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Abstract

We show that a tree substitution grammar (TSG) induced with acollapsed Gibbs
sampler results in lower perplexity on test data than both a standard context-free
grammar and other heuristically trained TSGs, suggesting that it is better suited to
language modeling. Training a more complicated bilexical parsing model across
TSG derivations shows further (though nuanced) improvement. We conduct anal-
ysis and point to future areas of research using TSGs as language models.

1 Introduction

Recently a number of groups have had success parsing with tree substitution grammars (TSGs) that
were induced from the Penn Treebank with collapsed Gibbs samplers in a Bayesian framework
(Cohn et al., 2009; Post and Gildea, 2009). Compared to past heuristic approaches, these grammars
are compact and intuitive, have a more natural distributionover rule size, and perform well on
parsing accuracy relative to the Treebank grammar. This sort of learning can be viewed as refining
the structure of the Treebank grammar; while TSGs are weaklyequivalent to CFGs and have the
same distribution over strings, the rules of the grammar canbe quite different. Extracting TSG
subtrees from the Treebank allows the rules themselves to capture more complicated dependencies
(as opposed to leaving this to the parsing model alone). For example, a lexicalized subtree can
capture the predicate-argument structure of a verb.

In this paper, we show that, in addition to increasing parsing accuracy, these induced TSGs also
have a significantly lower perplexity on test data under a standard context-free parsing model. With
small modifications, this result also holds for a more complicated bilexical parsing model trained
over a version of the Treebank that has been “flattened” with the induced TSG derivations. These
observations are appealing from the perspective of language learning and representation, where
we are more directly interested in how accurately and compactly a grammar encodes grammatical
strings than in how well it can infer the derivation of a sentence whose grammaticality is assumed.

2 Experimental setup

Our training data was all sentences from sections 2 to 21 of the Wall Street Journal portion of the
Penn Treebank, and for testing we used the 2,245 sentences with forty or fewer tokens in section
23. We took as our vocabulary the set of 23,767 case-sensitive tokens appearing more than once in
the training data. All other tokens were converted to a set ofeighty unknown word classes based on
surface features (Petrov et al., 2006). Trace nodes and nodeannotations (e.g., temporal, subject, and
locative markers) were removed from all of our data.

Underlying our experiments are three grammars:
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rules used
grammar size F1 perplexity tokens types

CFG 46K 72.6 692.0 86,561 9,012
spinal+CFG 191K 79.2 544.0 61,750 14,090
DOP+CFG 2,567K 77.3 505.1 45,914 18,301

sampled+CFG 77K 80.1 523.9 65,311 12,367
sampled 63K 81.7 429.7 56,769 13,375
bigram 342K - 238.4 - -
trigram 430K - 202.4 - -

Table 1: Parsing scores and model perplexity. The size of a grammar is the number of subtrees in
the grammar, whereas the size of an ngram model is the number of entries in its table, including the
backoff tables.

1. The Treebank grammar. This is the grammar obtained by using all standard (height one)
CFG rules from our training data.

2. A “spinal” tree substitution grammar. Similar to Chiang (2000), we heuristically define
subtrees to be the sequence of adjacent rules in a parse tree that share a head, according to
the Collins head-selection rules. This yieldsn distinct subtrees for each lengthn sentence,
each having a single lexical item among the nodes of its frontier.

3. A sampled tree substitution grammar. We induced TSG derivations from the parse trees
in the training data using a collapsed Gibbs sampler with a Dirichlet Process prior, as
described in Post and Gildea (2009).1, and formed the grammar from the subtrees from the
derivations at the end of the 100th iteration.

Each grammar was built from derivations of the parse trees inthe training corpus. We use the
termsrule andsubtreemore or less interchangeably to denote the rewrites of nonterminals in CFGs
and TSGs. In addition to parsing with these grammars alone, we also experiment with combining
grammars, e.g., “spinal+CFG” means that we took the set of rules from two instances of the train-
ing corpus, one annotated with spinal grammar derivations and the other with standard Treebank
derivations.

The probability of a sentences when parsing with a grammarG is given asPrG(s) =
∑

d∈Ds

Pr(d),
whereDs is the set of derivations whose yield iss andPr(d) is defined by the parsing model. To
compute perplexity, we follow standard practice and estimate the cross-entropy of each modelG
with respect to the true distributionp on the test corpusS as

H(p,G) ≈ −
1

N

∑

s∈S

log2 PrG(s)

(whereN is the number of tokens in the sentences ofS for which the parser produced an analy-
sis) and report perplexity as2H(p,G). Under the assumption that a better model will assign higher
probability to a test corpus of grammatical sentences than aworse model, lower perplexity is better.

