
 RUBY (ON RAILS) 

CSC 210, Spring 2011 

Content adapted from material by Ryan Tucker and Kelly Dunn 
University of Washington, CSE 190M, Spring 2009 

 



Announcements 

¨  Return Quizes 
¨  Second Test: Wednesday April 23 
¨  Project Presentations 

¤ Monday, April 28 
¤ Wednesday, April 30 
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          Heartbleed 

¨  A bug in openSSL, a common open source 
implementation of Secure Sockets Layer (SSL) 
¤ SSL provides the encryption for https. 
¤ The bug gives access to memory possibly passwords 

¨  SSL uses public key encryption 
¤ ability to securely exchange encryption keys. 

¨  Apache can be configured to use https 
¤ A good idea if you are exchanging passwords 
¤ Can redirect from http to https 



Web Application Frameworks 

¨  Java Web Software 
¨  Microsoft Web Software 
¨  Ruby on Rails 



Java Web Software 

¨  Integrated Development Environments (IDE) 
¤ NetBeans 
¤ Eclipse 

¨  Java to program the web 
¤ Servlets (extends HttpServlet) 

n Methods (doGet, doPost, doPut, doDelete) 
n PrintWriter out = response.getWriter() 

¤ Servlet Containers 
n Apache Tomcat, GlassFish 



Java Web Software (cont.) 

¤ Java Server Pages (.jsp) 
n  JSP Expression Language (EL) 

n  ${ expresssion } 

n  JSP Standard Tag Library (JSTL) 
n  <% @ tablib prefib = “c” uri = “http://java.sun.com/jsp/jstl/

core” %> 
n  <c:if test = “boolean expression”> JSP </c:if> 

¤ Java Server Faces 
n Event driven user interface model 



Microsoft (ASP.net) 

¨  Active Server Pages (ASP) 
¤  IDE: Visual Studio .Net 
¤ Language C# 

n ASP container: IIS 

¤ ASP.net controls (e.g. Button, Checkbox …) 
n <asp:textbox id = “age” runat = “server”/> 



Model View Controller 

¨  Model: describes current state and valid changes 
¨  View: displays current state and accepts user 

actions 
¨  Controller: updates view and controller 



Relationship to 3 level architecture 

¨  View = UI = Client/Browser + Page construction 
¨  Model = Database/Business Logic 
¨  Controller = orchestrator of Model and View 



Ruby on Rails 

¨  Implemented in and uses Ruby 
¨  Based on Model View Controller 
¨  Example 

¤  rails new greet 
n  creates subdirectories: models, views and controllers 

¤  rails generate controller say hello 
n  creates controller for “say” with action “hello” 

¤  rails generate scaffold db item1:string item2:integer 
n  creates database, model and view 



Discuss questions with your Scrum Team 
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Quiz 13 
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Team Quiz (team name & members) 

¨  Give an example of each of the three types of 
relationships between objects in a model. 
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<?xml version="1.0" encoding="UTF-8"?> 
<bookstore> 

 <book category="cooking"> 
  <title lang="en">Everyday Italian</title> 
  <author>Giada De Laurentiis</author> 
  <year>2005</year><price>30.00</price> 
 </book> 
 <book category="computers"> 
  <title lang="en">XQuery Kick Start</title> 
  <author>James McGovern</author> 
  <year>2003</year><price>49.99</price> 
 </book> 
 <book category="computers"> 
  <title lang="en">Learning XML</title> 
  <author>Erik T. Ray</author> 
  <year>2003</year><price>39.95</price> 
 </book> 

</bookstore>        XML 

Write two JavaScript functions: 
1.  A function that will make an Ajax request to fubar.bookstore.com 
2.  The function specified in your Ajax request, that will create a page 

consisting of the books in the “cooking” category listing the author and the 
title of the book. 



Yet another language to learn! 

