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Thread Block barriers

• Reads and Writes to the same location in shared memory

must be separated by a barrier

__syncthreads()



Warp Synchronous Programming

Is this code okay?

__shared__ volatile int values[8];

int warpid = threadIdx.x / 32;

if(threadIdx.x % 32 == 0)
values[warpid] = threadIdx.x;

printf("%d\n", values[warpid]);



Global barriers?

• Does the GPU support global barriers?

• If not, why not?



Unsafe Global Barriers

• Calculate residency R of kernel (use

cudaOccupancyMaxActiveBlocksPerMultiprocessor)

• Launch nSM ∗ R blocks, where nSM is number of SMs

• Use global barrier between blocks!

• Usually known as Persistent Threads



CUDA 9: Global Barriers/Cooperative Kernels

• Adds Global Barriers support to CUDA

• And lots more! (See “Cooperative Groups”)

grid_group grid = this_grid()
grid.sync()

• Instead of assuming which blocks are running, discover that at

runtime

• Limit synchronization to those blocks

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups


CUDA 9: Warp Barriers

• Volta GPUs no longer execute warps in lockstep

• “Warp-synchronous” in CUDA literature

• They can, but it is no longer required

• Every thread has its own PC

• New syncwarp() barrier for threads in warp

• Largely for use by code that assumes warp-synchronous

execution
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Atomic Compare and Swap

atomicCAS(address, compare, val)

Pseudocode, ATOMIC means it executes all the instructions inside

“atomically”.

ATOMIC {
cur = *address;
if(cur == compare)

*address = val;

return cur;
}



Other Atomic Functions

• Arithmetic

• atomicAdd, atomicSub

• Minimum/Maximum

• atomicMin, atomicMax

• Increase/Decrease

• atomicInc, atomicDec

• Always increase or decrease by 1

• Read definitions carefully!

• Bitwise

• atomicAnd, atomicOr, atomicXor



How Expensive are Atomics?

• Atomics to same location must be executed serially

• Atomics to different locations in same cache line can be

executed in parallel

• Atomics to different locations execute in parallel

• “As cheap as writes”



Other Atomic Functions as CAS

• Can we implement all other atomic functions using just CAS?



Locks with Atomic CAS?

while(atomicCAS(lock, UNLOCKED, LOCKED) == UNLOCKED);
// do something
lock = UNLOCKED;



Why Spinlocks Don’t Work on GPUs

• What happens when two threads in the same warp try to

obtain the lock?
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Warp Primitives

• Allow threads in warps to communicate without using shared

memory

• All deprecated in CUDA 9.0 and replaced by more general

functions

• See CUDA 8.0 documentation for now



Warp Votes

• any(predicate)

• Each thread in warp gets 1 if any predicate is 1

• all(predicate)

• Each thread in warp gets 1 if only all predicates are 1

• ballot(predicate)

• Each thread gets bit pattern of predicates

• Use popc() and ffs for further manipulation



Warp Shuffles

• Allow warps to transfer data to each other

• All functions below are deprecated in CUDA 9.0

T __shfl(T var, int srcLane, int width=warpSize);
T __shfl_up(T var, unsigned int delta, int width=warpSize);
T __shfl_down(T var, unsigned int delta, int width=warpSize);
T __shfl_xor(T var, int laneMask, int width=warpSize);



Warp Permutation using Warp Shuffles

• Assume 4 threads in warp,

i.e. 4 lanes

• Can read other lane’s values

using lane index

• Example: Permutation

(pictured)

val2 = __shfl(val1, lane)

• Example: All lanes read val

from lane 0 (broadcast)

val_t0 = __shfl(val, 0)

• shfl up and shfl down

“shift” values across lanes

0 1 2 3

5 9 2 6

3 1 0 2

6 9 5 2

val1

lane

val2

thread in warp



Reducing the number of atomics

Adapted from the CUDA programming guide:

{
unsigned int writemask = __ballot(1);
unsigned int total = __popc(writemask);
unsigned int prefix = __popc(writemask & __lanemask_lt());
// Find the lowest-numbered active lane
int elected_lane = __ffs(writemask) - 1;
int base_offset = 0;
if (prefix == 0) {

base_offset = atomicAdd(p, total);
}
base_offset = __shfl(base_offset, elected_lane);
int thread_offset = prefix + base_offset;
return thread_offset;

}
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Memory Consistency (or Ordering)

• Assume all variables below start as 0

/* Thread 0 */
val_t0 = 100;
written_val_t0 = 1;

/* Thread 1 */
while(write_val_t0 == 0);
printf("%d\n", val_t0);

Will the program ever print zero?



Memory Consistency

In what order are reads and writes in one thread seen by other

threads?



Enforcing Memory Ordering – Memory Fences

• threadfence block() – X : block

• threadfence() – X : GPU

• threadfence system() – X : system

All writes made by threads in same X before executing fence are

ordered before writes made after executing fence.

// writes before fence
fence()
// writes after fence
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