
CSC 252/452: Computer Organization
Fall 2024: Lecture 1

Instructor: Yanan Guo

Department of Computer Science
University of Rochester

Action Items:
• Get CSUG account
• Make sure you have VPN setup!!!!
• Sign up for Blackboard & Piazza

Outline: Class Introduction

• Introduction
– What Are You Supposed to Learn in this Class?
– Action Items
– Instructor & TAs
– Class Organization
– How to Get Help?
– How Will You Be Evaluated?
– Policies

Abstraction is good, but don’t forget reality

Abstraction is good, but don’t forget reality

Who scores the highest
on the exam?Problem

Abstraction is good, but don’t forget reality

Who scores the highest
on the exam?Problem

Algorithm Quicksort

Abstraction is good, but don’t forget reality

Who scores the highest
on the exam?Problem

Algorithm

Program

Quicksort

Human-readable
language (Java, C)

Abstraction is good, but don’t forget reality

Who scores the highest
on the exam?Problem

Algorithm

Program

Circuit

Quicksort

Human-readable
language (Java, C)

Electrons, Resistors,
Capacitors, etc.

Abstraction is good, but don’t forget reality

Who scores the highest
on the exam?Problem

Algorithm

Program

Circuit

Quicksort

Human-readable
language (Java, C)

Electrons, Resistors,
Capacitors, etc.

CSC 252/452
Computer Systems--

“The Reality”

Abstraction is good, but don’t forget reality

Who scores the highest
on the exam?Problem

Algorithm

Program

Circuit

Quicksort

Human-readable
language (Java, C)

Electrons, Resistors,
Capacitors, etc.

Course Theme:
(Systems) Knowledge is Power!
• Systems Knowledge

– How hardware (processors, memories, disk drives) plus
software (operating systems, compilers, libraries) combine to
support the execution of application programs

– How you as a programmer can best use these resources

• Useful outcomes from taking 252/452
–

•

–

•

•

Course Theme:
(Systems) Knowledge is Power!
• Systems Knowledge

– How hardware (processors, memories, disk drives) plus
software (operating systems, compilers, libraries) combine to
support the execution of application programs

– How you as a programmer can best use these resources

• Useful outcomes from taking 252/452
– Prepare for later “systems” classes in CS & ECE

• Compilers, Operating Systems, Networks, Computer
Architecture, etc.

–

•

•

Course Theme:
(Systems) Knowledge is Power!
• Systems Knowledge

– How hardware (processors, memories, disk drives) plus
software (operating systems, compilers, libraries) combine to
support the execution of application programs

– How you as a programmer can best use these resources

• Useful outcomes from taking 252/452
– Prepare for later “systems” classes in CS & ECE

• Compilers, Operating Systems, Networks, Computer
Architecture, etc.

– Become more effective programmers
• Able to find and eliminate bugs efficiently
• Able to understand and tune for program performance

Reality #1: Data Representations

• You will learn in computers,
➢2,147,483,647 01111111111111111111111111111111
➢1 00000000000000000000000000000001
➢

➢

➢

Reality #1: Data Representations

• You will learn in computers,
➢2,147,483,647 01111111111111111111111111111111
➢1 00000000000000000000000000000001
➢2,147,483,647+1 = -2,147,483,648
 10000000000000000000000000000000
➢

➢

Reality #1: Data Representations

• You will learn in computers,
➢2,147,483,647 01111111111111111111111111111111
➢1 00000000000000000000000000000001
➢2,147,483,647+1 = -2,147,483,648
 10000000000000000000000000000000
➢ -6.5 11000000110100000000000000000000
➢

Reality #1: Data Representations

• You will learn in computers,
➢2,147,483,647 01111111111111111111111111111111
➢1 00000000000000000000000000000001
➢2,147,483,647+1 = -2,147,483,648
 10000000000000000000000000000000
➢ -6.5 11000000110100000000000000000000
➢ (x+y)+z = (y+z)+x ? Yes and No

Who scores the highest
on the exam?Problem

Algorithm

Program

Circuit

Quicksort

Human-readable
language (Java, C)

Electrons, Resistors,
Capacitors, etc.

Reality #2: Assembly and Processors

Who scores the highest
on the exam?Problem

Algorithm

Program

Circuit

Quicksort

Human-readable
language (Java, C)

Electrons, Resistors,
Capacitors, etc.

