# CSC2/455 Software Analysis and Improvement Type Inference

Sreepathi Pai

Mar 18, 2024

URCS

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

- Compiler knows the type of every expression
  - Static typing
- Values "carry" their type at runtime
  - Dynamic typing
- Programs with type errors do not compile (or throw exceptions at runtime)
  - Strongly typed
- Programs with type errors carry on merrily
  - PHP (older versions only?)

- Poor (Limited expressivity)
  - assembly, C
- Rich
  - C++
  - Ada
- Richest (High expressivity)
  - ML/OCaml
  - Haskell

# Why have rich type systems?

- General purpose programming languages impose a set of constraints
  - int may not be stored into a char
- Applications and APIs impose a set of logical constraints
  - Mass of an object can never be negative
  - free(ptr) must not be called twice on the same ptr value
- Application programmers must check these constraints manually
  - Although encapsulation in OOP helps
- Can we get the compiler to check *application*-level constraints for us?
  - without knowing anything about the application?
  - i.e. a general-purpose facility to impose logical application-defined constraints

#### Rust

- Rust is a systems programming language from Mozilla
  - Replacement for C/C++
  - No garbage collector
  - "Bare-metal" programming ability
- Unlike C, Rust provides memory safety
  - No NULL pointer deference errors
  - No use-after-free
  - No double-free
  - etc.
- Rust uses its type system to impose these constraints
  - Rust checks types statically, so programs with these errors fail to compile.
  - Rust's mechanism is not purely type-based, it also uses additional analyses

Compilers perform the following type-related tasks:

- Type checking
  - Does the program obey the typing rules of the language?
- Type inference
  - What is the type of each expression, variable, function, etc.?

## Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

# Formalizing Programming Languages

- Syntax of a programming language
  - Usually specified as Backus-Naur Form (BNF)
  - Consists of statements, expressions, etc.
- Semantics of a programming language
  - Multiple methods: denotational, operational, axiomatic
  - We'll see more of semantics in later parts of this course
- Type system
  - Assigns types to (syntactic) terms
  - Consists of type rules
  - Types must ultimately make semantic sense (e.g. an int always contains an integer)

- Static Typing Environment (or *Context*)
  - Map of variables to types
  - Denoted by  $\Gamma$
  - An empty environment is represented as  $\phi$
- Usually if a term M has type  $\alpha$  in  $\Gamma$ , we will write it as:
  - $\Gamma \vdash M : \alpha$  (read as  $\Gamma$  entails that M has type  $\alpha$ )
  - e.g.  $x : int, y : int \vdash (x + y) : int$
  - likewise,  $x : \texttt{float}, y : \texttt{float} \vdash (x + y) : \texttt{float}$
- $\Gamma \vdash M : \alpha$  is called a *judgement*

$$\frac{\Gamma \vdash x : Int \quad \Gamma \vdash y : Int}{\Gamma \vdash (x + y) : Int} \qquad (PLUS)$$

- The part above the line are the premises
- The part below the line is the conclusion
- If the premises are true, then the conclusion is also true
  - Identical to inference rules in logic

- Type rules are "formal proof systems"
  - Like formal logic
- Goal is to "derive" a type using only the type rules
  - The derivation is the proof of a type

• Let 
$$n \in \mathbb{Z}$$

$$\frac{\Gamma \vdash \diamond}{\Gamma \vdash n : \mathit{Int}} \quad (\text{NUM})$$

- The  $\diamond$  indicates that  $\Gamma$  is well-formed
  - It is an axiom that  $\phi \vdash \diamond$ , we'll call this rule EMPTY
  - Axioms have no premises
- $\bullet\,$  Then we can add a rule for  $+\,$

$$\frac{\Gamma \vdash x : Int \quad \Gamma \vdash y : Int}{\Gamma \vdash (x + y) : Int} \qquad (PLUS)$$

#### Example of type derivation: II

- Derivation for 1 + 2 is a *Int*
- First show that  $\Gamma \vdash 1$ : Int

$$\frac{\overline{\phi \vdash \diamond}}{\phi \vdash 1 : Int} \text{Empty}$$

• Similarly, show that  $\Gamma \vdash 2$ : Int

$$\frac{\overline{\phi \vdash \diamond}}{\phi \vdash 2 : Int} \text{EMPTY}$$

 Since we have φ ⊢ 1 : Int and φ ⊢ 2 : Int, we can now apply PLUS to complete our derivation:

$$\frac{\phi \vdash 1: Int}{\phi \vdash 1 + 2: Int} PLUS$$

Type Rules

## A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

| lpha, $eta$ | ::=                          | types                       |                |
|-------------|------------------------------|-----------------------------|----------------|
|             | $\kappa$                     | $\kappa \in \mathit{Basic}$ | basic types    |
|             | $\alpha \to \beta$           |                             | function types |
| M, N        | ::=                          |                             | terms          |
|             | X                            |                             | variable       |
|             | $\lambda x$ : $\alpha$ . $M$ |                             | function       |
|             | MN                           |                             | application    |