¨  Inundated beginner’s response: 



But actually… 

¨  Many languages look suspiciously similar 
¨  Fact of life on the web 

=
> 

(no, Ruby was not made with PHP) 



Today (and Monday) 

¨  Introduce the Ruby programming language 
¨  Use Ruby to template web pages 
¨  Learn about Ruby on Rails and its benefits 



What is Ruby? 

¨  Programming Language 
¤ General purpose 
¤ Relatively new (1995) 

¨  Object-oriented 
¨  Rare gem? 



What is Ruby on Rails? (RoR) 

¨  Development framework for web applications 
¤ Written in Ruby 

¨   Notable RoR-based sites:  
¤ http://rubyonrails.org/applications 



Popularity 

¨  Hype has calmed, what’s left? 



Advantages of a framework 

¨  Standard features/functionality are built-in 
¨  Predictable application organization 

¤ Easier to maintain 
¤ Easier to get things going 



hello_world.rb 

 
 

puts ‘hello world!’ 



Running Ruby Programs 

¨  Use the Ruby interpreter 
ruby hello_world.rb 
 

¨  Interactive Ruby (irb) console 
irb 

¤ Get immediate feedback 
¤ Test Ruby features 



Ruby syntax in (5..10) 

¨  Live demo! Including: 
¤ Comments, variables, objects, operators 
¤ Classes, methods, message passing 
¤ “Everything is an object” 
¤ Conditionals, loops 
¤ Arrays, ranges, strings, hashes, bears 

¨  Q&A 
¤ Your syntax Qs, my syntax As 

(no guarantees that my demo won’t be on a chalkboard) 



Blocks 

¨  Unique enough to dive into detail 

¨  Blocks are simply "blocks" of code 

¨  Defined by {} or a do/end statement 

¨  Used to pass code to methods and loops 



Blocks 

¨  Many languages “only” have function args 

¨  In Ruby, we can pass code through blocks 

¨  Example: the times() method takes a block: 
3.times { puts "hello" }    # the block is the code in the {} 



Blocks and Arguments 

¨  Blocks can also take arguments 

¨  times() takes a block that takes an argument 

¨  Example 
3.times {|n| puts "hello" + n.to_s} 
 

¨  "n" is specified as an argument via pipes (|) 



Web Programming in Ruby 

¨  Ruby can be used to write dynamic web pages (!) 

¤ With and without Rails 

¨  Chunks of Ruby begin with <% and end with %> 

¤ Called embedded Ruby 

¨  Ruby-based pages have file extensions of .erb 

¨  Web servers need to be told to interpret .erb 



erb syntax 

¨  Code blocks 
¨  Roughly equivalent to <?php … ?> in PHP 

<% 
 ruby statements 

%> 
 

¨  Printing expression values  
¨  Equivalent to <?= … ?> in PHP  

<%= expression %>  



Example: 99 Bottles of Beer 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
  <head><title>Embedded Ruby</title></head>   
  <body> 
    <% 
     num = 99 
     while num > 0 
    %> 
          <p> <%= num %> bottles of beer on the wall, <br /> 
          <%= num %> bottles of beer. <br /> 
          Take one down, pass it around, <br /> 
          <%= num - 1 %> bottles of beer on the wall. </p> 
    <% 
         num = num - 1 
     end 
    %> 
  </body> 
</html> 
 



Classes and inheritance 

¨  Ruby supports single inheritance 

¨  Mixins provide supplemental inheritance 
¤ A class can extend multiple modules 

n  (in addition to the class inheritance chain) 

¤  Individual instances can extend them too 
 



Inheritance 



Modifying Class Behavior 

¨  Add functionality to ANY class 
¤ “open” classes 
¤  still open after initial declaration 

¨  Includes built-in classes! 



RUBY ON 
RAILS 



What is Ruby on Rails? 

¨  Rails is… 
¤   Written in Ruby  
¤   A web development framework 
¤   For development of web apps written in Ruby 

¨  Benefits of Rails 
¤   Built-in functionality 
¤   Encourages good software development practices  
¤   Open source and lots of community support 



What is Ruby on Rails? 