Instruction Set
Architecture

Microarchitecture

Machine Language

Hardware Design

Reality #2: Assembly and Processors

Instruction Set Architecture

• The programmer’s view of the computer is
called the “instruction set architecture” (ISA)
– E.g., x86, RICS-V, ARM…

•

Instruction Set Architecture

• The programmer’s view of the computer is
called the “instruction set architecture” (ISA)
– E.g., x86, RICS-V, ARM…

• For programmer: no need to care how the
instructions are implemented as long as they
are somehow implemented

Two Fundamental Aspects of Computer Systems

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

Who scores the highest
on the exam?

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Two Fundamental Aspects of Computer Systems

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

• How is a human-
readable program
translated to a
representation that
computers can
understand?

Who scores the highest
on the exam?

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Assembly program

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax

C Program

void add() {
 int a = 1;
 int b = 2;
 int c = a + b;
}

Pre-processor
Compiler

Assembler
Linker

The “Translation” Process, a.k.a., Compilation

Assembly program

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax

C Program

void add() {
 int a = 1;
 int b = 2;
 int c = a + b;
}

Pre-processor
Compiler

Assembler
Linker

The “Translation” Process, a.k.a., Compilation

Assembly program

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax

Executable Binary

00011001 …
01101010 …
11010101 …
01110001 …

• It translates a text file to an executable binary file (a.k.a.,
executable) consisting of a sequence of instructions

• Why binary? Computers understand only 0s and 1s
– The subject of next lecture

The “Translation” Process, a.k.a., Compilation

Back to Layers of Transformation…

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

How is a human-
readable program
translated to a
representation
that computers
can understand?

Who scores the highest
on the exam?

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Back to Layers of Transformation…

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

How is a human-
readable program
translated to a
representation
that computers
can understand?

How does a
modern computer
execute that
program?

Who scores the highest
on the exam?

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Instruction Set Architecture

• The programmer’s view of the computer is
called the “instruction set architecture” (ISA)
– E.g., x86, RICS-V, ARM…

• For programmer: no need to care how the
instructions are implemented as long as they
are somehow implemented

• Implementation of an ISA is called microarchitecture

• ISAs abstract away details of microarchitecture

High-level Organization of Computer Hardware
a.k.a., The Von Neumann Model

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Bus

Touchscreen Sensor CameraDisk Ethernet

High-level Organization of Computer Hardware
a.k.a., The Von Neumann Model

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Bus

Touchscreen Sensor CameraDisk Ethernet

High-level Organization of Computer Hardware
a.k.a., The Von Neumann Model

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Bus

Touchscreen Sensor CameraDisk Ethernet

High-level Organization of Computer Hardware
a.k.a., The Von Neumann Model

Processor Memory

Program
counter

(PC)

Input / Output Device

Instruction Data

Arithmetic
logic unit

(ALU)

Control Path

Bus

Touchscreen Sensor CameraDisk Ethernet

The Single Most Important Idea of Computers

• Executables (i.e., instructions) are stored in “memory”
• Processors read instructions from memory and execute

instructions one after another

17

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax

The Single Most Important Idea of Computers
17

Assembly program: add.s

movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax

Memory

Instruction

The Single Most Important Idea of Computers
17

A
s
s
e
m
b
l
y
p

Memory

Instruction

The Single Most Important Idea of Computers
17

A
s
s
e
m
b
l
y
p

Processor Memory

Instruction

The Single Most Important Idea of Computers
17

A
s
s
e
m
b
l
y
p

Processor Memory

Instruction

Program
counter

(PC)

Back to Layers of Transformation…

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

How is a human-
readable program
translated to a
representation
that computers
can understand?

How does a
modern computer
execute that
program?

Who scores the highest
on the exam?

Quicksort

Human-readable
language (Java, C)

Machine Language

Hardware Design

Electrons, Resistors,
Capacitors, etc.