- $\Gamma \vdash \diamond$ 
  - $\Gamma$  is a well-formed environment
- $\bullet \ \ {\sf \Gamma} \vdash \alpha$ 
  - $\alpha$  is a well-formed type in  $\Gamma$
- $\Gamma \vdash M : \alpha$ 
  - M is a well-formed term of type  $\alpha$  in  $\Gamma$

• (Axiom) Empty environment is well-formed

$$\frac{}{\phi \vdash \diamond} (\mathsf{Env} \ \phi)$$

• Extend the environment by assigning a type  $\alpha$  to a variable x

$$\frac{\Gamma \vdash \alpha \quad x \not\in dom(\Gamma)}{\Gamma, x : \alpha \vdash \diamond} (\mathsf{Env} \ x)$$

• Derivation rule for basic types (i.e. type constants)

$$\frac{\Gamma \vdash \diamond \quad \kappa \in \textit{Basic}}{\Gamma \vdash \kappa} (\text{Type Const})$$

• Derivation rule for function types

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}{\Gamma \vdash \alpha \rightarrow \beta} \text{(Type Arrow)}$$

• Variable type (read as if x : α occurs somewhere in Γ)

$$\frac{\Gamma', x: \alpha, \Gamma'' \vdash \diamond}{\Gamma', x: \alpha, \Gamma'' \vdash x: \alpha} (\mathsf{Val}\ x)$$

• Function type

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x : \alpha.M : \alpha \rightarrow \beta} (\mathsf{Val Fun})$$

• Function Application Type

$$\frac{\Gamma \vdash M : \alpha \to \beta \quad \Gamma \vdash N : \alpha}{\Gamma \vdash M N : \beta}$$
(Val App)

## Parametric Types/Polymorphism

- Some languages support "generic" functions
  - types are parametrized
  - notably from the ML family

| lpha, $eta$ | ::=                   | types                       |                             |
|-------------|-----------------------|-----------------------------|-----------------------------|
|             | $\kappa$              | $\kappa \in \mathit{Basic}$ | basic types                 |
|             | $\chi$                |                             | type variable               |
|             | $\alpha \to \beta$    |                             | function type               |
|             | $\forall \chi.\alpha$ |                             | universally quantified type |

- A type that fits the syntax above would be  $\forall \chi.\chi \rightarrow \mathit{Int}$ 
  - Indicates the type of a function that accepts any type and returns *Int*

- Product types
  - $\bullet \ \alpha \times \beta$
- Union (or sum) types
  - $\alpha + \beta$
- Records, Variants, References, etc.

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

- Most languages assign types to values
- Some require programmers to specify the type for variables
  - C, C++ (until recently)
- Some infer types of each variable automatically
  - even for polymorphic types
  - famous example: (Standard) ML

- Treat unknown types as type variables
  - We will use Greek alphabets for type variables
  - Note: distinct from program variables
- Write a set of equations involving type variables
  - These equations are obtained from the typing rules
- Solve the set of equations

a = 0.5b = a + 1.0

- typevar(0.5) =  $\kappa_1$
- typevar(a) =  $\alpha$
- typevar(b) =  $\beta$
- typevar(1.0) =  $\kappa_2$
- typevar(a + 1.0) =  $\eta$

 $\begin{array}{rcl} \text{typevar}(0.5) &=& \kappa_1 = \texttt{Float} \\ \text{typevar}(a) &=& \alpha = \kappa_1 \\ \text{typevar}(b) &=& \beta = \eta \\ \text{typevar}(1.0) &=& \kappa_2 = \texttt{Float} \\ \text{typevar}(a+1.0) &=& \eta = +(\alpha, \kappa_2) \\ &+(\gamma, \gamma) &\to& \gamma \\ &\alpha &=& \kappa_2 \end{array}$ 

Consider the ML example:

```
fun length(x) =
if null(x) then 0 else length(tl(x)) + 1;
```

- Clearly, length is a function of type  $\alpha' \to \beta$ , where typeof(x) =  $\alpha'$
- Is  $\alpha'$  a fixed type? Consider the two uses:
  - length(["a", "b", "c"])
  - length([1, 2, 3])

- The type  $\alpha'$  can be written as  $list(\alpha)$
- So, length is a function of type  $\forall \alpha \operatorname{list}(\alpha) \to \beta$

