 5

Resolving Control Dependencies

Software Mechanisms

- Adding NOPs: requires compiler to insert nops, which also take memory space — not a good idea
- Delay slot: insert instructions that do not depend on the effect of the preceding instruction. These instructions will execute even if the preceding branch is taken — old RISC approach

Hardware mechanisms

- Stalling (Think of it as hardware automatically inserting nops)
- Branch Prediction
- Return Address Stack