Reality #3: There’s more to performance than
algorithmic complexity

• Even exact op count does not predict performance
– Easily see 10:1 performance range depending on how code

written
– Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

• Must understand system to optimize performance
– How programs compiled and executed
– How to measure program performance and identify bottlenecks
– How to improve performance without destroying code modularity

and generality

Memory System Performance Example

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

Memory System Performance Example

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

Memory System Performance Example

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

Memory System Performance Example

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

Memory System Performance Example

• Microarchitecture: Hierarchical memory organization
• Performance depends on access patterns
– Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

CPU

Reality #4: Processes and Memory
Management

Memory

CPU

Reality #4: Processes and Memory
Management

App 1

Memory

CPU

Reality #4: Processes and Memory
Management

App 2

App 1

Memory

CPU

Reality #4: Processes and Memory
Management

App 3

App 2

App 1

Memory

CPU

Reality #4: Processes and Memory
Management

App 3

App 2

App 1

App 2’s data

App 1’s data

App 3’s data

App 2’s data

App 1’s data

App 3’s data

Memory

CPU

Reality #4: Processes and Memory
Management

App 3

App 2

App 1

App 2’s data

App 1’s data

App 3’s data

App 2’s data

App 1’s data

App 3’s data

Memory

Reality #5: GPUs

Memory

Input / Output Device

Bus

Touchscreen Sensor CameraDisk Ethernet

CPU

Reality #5: GPUs

Memory

Input / Output Device

Bus

Touchscreen Sensor CameraDisk Ethernet

CPU GPU

Reality #5: GPUs

• “Graphics” Processing Units are used as AI accelerators
–

–

•

•

–

Reality #5: GPUs

• “Graphics” Processing Units are used as AI accelerators
–

–

•

•

–

1x

245x 249x

0
50

100
150
200
250

CPU Only A100 40GB A100 80GB

Sequence Per Second –
Relative Performance

https://www.nvidia.com/en-us/data-center/a100/

Reality #5: GPUs

• “Graphics” Processing Units are used as AI accelerators
–

–

•

•

–

Reality #5: GPUs

• “Graphics” Processing Units are used as AI accelerators
– How do GPUs work?
– How are they different than CPUs?

• Hardware design
• Software design

– How to program GPUs to achieve best performance?

Reality #6: Security

• Security was considered a software level problem.

Encryption Permission control

…

• But all data are stored in hardware
– What if hardware has security flaws, which it does…
– These flaws can be exploited without physical access!
– This is what I work on

Outline: Class Introduction

• Introduction
– What Are You Supposed to Learn in this Class?
– Action Items
– Instructor & TAs
– Class Organization
– How to Get Help?
– How Will you Be Evaluated?
– Policies

Action Items

• Get a CSUG account.
• cycle1.csug.rochester.edu (or cycle2, cycle3)
• If you don’t already have one, go to this link:

https://accounts.csug.rochester.edu/
• YOU WILL NEED VPN to access these machines if you are

not using campus WiFI!! Follow the instructions
(https://tech.rochester.edu/remote-access-vpn-
tutorials/) to set up the university VPN.

• TAs will help with VPN setup too.
• Sign up for Blackboard (https://learn.rochester.edu/)
• Sign up for Piazza

(https://piazza.com/rochester/fall2024/csc252452)

http://cycle1.csug.rochester.edu
https://accounts.csug.rochester.edu/
https://tech.rochester.edu/remote-access-vpn-tutorials/
https://tech.rochester.edu/remote-access-vpn-tutorials/
https://learn.rochester.edu/
https://piazza.com/rochester/fall2024/csc252452f

Outline: Class Introduction

• Introduction
– What Are You Supposed to Learn in this Class?
– Action Items
– Instructor & TAs
– Class Organization
– How to Get Help?
– How Will You Be Evaluated?
– Policies

Who Are We?

• Myself: Yanan Guo
– WH 3403, yanan.guo@rochester.edu
– Office hours Thursday 11am - 12pm (zoom link on course

website)
– Got a PhD degree
– Got some industry experience
– Interested in computer systems security

•

–

–

–

–

•

Who Are We?

• Myself: Yanan Guo
– WH 3403, yanan.guo@rochester.edu
– Office hours Thursday 11am - 12pm (zoom link on course

website)
– Got a PhD degree
– Got some industry experience
– Interested in computer systems security

• TAs: 2 Grads + 6 UGs
– Office hours and contacts on course website
– They share the same zoom link for office hours
– Did very well themselves in this course before
– Really care about you learning the material and succeeding

• Coming to office hours does NOT mean you are weak!