The bigram and trigram language model baselines listed in all the tables were trained and tested on
the same data sets described above using SRILM version 1.5.22 with the default settings.

3 Context-free grammar parsing

We begin by presenting perplexity results for context-freegrammar parsing. This standard model
defines the probability of a derivation as the product of the probabilities of the fixed rules that con-
stitute it, where each probability is conditioned only on the label of the nonterminal it is expanding.
Subtree probabilities were assigned according to their relative frequency.

1See Goldwater et al. (2009) for an excellent introduction to using this technique for segmentation tasks.
2http://www.speech.sri.com/projects/srilm/
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grammar failures perplexity
CFG 122 1,325.0

spinal+CFG 124 1,902.9
sampled 133 2,118.1

sampled+CFG 123 1,803.4
DOP+CFG 123 3,174.3

bigram 0 1,274.9
trigram 0 1,277.1

Table 2: Model perplexity on a mildly ungrammatical corpus in which the children of all NPs were
reversed. The “failures” column indicates the number of sentences for which the model could not
find a parse.

Table 1 lists perplexity results for language modeling withthese grammars along with F1 scores on
the parsing task.3 In addition to the grammars mentioned above, we present results from a Data-
Oriented Parsing (DOP) “all subtrees” grammar produced by randomly sampling 400,000 subtrees
of heights two, three, and so on, up to a height of fourteen, asdescribed in Bod (2001).

From this table we can see that, apart from the DOP model, parser accuracy and perplexity are
correlated for these grammars under this simple parsing model. The lower perplexity results for the
tree substitution grammars might appear obvious at first glance: TSGs use larger rules, so there will
be fewer probabilities to multiply together in the derivation. The DOP grammar provides a useful
counterexample; despite using many fewer rules, its perplexity is significantly higher than that of
the sampled grammar. This can explained by the fact that although the DOP grammar employed
significantly fewer rule tokens, it is overfit to the trainingdata, and its immense size means that
the probability mass for each nonterminal rewrite is spreadmuch more thinly across rule types.
Compactness of a grammar is an important property for keeping perplexity low. The collapsed
Gibbs sampling procedure yields a compact grammar that, relative to other CFGs, is both more
accurate for parsing and better for language modeling.

Table 2 contains results of an additional experiment. A number of research groups have shown that
PCFGs are not very helpful in improving BLEU scores for machine translation (Charniak et al.,
2003; Och et al., 2004; Post and Gildea, 2008). Furthermore,they do not even appear to be very
useful in distinguishing grammatical from ungrammatical text. Cherry and Quirk (2008) used model
scores produced by a maximum-likelihood estimated parser with a Markovized, parent-annotated
Treebank grammar to classify a corpus of 6,000 Wall Street Journal sentences and “pseudo-negative”
ngram-sampled sentences (Okanohara and Tsujii, 2007). They reported a development set accuracy
of only 65% when using sentence length and model score as the only features of an SVM-trained
classifier. A good language model should have a large gap between model scores on good and bad
text, so comparing a model’s scores on both kinds of text ensures that it is not simply happy with
any kind of input.4 To produce ungrammatical text that did not result in too manyparse failures with
these grammars, we took the parse trees associated with the sentences in the test data and reversed
the order of the children of all NP nodes. This produces mildly ungrammatical sentences whose
meaning is still mostly clear, as can be seen in this example (with some constituents marked for
clarity):

[banks investment Big]NP refused to step up to [plate the]NP to support [traders
floor beleaguered the]NP by buying [[of stock]PP [blocks big]NP]NP , traders say .

We draw attention to a few interesting aspects of this table.The DOP model is again an outlier; its
perplexity score is much higher than that of any other model.Taken alone, this result is a positive
finding for DOP, but together with the result in Table 1, it seems to corroborate the earlier suggestion
that it is overfit to the training data. Just as it generalizesless well in finding parse structures for
unseen (grammatical) sentences, it is also unable to find satisfactory explanations for ungrammatical
ones. Second, the overall trend of the perplexity scores here correlate with those of the grammatical

3Computing the best parse with tree substition grammars is NP-hard (Sima’an, 1996), so we approximate it
with the Viterbi derivation.

