CSC2/455 Software Analysis and Improvement Dominators and SSA Form

Sreepathi Pai

Feb 5, 2024

URCS

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

Data flow analysis framework

- Live variable analysis
- "Is there a read of this variable along any path?"
- Reaching Definitions
- "Which definitions reach this use?"
- Available expressions
- "Is this expression calculated previously and the result still usable?"
- Very Busy Expressions
- "Are there expressions that can be precalculated?"
- Iterative data flow analysis
- GEN, KILL, Transfer functions, Initialization

Outline

Review

Dominator Analysis (DOM)

SSA Form

Postscript

Dominators

- A node n in the CFG dominates a node m iff:
- n is on all paths from entry to m
- by definition, a node n always dominates itself
- Dominators are a property of graphs
- I.e. has nothing to do with code in basic blocks

Example 1: Node with single predecessor

ENTRY

Example 1: Node with single predecessor (Answer)

Example 2: Node with multiple predecessors

Example 2: Node with multiple predecessors (Answer)

Example 3: Slightly more involved example

Example 3: Slightly more involved example (Answer)

Can we use data flow analysis to identify the dominators of a node?

Data flow analysis setup

- Domain of facts?
- GEN and KILL?
- Direction of analysis?
- Merge operator?
- Initialization?

Data flow analysis Equation

$$
\operatorname{DOM}(n)=\{n\} \cup\left(\cap_{m \in \operatorname{pred}(n)} \operatorname{DOM}(m)\right)
$$

- Initialization
- (for $n \neq \operatorname{ENTRY}): \operatorname{DOM}(n)=N$ (where N is the set of all nodes)
- (for $n=\operatorname{ENTRY}): \operatorname{DOM}(n)=$ ENTRY

Related concept: Post-dominators

A node m is post-dominated by a node n iif:

- n appears on every path from m to EXIT.
- n post-dominates itself, by definition

Outline

Review
 Dominator Analysis (DOM)

SSA Form

Postscript

Static Single Assignment (SSA) Form

- Intermediate Representation
- Similar to 3 address code
- Each variable only written once
- Static [in source] Single [once] assignment
- SSA form can be generated from 3 address code
- Introduce ϕ functions
- Rename variables

Example 1: Straight-line code

$$
\begin{aligned}
& y=x+1 ; \\
& x=2 ; \\
& y=x+y+2
\end{aligned}
$$

gets transformed to:

$$
\begin{aligned}
& y_{-} 0=x_{-} 0+1 \\
& x_{-} 1=2 ; \\
& y_{-} 1=x_{-} 1+y_{-} 0+2
\end{aligned}
$$

From this example, when should we rename variables?

Example 2: Branches

$$
\begin{aligned}
& \mathrm{y}=\mathrm{x}+1 ; \\
& \mathrm{x}=2 ; \\
& \text { if }(\mathrm{y}>3) \\
& \quad \mathrm{y}=3 ; \\
& \text { else } \\
& \quad \mathrm{x}=\mathrm{x} * 2 ; \\
& \mathrm{y}=\mathrm{x}+\mathrm{y}+2 ;
\end{aligned}
$$

gets transformed to:

$$
\begin{aligned}
& y_{_} 0=x_{-} 0+1 \\
& x_{-} 1=2 ; \\
& i f\left(y_{_} 0>3\right) \\
& y_{-} 1=3 ; \\
& \text { else } \\
& \quad x_{-} 2=x_{-} 1 * 2 ; \\
& y_{-} 2=x_{-} 2+y_{-} 1+2 ;
\end{aligned}
$$

Is this renaming correct?

Example 2: The CFG

Example 2: Fix using ϕ functions

Simple Algorithm for constructing SSA form: 1

- Insert ϕ functions
- In which nodes of CFG?
- For which variables?
- Rename variables
- To what?
- Helps to think of LHS (definition) renames and RHS (use) renames

Simple Algorithm for constructing SSA form: 2

- Insert ϕ functions
- In join nodes, before all other code
- For all variables defined or used in procedure
- Each ϕ function has one argument per incoming edge
- Use $y=\phi(y, y)$ form for variable y
- Rename variables
- To what?
- Helps to think of LHS (definition) renames and RHS (use) renames

Simple Algorithm for constructing SSA form: 3

Simple Algorithm for constructing SSA form: Rename LHS

Simple Algorithm for constructing SSA form: Rename RHS

- Note that in SSA form, only one definition reaches a use (except the uses in ϕ)
- The arguments to ϕ are the definitions that reach it

Simple Algorithm for constructing SSA form: Rename RHS

Simple Algorithm for constructing SSA form: Renaming

- In actual compilers, renaming LHS and RHS can be done by simply calculating reaching definitions
- Remember we had to track each definition there too (recall y\#0)
- This construction is called the maximal SSA form
- Simple to construct
- Wasteful, can introduce too many ϕ functions (not in our example)

Example: Redundant ϕ functions

Here, our method constructs a redundant ϕ function for x_2.

Example: Redundant ϕ functions (now with loops)

Here, x_3 is redundant, and its removal makes x_2 redundant.

Example: Non-redundant ϕ functions

This gets rid of the redundant ϕ functions.

Outline

Review
Dominator Analysis (DOM)
SSA Form

Postscript

References

- Chapter 9 of Cooper and Turczon
- Section 9.2.1
- Section 9.3