Outline: Class Introduction

• Introduction
– What Are You Supposed to Learn in this Class?
– Action Items
– Instructor & TAs
– Class Organization
– How to Get Help?
– How Will You Be Evaluated?
– Policies

Class Organization -- Where to Find Stuff

• Course Website: http://cs.rochester.edu/courses/252/fall2024/
– General info, syllabus, schedule, contacts & office hours
– Programming assignments details
– Slides
– Practice problems, past exams

• Blackboard
– Announcements
– Grades

• Piazza: https://piazza.com/rochester/fall2024/csc252452
• CSUG machines for programming assignments submissions

https://piazza.com/rochester/fall2024/csc252452

Outline: Class Introduction

• Introduction
– What Are You Supposed to Learn in this Class?
– Action Items
– Instructor & TAs
– Class Organization
– How to Get Help?
– How Will You Be Evaluated?
– Policies

Getting Help

• For technical (lectures, assignments, exam) or logistics (accounts)
questions, post a question on Piazza.

–

–

–

–

–

•

•

Getting Help

• For technical (lectures, assignments, exam) or logistics (accounts)
questions, post a question on Piazza.
– Option 1: question visible to everyone; you can choose to remain

anonymous to other students (but not to the staff).
–

–

–

–

•

•

Getting Help

• For technical (lectures, assignments, exam) or logistics (accounts)
questions, post a question on Piazza.
– Option 1: question visible to everyone; you can choose to remain

anonymous to other students (but not to the staff).
– Option 2: question only visible to you and the staff.
– Staff members will also put posts about common questions.
–

–

•

•

Getting Help

• For technical (lectures, assignments, exam) or logistics (accounts)
questions, post a question on Piazza.
– Option 1: question visible to everyone; you can choose to remain

anonymous to other students (but not to the staff).
– Option 2: question only visible to you and the staff.
– Staff members will also put posts about common questions.
–

–

•

•

Getting Help

• For technical (lectures, assignments, exam) or logistics (accounts)
questions, post a question on Piazza.
– Option 1: question visible to everyone; you can choose to remain

anonymous to other students (but not to the staff).
– Option 2: question only visible to you and the staff.
– Staff members will also put posts about common questions.
– Be sure to check the posted questions before contacting a staff

member!
–

•

•

Getting Help

• For technical (lectures, assignments, exam) or logistics (accounts)
questions, post a question on Piazza.
– Option 1: question visible to everyone; you can choose to remain

anonymous to other students (but not to the staff).
– Option 2: question only visible to you and the staff.
– Staff members will also put posts about common questions.
– Be sure to check the posted questions before contacting a staff

member!
– Please answer questions posted by other students!

•

•

Getting Help

• For technical (lectures, assignments, exam) or logistics (accounts)
questions, post a question on Piazza.
– Option 1: question visible to everyone; you can choose to remain

anonymous to other students (but not to the staff).
– Option 2: question only visible to you and the staff.
– Staff members will also put posts about common questions.
– Be sure to check the posted questions before contacting a staff

member!
– Please answer questions posted by other students!

• Going to office hours.
• Schedule meeting via email.

Textbook

• Required textbook
• Bryant and O'Hallaron's Computer Systems: A Programmer's

Perspective (3rd edition)

• Some recommended (but not required) textbooks
– Computer Organization and Design: The Hardware Software

Interface, ARM Edition. More emphasis on hardware. This is
where I learnt Computer Systems.

– Introduction to Computing Systems: From Bits and Gates to C
and Beyond, 2/e.

– Structured Computer Organization, 6/e. More emphasis on
SW.

Outline: Class Introduction

• Introduction
– What Are You Supposed to Learn in this Class?
– Action Items
– Instructor & TAs
– Class Organization
– How to Get Help?
– How Will You Be Evaluated?
– Policies

How Will You Be Evaluated?