4It also prevents a model from winning a perplexity competition by ignoring the test data entirely and
reporting a very small perplexity.
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text: the sampled grammar alone is best, followed by the (roughly equal) spinal+CFG and sam-
pled+CFG, which are all much improved over the plain CFG model. Finally, note that the plain
CFG assigns a perplexity score that is in the neighborhood ofthose assigned by the ngram models,
with the CFG’s slight lead perhaps explained by the fact thatthe permutation of the test-data was
performed at the constituent (and not the word) level. Together, the results in Tables 1 and 2 provide
evidence that the sampled TSG is the best grammatical language model.

4 Bilexicalized parsing

The previous section showed that sampled grammars outperform other grammars in terms of per-
plexity with a standard context-free parsing model that rewrites nonterminals in a single act condi-
tioned solely on the identity of the current node. This is significant, because it suggests that PCFGs
in general may not be as poor of language models as often thought, and that we have mechanisms
for producing context-free grammars that do a much better job of modeling language than the Tree-
bank grammar. The fact remains, however, that the context-free model is quite constrained, ignoring
salient elements of the structural history that should surely be conditioned upon. A natural question
that arises is whether the perplexity improvements seen in the previous section would carry over
to more complicated generative models with fewer (and more realistic) independence assumptions.
If so, this would provide some evidence that the underlying grammars being learned are finding
something closer to the “real” structures behind the text.

In this section, we explore this question, using the same grammars from the previous section to train
a bilexicalized, Markovized parser. This model is based on Collins Model 1 (Collins, 1999) and is
similar to Charniak’s bihead model (Charniak, 2001).5 The generative model proceeds as follows:
given nonterminalP (initially the top-level symbol), we

1. generate the head word and tag (h, t)

2. generate the head childH conditioned onP, h, andt)

3. generate the siblings ofH and their head tags, conditioned onP,H, h, t, the direction from
the head (left or right), and the distance from the head child(adjacent or not).

4. generate each sibling head word conditioned again onP,H, h, t, direction, adjacency, plus
the sibling labelC and its head’s tag,ct.

This process recurses until an entire parse tree has been generated. We employed the three-level
backoff scheme presented in Table 7.1 of Collins (1999).

This model is called a lexicalized model because (a) the expansion of a node into all of its children
is conditioned on the parent’s head word and (b) heads of the siblings of the head child are also
conditioned on the parent’s head word. This latter conditioning is also called bilexicalization. We
will take care not to confuse this with the notion of lexicalization in tree substitution grammars,
where the term denotes the fact that subtrees are permitted to have lexical items among their frontier
nodes.

The Collins model is trained by reading events from the Treebank. In order to do this with our TSGs,
we had to preprocess the corpus in two ways. First, we flattened TSG subtrees to equivalent height-
one CFG trees. This does not affect the end result, because internal nodes of TSG subtrees contribute
nothing to language modeling under the inference models we are considering.6 Second, the Collins
parsing model training procedures expect (tag,word) pairsin the training data, but flattening the
lexicalized TSG rules removes many of the tags from the training corpus. To correct for this, we
reintroduce dummy preterminals above such words that expand deterministically. We also modified
the head-finding rules to select the same lexical head that would have been selected if the interior
nodes were present. These preprocessing steps are illustrated in Figure 1. With this in place, the
correct statistics can be collected for the Collins parsingmodel.

5Our implementation of Collins Model 1 differs in that we parse punctuation asregular symbols and do not
make special provisions for commas and colons, in order to compute comparable perplexity scores.

6This is true for CFG parsing, as well, but not for parser evaluation. To evaluate for parsing accuracy,
the original structure can be restored by retaining a mapping between the original subtrees and the flattened
representation, as described by Bod (2001).
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Figure 1: Preprocessing steps applied to TSG derivations inthe Treeank to ensure compatibility with
the Collins parsing model. (top) A TSG derivation tree in thetraining data for the “spinal” grammar.
Boxed nodes denote boundaries between TSG subtrees (the root and frontier nodes of each subtree).
(middle) The same derivation, collapsed to an equivalent height-one CFG. (bottom) The final tree
with dummy preterminals inserted.
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grammar failures perplexity
CFG 12 305.2

spinal+CFG 15 318.8
sampled 138 327.7

sampled+CFG 4 305.0
bigram 0 238.4
trigram 0 202.4

Table 3: Perplexity for the bilexicalized parsing model constructed from different training corpus
derivations. The failures column denotes the number of sentences for which no parse could be found.