Disadvantages of Rails 

¨  Assumes familiarity with Unix-like systems 
¤ cd – change directory 
¤  ls – list file and folders in current folder 

¨  Lots of "magic" 
¤ Not always clear how things are being done 
¤ Not always obvious how to change/debug “magic” 

¨  Deployment…… 



Installing Rails 

¨  It’s already on Betaweb 
¤ 2.1.1… current version is 3.0.5 or so 
¤ BTW, Ruby version is 1.8.5… vs. 1.8.7 or 1.9.2 

¨  Check the reading column in class schedule 



Creating a New Rails App 

¨  Give ‘rails’ executable the path to our new app 
¨  Create your Rails application! 

rails –d mysql path/to/application 

¨  Example 
n  rails –d mysql my_app 

¨  Spits out a structured folder of files 
¤ These files form the base of all RoR apps 



Starting Your Application 

¨  Start Webrick, the built-in webserver 
ruby my_app/script/server 
 

¨  Amazingly, this works on Betaweb 



Viewing Your Application 

¨  Working locally 
¤ http://localhost:3000/ 

 

¨  Working on Betaweb 
¤ Avoid port collisions with fellow students 

n  ruby my_app/script/server –p xxxx (x  > 1023) 

¤ Avoid CS firewall 
n  ssh -Y user@cycle2.csug.rochester.edu 

n  firefox betaweb.csug.rochester.edu:xxxx & 

 



Viewing Your Application 

¨  A new application will show you this page 



Navigating the Rails File System 

¨  A default app folder has a number of folders 

¨  We are interested in only a few of them now 
¤ The "app" folder, specifically "app\views" 
¤ The "config" folder  



The "app" Folder 

¨  The "app" folder deals with the actual code of our 
application.   

¨  It will hold all of our... 
¤ Objects (“Models"),  
¤  .erb files (“Views"), and…  
¤ code to work between the two (“Controllers") 

¨  MVC pattern 
¤ Detailed later 



The "config" Folder 

¨  Unsurprisingly contains settings 

¨  routes.rb controls URI mappings 

¨  database.yml holds database connection info 
¤ Your Betaweb account info goes here 
¤ You only get one database on Betaweb =( 



Databases with RoR 

¨  When creating your Rails app…  
¤ Special flag to switch to MySQL 

rails –d mysql my_app 

¨  Modify config/database.yml 
¤ Username & database name are the same 



Web Applications 

¨  Consist of models, views, and controllers 
¤ Together, these deal with user page requests 
¤ Like Ruby, RoR represents most things as objects 

¨  In a typical, dynamic web app: 
¤ Database records are objects (model).   
¤ Multiple ways to display models (views) 
¤ We want these to communicate (controllers) 



Scaffold 

¨  Coding MVC structure by hand can be tedious 
¨  Rails has the ability to generate a “scaffold” 

¤ Skeleton code to fit our object specs 

¨  scaffold generates the files automatically 
ruby script/generate scaffold Object field1:datatype 

field2:datatype 
e.g. ruby script/generate scaffold Entry title:string data:text 



Scaffold (continued) 

¨  Generated code follows a URI standard 
¤ List All (GET /entries) – shows all entries 
¤ Show (GET /entries/1) – shows details of a particular 

entry 
¤ Edit (GET /entries/1/edit) – edits a particular entry 
¤ Update (PUT /entries/1) – updates a particular entry 
¤ New (POST /entries) – creates a new entry 
¤ Delete (DELETE /entries/1) – deletes a particular entry 



Scaffold (continued) 

¨  Routing (URI) standardization occurs in the routes.rb file 
¤  Specifies which controller and action handles each type of request 

¨  The code to deal with the requests are found in the controller's 
methods (index, show, create, delete, etc.) 