• Programming Assignments: 40%
– 5 assignments, 8% each

• 1 midterm exam, 25%
• 1 comprehensive final exam, 35%

Programming Assignments

• Check course webpage to figure out when they are
due (there is a date and a time specified)

• They take time, so start early!
–

–

–

•

–

–

•

–

–

•

Programming Assignments

• Check course webpage to figure out when they are
due (there is a date and a time specified)

• They take time, so start early!
– Thinking/design time
– Programming time
– Test design + debug (and repeat)

• 3 slip days. Use it wisely!
–

–

•

–

–

•

Programming Assignments

• Check course webpage to figure out when they are
due (there is a date and a time specified)

• They take time, so start early!
– Thinking/design time
– Programming time
– Test design + debug (and repeat)

• 3 slip days. Use it wisely!
– Tell us before the deadline, it’s not automatically applied
– Other than slip days, late submission counts 0 point

• You could work in pairs
–

–

•

Programming Assignments

• Check course webpage to figure out when they are
due (there is a date and a time specified)

• They take time, so start early!
– Thinking/design time
– Programming time
– Test design + debug (and repeat)

• 3 slip days. Use it wisely!
– Tell us before the deadline, it’s not automatically applied
– Other than slip days, late submission counts 0 point

• You could work in pairs
– Only 1 submission per pair
– Fill out a form if you work in pairs

• Share ideas but not artifacts (e.g., code, sketch)

Programming Environment

• Develop code (or at least test it) on the CSUG Linux
boxes (csug.rochester.edu)
– Microsoft Visual Studio could be nice, but it’s not what we use
– The lack of Unix knowledge is a major problem according to our

industry contacts

•

•

Programming Environment

• Develop code (or at least test it) on the CSUG Linux
boxes (csug.rochester.edu)
– Microsoft Visual Studio could be nice, but it’s not what we use
– The lack of Unix knowledge is a major problem according to our

industry contacts

• Projects will be mostly in C and x86 assembly.

•

Programming Environment

• Develop code (or at least test it) on the CSUG Linux
boxes (csug.rochester.edu)
– Microsoft Visual Studio could be nice, but it’s not what we use
– The lack of Unix knowledge is a major problem according to our

industry contacts

• Projects will be mostly in C and x86 assembly.

• We only accept ANSI-C that can be compiled by the
default GCC on the CSUG Linux boxes

Exams

• Two exams: one in-class midterm and one final
– Midterm covers everything up until the second last lecture
– Final will cover everything, including materials before midterm

•

•

–

–

–

•

–

–

Exams

• Two exams: one in-class midterm and one final
– Midterm covers everything up until the second last lecture
– Final will cover everything, including materials before midterm

• No collaboration on exams
•

–

–

–

•

–

–

Exams

• Two exams: one in-class midterm and one final
– Midterm covers everything up until the second last lecture
– Final will cover everything, including materials before midterm

• No collaboration on exams
• “I don’t know” is given 15% partial credit (from Yuhao)

– You need to decide if guessing is worthwhile
– Saves grading time
– You have to write “I don’t know” and cross out /erase anything

else to get credit: A blank answer doesn’t count
•

–

–

Exams

• Two exams: one in-class midterm and one final
– Midterm covers everything up until the second last lecture
– Final will cover everything, including materials before midterm

• No collaboration on exams
• “I don’t know” is given 15% partial credit (from Yuhao)

– You need to decide if guessing is worthwhile
– Saves grading time
– You have to write “I don’t know” and cross out /erase anything

else to get credit: A blank answer doesn’t count
• All exams are open book (means your book won’t help)

– They will in fact probably hurt
– Memorization won’t help. Thinking will.

Programming Assignments and Exams

This is a feature, not a bug.

Here is how to think of the projects, exams,
and lectures (loosely)…
• Lectures teach you how to go from A to B
• Projects ask you to go from B to C
• Exams test whether you can go from A to C

Here is how to think of the projects, exams,
and lectures (loosely)…
• Lectures teach you how to go from A to B
• Projects ask you to go from B to C
• Exams test whether you can go from A to C

A

B

Here is how to think of the projects, exams,
and lectures (loosely)…
• Lectures teach you how to go from A to B
• Projects ask you to go from B to C
• Exams test whether you can go from A to C

A

B

C

Here is how to think of the projects, exams,
and lectures (loosely)…
• Lectures teach you how to go from A to B
• Projects ask you to go from B to C
• Exams test whether you can go from A to C

A

B

C

Example: A2--Bomblab

• What you need to do:
– You will get a binary file (a bomb)
– There are a few phases in the bomb
– It expects to type in certain string in each phase when you execute the

bomb
• If you type in the correct string, you defuse the bomb
• If you type in the wrong string, the bomb explodes and you lose

some points (and I am notified)
•

–

–

–

–

Example: A2--Bomblab

• What you need to do:
– You will get a binary file (a bomb)
– There are a few phases in the bomb
– It expects to type in certain string in each phase when you execute the

bomb
• If you type in the correct string, you defuse the bomb
• If you type in the wrong string, the bomb explodes and you lose

some points (and I am notified)
• How to do this?

