
CSC266 Introduction to Parallel Computing

using GPUs

Synchronization and Communication

Sreepathi Pai

November 8, 2017

URCS



Outline

Barriers

Atomics

Warp Primitives

Memory Fences



Outline

Barriers

Atomics

Warp Primitives

Memory Fences



Thread Block barriers

• Reads and Writes to the same location in shared memory

must be separated by a barrier

__syncthreads()



Warp Synchronous Programming

Is this code okay?

__shared__ volatile int values[8];

int warpid = threadIdx.x / 32;

if(threadIdx.x % 32 == 0)
values[warpid] = threadIdx.x;

printf("%d\n", values[warpid]);



Global barriers?

• Does the GPU support global barriers?

• If not, why not?



Unsafe Global Barriers

• Calculate residency R of kernel (use

cudaOccupancyMaxActiveBlocksPerMultiprocessor)

• Launch nSM ∗ R blocks, where nSM is number of SMs

• Use global barrier between blocks!

• Usually known as Persistent Threads



CUDA 9: Global Barriers/Cooperative Kernels

• Adds Global Barriers support to CUDA

• And lots more! (See “Cooperative Groups”)

grid_group grid = this_grid()
grid.sync()

• Instead of assuming which blocks are running, discover that at

runtime

• Limit synchronization to those blocks

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups


CUDA 9: Warp Barriers

• Volta GPUs no longer execute warps in lockstep

• “Warp-synchronous” in CUDA literature

• They can, but it is no longer required

• Every thread has its own PC

• New syncwarp() barrier for threads in warp

• Largely for use by code that assumes warp-synchronous

execution



Outline

Barriers

Atomics

Warp Primitives

Memory Fences



Atomic Compare and Swap

atomicCAS(address, compare, val)

Pseudocode, ATOMIC means it executes all the instructions inside

“atomically”.

ATOMIC {
cur = *address;
if(cur == compare)

*address = val;

return cur;
}



Other Atomic Functions

• Arithmetic

• atomicAdd, atomicSub

• Minimum/Maximum

• atomicMin, atomicMax

• Increase/Decrease

• atomicInc, atomicDec

• Always increase or decrease by 1

• Read definitions carefully!

• Bitwise

• atomicAnd, atomicOr, atomicXor



How Expensive are Atomics?

• Atomics to same location must be executed serially

• Atomics to different locations in same cache line can be

executed in parallel

• Atomics to different locations execute in parallel

• “As cheap as writes”



Other Atomic Functions as CAS

• Can we implement all other atomic functions using just CAS?



Locks with Atomic CAS?

while(atomicCAS(lock, UNLOCKED, LOCKED) == UNLOCKED);
// do something
lock = UNLOCKED;



Why Spinlocks Don’t Work on GPUs

• What happens when two threads in the same warp try to

obtain the lock?



Outline

Barriers

Atomics

Warp Primitives

Memory Fences



Warp Primitives

• Allow threads in warps to communicate without using shared

memory

• All deprecated in CUDA 9.0 and replaced by more general

functions

• See CUDA 8.0 documentation for now



Warp Votes

• any(predicate)

• Each thread in warp gets 1 if any predicate is 1

• all(predicate)

• Each thread in warp gets 1 if only all predicates are 1

• ballot(predicate)

• Each thread gets bit pattern of predicates

• Use popc() and ffs for further manipulation



Warp Shuffles

• Allow warps to transfer data to each other

• All functions below are deprecated in CUDA 9.0

T __shfl(T var, int srcLane, int width=warpSize);
T __shfl_up(T var, unsigned int delta, int width=warpSize);
T __shfl_down(T var, unsigned int delta, int width=warpSize);
T __shfl_xor(T var, int laneMask, int width=warpSize);



Warp Permutation using Warp Shuffles

• Assume 4 threads in warp,

i.e. 4 lanes

• Can read other lane’s values

using lane index

• Example: Permutation

(pictured)

val2 = __shfl(val1, lane)

• Example: All lanes read val

from lane 0 (broadcast)

val_t0 = __shfl(val, 0)

• shfl up and shfl down

“shift” values across lanes

0 1 2 3

5 9 2 6

3 1 0 2

6 9 5 2

val1

lane

val2

thread in warp



Reducing the number of atomics

Adapted from the CUDA programming guide:

{
unsigned int writemask = __ballot(1);
unsigned int total = __popc(writemask);
unsigned int prefix = __popc(writemask & __lanemask_lt());
// Find the lowest-numbered active lane
int elected_lane = __ffs(writemask) - 1;
int base_offset = 0;
if (prefix == 0) {

base_offset = atomicAdd(p, total);
}
base_offset = __shfl(base_offset, elected_lane);
int thread_offset = prefix + base_offset;
return thread_offset;

}



Outline

Barriers

Atomics

Warp Primitives

Memory Fences



Memory Consistency (or Ordering)

• Assume all variables below start as 0

/* Thread 0 */
val_t0 = 100;
written_val_t0 = 1;

/* Thread 1 */
while(write_val_t0 == 0);
printf("%d\n", val_t0);

Will the program ever print zero?



Memory Consistency

In what order are reads and writes in one thread seen by other

threads?



Enforcing Memory Ordering – Memory Fences

• threadfence block() – X : block

• threadfence() – X : GPU

• threadfence system() – X : system

All writes made by threads in same X before executing fence are

ordered before writes made after executing fence.

// writes before fence
fence()
// writes after fence


	Barriers
	Atomics
	Warp Primitives
	Memory Fences