## Example #2: Equations and solving them

| EXPR:              | TYPE                                                              | UNIFY                                                           |
|--------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
| length:            | $\beta \to \gamma$                                                |                                                                 |
| x:                 | $\beta$                                                           |                                                                 |
| if:                | $\texttt{bool} \times \alpha_i \times \alpha_i \to \alpha_i$      |                                                                 |
| null :             | $list(\alpha_n) \rightarrow bool$                                 |                                                                 |
| null(x):           | bool                                                              | $\operatorname{list}(\alpha_n) = \beta$                         |
| 0 :                | int                                                               | $\alpha_i = \texttt{int}$                                       |
| + :                | $\texttt{int} \times \texttt{int} \to \texttt{int}$               |                                                                 |
| tl :               | $\operatorname{list}(\alpha_t) \to \operatorname{list}(\alpha_t)$ |                                                                 |
| tl(x):             | $list(\alpha_t)$                                                  | $\operatorname{list}(\alpha_t) = \operatorname{list}(\alpha_n)$ |
| length(tl(x)) :    | $\gamma$                                                          | $\gamma = \texttt{int}$                                         |
| 1 :                | int                                                               |                                                                 |
| length(tl(x)) + 1: | int                                                               |                                                                 |
| if() :             | int                                                               |                                                                 |

Note  $\alpha_{\textit{n}}$  remains in the final type, so we add a  $\forall \alpha_{\textit{n}},$  making this a

Unification is a procedure to symbolically manipulate equations to make them "equal".

- No variables in equations, only constants
  - 5 = 5, is unified
  - 4 = 5, can't be unified
- Variables in equations
  - Find a substitution S that maps each type variable x in the equations to a type expression,  $S[x \rightarrow e]$
  - Let *S*(*t*) be the equation resulting from replacing all variables *y* in *t* with *S*[*y*]
  - Then, S is a unifier for two equations  $t_1$  and  $t_2$ , if  $S(t_1) = S(t_2)$

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Compute a unifier to unify the equations below:

$$\begin{array}{lll} ((\alpha_1 \to \alpha_2) \times \operatorname{list}(\alpha_3)) & \to & \operatorname{list}(\alpha_2) \\ ((\alpha_3 \to \alpha_4) \times \operatorname{list}(\alpha_3)) & \to & \alpha_5 \end{array}$$

Unifier

| x            | S(x)             |
|--------------|------------------|
| $\alpha_1$   | $\alpha_1$       |
| $\alpha_2$   | $\alpha_2$       |
| $\alpha_3$   | $\alpha_1$       |
| $\alpha_4$   | $\alpha_2$       |
| $\alpha_{5}$ | $list(\alpha_2)$ |

Applying S(x) to both the equations leads to the unified equation:

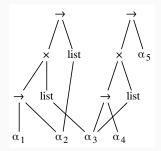
$$((\alpha_1 \to \alpha_2) \times \operatorname{list}(\alpha_1)) \to \operatorname{list}(\alpha_2)$$



For the unification algorithm, we'll first build type graphs for the type equations we've seen:

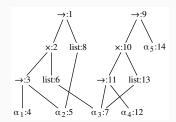
- Internal nodes are constructors  $(\rightarrow, \times, \text{list})$
- Leaf nodes are type variables  $(\alpha_1, \alpha_2, \alpha_3, ...)$
- Edges connect constructors to their arguments

# Actual Type Graph



This is the actual type graph that is formed for both the type equations. The shared edges between the graphs represent shared type variables.

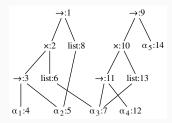
- Goal is to generate equivalence classes
  - Two nodes are in the same equivalence class if they can be unified
  - Equivalence classes are identified by a representative node
- A node is trivially unifiable with itself
- Non-variable nodes must be of same type to be unifiable
- Basic algorithm is an asymmetric variant of the union-find data-structure

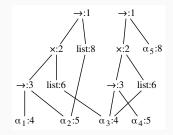


- Each node is initially in its own equivalence class, indicated by a number
- Ultimately, nodes that are equivalent will have the same number

```
def unify(node m, node n):
s = find(m)
t = find(n)
if (s == t): return True
if (s and t are the same basic type): return True
if (s(s1, s2) and t(t1, t2) are binary op-nodes with
                                the same operator):
     union_asym(s, t) # speculative
     return unify(s1, t1) and unify(s2, t2)
if (s or t is a variable):
    union_asym(s, t)
    return True
 return False
```

Figure 6.32 in the Dragon Book.





Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

- A self-contained introduction to type systems
  - Luca Cardelli, Type Systems, Handbook of Computer Science and Engineering, 2nd Ed
- An updated version (available only through the library)
  - Stephanie Weirich, Type Systems, Handbook of Computer Science and Engineering, 3rd Ed
- Algorithm is from Chapter 6 of the Dragon Book
  - Section 6.5
- Martelli and Montanari, 1982, An Efficient Unification Algorithm
- Good introductory tutorials with Python code:
  - Unification
  - Type Inference