











CSC 257/457 - Fall 2011

CSC 257/457 - Fall 2011 2

Power and Range

- Power is of paramount importance in wireless devices
 - Many devices are on battery power
 - Power usage is directly related to range
- Friis transmission equation:

$$\frac{Pr}{Pt} = GtGr \left(\frac{\lambda}{4\pi R}\right)^2$$

- P_r and P_t are received power and transmission power
- \mathcal{G}_r and \mathcal{G}_t are antenna gains at receiving and transmission sides
- R is the range
- λ is the signal wavelength
- ⇒ Quadratic relation between transmission power and range

11/14/2011

CSC 257/457 - Fall 2011

9

Power/Range-to-Signal Frequency

Friis transmission equation:

$$\frac{Pr}{Pt} = GtGr \left(\frac{\lambda}{4\pi R}\right)^2$$

- P_r and P_t are received power and transmission power
- \bullet λ is the signal wavelength
- Wavelength relates directly to signal frequency
 - What relation?
 - assume electro-magnetic signal at speed of light 2.4GHz ⇒ 12.5cm; 5GHz ⇒ 6cm
 - 5GHz signals require more than four times transmission power, or reaches less than half of the range

11/14/2011

CSC 257/457 - Fall 2011

10

Wireless Channel

- 802.11 operates in specific frequency band
- at 2.4GHz band: 11 channels (5MHz sep.) centered at:
 - 2.412GHz (channel 1)
 - 2.417GHz (channel 2)
 - ·
 - 2.462GHz (channel 11)
- Each channel operates at a width of 22MHz (11MHz on each side of the center)
 - How many interference-free channels are there?
 - Channel 1 interferes with channels 2/3/4/5, but not 6

http://en.wikipedia.org/wiki/File:2.4_GHz_Wi-Fi_channels_%28802.11b,g_WLAN%29.svg

11/14/2011

CSC 257/457 - Fall 2011

11

Utilization of Multiple Channels

Utilization of multiple channels reduce interference

- In an infrastructured wireless network
 - Multiple access points (at different channels) can be put near each other without interference
 - ⇒ good coverage and strong signal strength

11/14/2011

CSC 257/457 - Fall 2011

12

CSC 257/457 - Fall 2011

2

A Case Study

- Channel usage at 6th floor CSB:
 - three department APs (channels 1/6/11); three university APs (channels 1/6/11)
- Outside this classroom (measurement by Amal Fahad):
 - CS, channel 1, power 0.000020uw
 - CS, channel 6, power 0.000016uw
 - CS, channel 11, power 1.3uw
 - UR, channel 1, power 0.0040uw
 - UR, channel 6, power 0.000020uw
 - UR, channel 11, power 0.00032uw
- Outside 703, strong power from two channel-6 APs

11/14/2011

CSC 257/457 - Fall 2011

13

Channel Hopping in Ad Hoc Networks

- Use multiple channels in a wireless ad hoc network
 - Problem: network partitions, one at each channel

- Nodes dynamically hop between multiple channels
- Challenge: coordinate sender/receiver at same channel
- [Bahl et al. 2004]
 - Each node maintains a channel hopping schedule; nodes learn each other's schedule
 - A sender adjust its channel to match receiver
 - Issues: What if the receiver wants to send to somebody else and change its channel? How about broadcast?

11/14/2011 CSC 257/457 - Fall 2011

14

Partially Overlapped Channels

[Mishra et al. 2006]

- More channels if we allow partial interference
 - Channels 1 and 6 are interference-free
 - Channels 1 and 4 have partial interference
- I-factor: amount of overlap between two channels
 - Measurement: P_i/P_j
 Given a signal sent at channel j, P_j is the received power at channel j, P_i is the received at channel i.
 - ⇒ I-factor ≈ 0.1 for 3-channel separation
- Range:
 - range ratio = 0.32 for 3-channel separation
 - ⇒ If same channel signal disappears into noise at 100M, then 32M distance is enough for 3-channel separation

11/14/2011

CSC 257/457 - Fall 2011

15

Power/Range-to-Antenna Gain

Friis transmission equation:

$$\frac{Pr}{Pt} = GtGr \left(\frac{\lambda}{4\pi R}\right)^2$$

- P_r and P_t are received power and transmission power
- \mathcal{G}_r and \mathcal{G}_t are antenna gains at receiving and transmission sides
- Antenna gain [wikipedia] the ratio between:
 - the radiation intensity of an antenna in a given direction
 - the intensity that would be produced by a hypothetical ideal antenna that radiates equally in all directions
- Point-to-point WiFi can go very long distance

11/14/2011

CSC 257/457 - Fall 2011

16

CSC 257/457 - Fall 2011

Δ

Long-Distance Point-to-Point WiFi

- Particularly suited for under-developed, rural areas
 - Low-cost WiFi equipment
 - Use unlicensed frequency spectrum and require no base stations (unlike cellular networks)
- [Raman and Chebrolu 2005/2007]
 - Wireless mesh networks formed over long-distance WiFi in rural India
 - Little inter-node interference
 - Mixed send/receive over multiple links at a node causes unacceptable interfere
 - New wireless MAC protocol (2P): coordination to prevent mixed send/receive

11/14/2011

CSC 257/457 - Fall 2011

17

Long-Distance Point-to-Point WiFi

[Patra et al 2007]

- Long latency over long distance
 ⇒ transmit/acknowledge turns into inefficient stop-and-wait
 - Solution: bulk transmissions with a single acknowledgement
- High loss rate due to external WiFi interference (longdistance WiFi interfere with regular short-distance WiFi near receiver)
 - Solution: repeated retransmission or redundancy coding

11/14/2011

CSC 257/457 - Fall 2011

18

4

Disclaimer

 Parts of the lecture slides contain original work of James Kurose, Larry Peterson, and Keith Ross. The slides are intended for the sole purpose of instruction of computer networks at the University of Rochester. All copyrighted materials belong to their original owner(s).

11/14/2011

CSC 257/457 - Fall 2011

all 2011

CSC 257/457 - Fall 2011 5

19