– Learn to use gdb
– Use gdb to figure out the instructions in this binary
– Guess the c code/meaning/logic of these instructions
– Figure out what it wants you to type

Example: A2--Bomblab

•

–

–

–

• How to do this?
– Learn to use gdb
– Use gdb to figure out the instructions in this binary
– Guess the c code/meaning/logic of these instructions
– Figure out what it wants you to type

Example: A2--Bomblab

• What do we teach you?
– Instructions VS Executable Binary
– Instruction Format
– Common Instructions

• How to do this?
– Learn to use gdb
– Use gdb to figure out the instructions in this binary
– Guess the c code/meaning/logic of these instructions
– Figure out what it wants you to type

Outline: Class Introduction

• Introduction
– What Are You Supposed to Learn in this Class?
– Action Items
– Instructor & TAs
– Class Organization
– How to Get Help?
– How Will You Be Evaluated?
– Policies

Academic Honesty (TBC)

• Exams in CSC 252/452 must be strictly individual work.
•

•

Academic Honesty (TBC)

• Exams in CSC 252/452 must be strictly individual work.
• Collaboration on assignments across teams (or among individuals on

non-team-based assignments) is encouraged at the level of ideas. Feel
free to ask each other questions, brainstorm on algorithms, or work
together at a whiteboard. You may not claim work as your own,
however, unless you transform the ideas into substance by yourself.
This means you must leave any brainstorming sessions with no written
notes.

•

Academic Honesty (TBC)

• Exams in CSC 252/452 must be strictly individual work.
• Collaboration on assignments across teams (or among individuals on

non-team-based assignments) is encouraged at the level of ideas. Feel
free to ask each other questions, brainstorm on algorithms, or work
together at a whiteboard. You may not claim work as your own,
however, unless you transform the ideas into substance by yourself.
This means you must leave any brainstorming sessions with no written
notes.

• Similarly, you are welcome to read anything you find on the web, but
you must close all web pages before beginning to write your code. You
are not permitted to repeatedly consult a source. You can read it,
understand it, put it away, and write your own similar code, but you
must not copy anything. Both electronic copy-and-paste and copying
through short-term memory are expressly forbidden.

Academic Honesty (Cont’d)

• To minimize opportunities to steal code, all students must protect the
directories in which they do their work.

•

•

Academic Honesty (Cont’d)

• To minimize opportunities to steal code, all students must protect the
directories in which they do their work.

• Any activity that has the effect of significantly impairing the ability of
another student to learn is expressly forbidden. Examples here might
include destroying the work of others, interfering with their access to
resources, or deliberately providing them with misleading information.
(Note too that grades in CSC 252/452 are assigned on the basis of
individual merit, so there is no benefit, even a dishonest one, to be
gained by sabotaging the work of others.

•

Academic Honesty (Cont’d)

• To minimize opportunities to steal code, all students must protect the
directories in which they do their work.

• Any activity that has the effect of significantly impairing the ability of
another student to learn is expressly forbidden. Examples here might
include destroying the work of others, interfering with their access to
resources, or deliberately providing them with misleading information.
(Note too that grades in CSC 252/452 are assigned on the basis of
individual merit, so there is no benefit, even a dishonest one, to be
gained by sabotaging the work of others.

• Posting homework and project solutions to public repositories on sites
like GitHub is a violation of the College’s Academic Honesty Policy,
Section V.B.2 “Giving Unauthorized Aid.”

CSC 252/452 Will Be Hard

• Be prepared
• We will go back and forth between software and hardware layers

• For ISA
Ø ISA with C programming
Ø ISA with microarchitecture

• It covers many aspects of computer systems
• CSC 252/452 is programmer centric
• It enables you to write programs that are more reliable and efficient

Welcome and Enjoy!