¨  The page to be displayed has a file name corresponding to 
the action being used (index.html.erb, show.html.erb, etc.) 



Using the Generated Code 

¨  We can modify the models, views, and controllers  
¨  The scaffold also generated code to create the 

necessary tables in our database (my_app/db/
migrate).   

¨  To actually run this code and update our database, 
run the following command in the application: 

rake db:migrate 
¨  Start our app and view the newly created scaffolding 

localhost:3000/entries 



Error Logging 

¨  Anytime an error occurs, it is logged in the 
application 

¨  You can find a stack trace of the errors in the 
application logs 

my_app/logs 



Adding Additional Views 

¨  Scaffold generates a bunch of standard views and 
a template layout 

¨  If we want additional actions we: 
¤ Add the action in our controller 
¤ Create the corresponding view 
¤ Update our routes.rb file 

n map.resources :obj_plural => { :action => method } 
n e.g. map.resources :entries => { :preview => get } 

 
 



Templates with Layouts 

¨  Scaffold creates a Layout that works as a template 
for our objects 

layouts/entries.html.erb 
¨  This template displays the same thing for each of the 

actions for that object, and then yields to the 
corresponding view to display the unique content 

¨  If we want, we can make one single template to be 
used by all objects by making one named "layouts/
application.html.erb" 



Partial Layouts 

¨  Sometimes we may want the same bit of code to show up in 
multiple templates (e.g. navigation bar) 

¨  We can display partial pages in our templates or views, and 
they are called "partials" 

¨  Partials can be in any of the views or layouts folders 

¨  By convention, they start with an underscore 
views/layouts/_top_nav.html.erb 

¨  We can render our partial in a template wherever we want it 
to be displayed 

<%= render( :partial => "layouts/top_nav" ) %> 



Models 

¨  If you have inspected the Models created by the 
Scaffolding, you will notice that they are empty  
¤ But they inherit from ActiveRecord::Base 
¤ This is what gives us access to the fields (methods) of 

the objects as they are in the database without defining 
the methods ourselves 

¨  So… why do we even have models? 



Models 

¨  We use Models define methods that provide information about 
individual objects 

¨  These methods usually do  calculations on other properties of 
the object that you will not want to write over and over again 

¨  Example: 
user.admin?  # checks if a user is a admin user 
user.authenticate   # authenticates a user 
gallery.empty?   # checks if a gallery is empty 
gallery.clear   # removes all the gallery images 



Relationships 

¨  Often, there are inherit relationships between the different 
object we are creating 
¤  In a blog 

n Users have many Entries;  an Entry belongs to only one User 
n Entries have many Comments, and a Comment belongs to 

only one Entry 
¤  In a login system 

n Users have many Roles; Roles belong to many Users 
¤  In a course registration system 

n A Student has many courses; a course has many students 



Types of Relationships 

¨  One-to-One 
¤  A U.S. citizen has only one S.S.N; Each S.S.N. belongs to only one 

U.S. citizen 

¨  One-to-Many 
¤  A person owns many cars; A car belongs to only one owner 
¤  A company has many employees; An employee is employed by 

only one company 

¨  Many-to-Many 
¤  A student has many courses; A course has many students 
¤  A programmer has many projects; A project has many 

programmers 
¤  A blog post has many posters; A poster has many posts 



Relationships in Models 

¨  One-to-One 
¤  has_one/belongs_to 

¨  One-to-Many (most common) 
¤  has_many/belongs_to 

¨  Many-to-Many  
¤  has_many/has_many 
¤  has_and_belongs_to_many 
¤  These are tricky… So we will not go into detail with these 

•  An object that belongs_to another should reference that object 
by id in the database 

employee.company_id 



Relationships in Models 

In Our Gallery Class 
class Gallery < ActiveRecord::Base 
 has_many  :images  # plural: images 

end 

 
In Our Image Class 

class Image < ActiveRecord::Base 
 belongs_to  :gallery   # singular: gallery 

end 
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