Table 3 presents perplexity results obtained by training this model over the flattened corpora. We
begin by noting that perplexity scores for all the grammars are well above the ngram baselines.
This is in contrast to previous work on syntax-based language modeling which has improved upon a
trigram baseline (Chelba and Jelinek, 1998; Roark, 2001; Charniak, 2001). It is difficult to compare
directly to this body of work: the vocabularies used were much smaller (10K), punctuation was
removed and numbers were collapsed to a single token, and fewdetails were given about the backoff
scheme employed by the baseline trigram model. We note, too,that because of pruning, the string
probabilities assigned by our parser are underestimates, and we did not experiment with beam width.
But irrespective of these arguments, for purposes of this exploration we take the desirability of syntax
as a given and focus on improving those models relative to thesyntactic baseline.

The TSG models do not lead to any significant improvement overthe baseline CFG, either. Analysis
of the failures of the spinal grammar gives us a clue as to why this is the case. The reader may
have observed that neither Table 1 nor 3 contain row entries for the spinal grammar alone. This is
due to the fact that the spinal grammar, each rule of which hasa lexical item among the nodes of
its frontier, is too rigid for either parsing model, and nearly half the sentences resulted in a parse
failure. The standard CFG parsing model has no notion of backing off, so if the fixed rules cannot
be assembled into a parse tree, the parser fails. The same problem is present in the Collins parsing
model, even with its backed-off smoothing structure. With lexical items at the leaves of PCFG rules,
the generation of sibling nodes contains bilexical statistics even at the third level of backoff structure.
To see this, note that these third-level statistics generate the sibling labelC and sibling head tagtc
conditioned on the parent labelP , head tagt, and direction∆:

Pr(C, tc | P, t,∆)

In the collapsed structure depicted in Figure 1, this amounts to, e.g.,

Pr(NP,NN[fever] | S,VBZ[has],←)

It seems that the Collins backoff model is less useful when using a grammar in which all subtrees
contain lexical items; a more appropriate model would employ a different backoff structure that
would allow an analysis to be produced in light of these sparse parameters.

In light of this problem, one might hope that the other TSGs, which contain both lexicalized and
unlexicalized rules, would outperform the CFG baseline. Wedo see a small improvement with the
sampled+CFG grammar (fewer parse failures), but the lexicalization problem described above led us
to a solution which showed real improvement: we forcibly detach lexical items from all subtrees in
the training corpus at the preterminal node, and retrain thebilexicalized model on this new corpus.
This can be seen as smoothing the TSGs in a manner that is more appropriate for the bilexical parsing
model. We denote a corpus that has been modified in this way as corpusD, and present perplexity
results for these new grammars in Table 4.

In this way we obtain a larger improvement in perplexity. Table 4 shows that a combination of
heuristic and sampled TSGs can beat the CFG baseline even though they are using a parsing model
optimized for that baseline. Forcing the delexicalizationof these grammars frees up the parsing
model’s bilexical parameters, and computing those parameters over the revised structures produced
by the flattened TSG subtrees helps produce a better languagemodel. The results for parsing the
mildly ungrammatical “reversed NP” version of the test corpus are less informative under this pars-
ing model. The perplexity scores are all lower than the ngrammodels, and are very roughly similar;
the CFG and spinal models give better (higher) overall scores, but they are also responsible for many
more parse failures. Without further analysis of the characteristics of the sentences that produced
failures and the lower scores, it is difficult to say what the different numbers mean.
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reversed NPs
grammar failures perplexity failures perplexity

CFG 12 305.2 184 1,769.6
spinalD 13 301.0 230 1,758.7

spinalD+CFG 6 304.9 209 1,977.1
sampledD 2 309.7 40 1,414.7

sampledD+CFG 2 299.8 39 1,628.1
sampledD+spinalD 2 290.6 41 1,584.5

sampledD+spinalD+CFG 2 291.8 40 1,774.0
sampledD+sampled 4 315.3 40 1,553.3

bigram 0 238.4 0 1,274.9
trigram 0 202.4 0 1,277.1

Table 4: Model perplexity for the bilexicalized parsing model after detaching lexical items from
TSG subtrees in the training corpus.

5 Conclusion

Computational complexity is a significant barrier to the useof rich syntax-based models in practical
applications. The large reduction in perplexity of inducedtree substition grammars in the standard
CFG model is encouraging, because parsing in that model is cubic in the size of the input, as op-
posed to beingO(n4) for bilexical parsing (Eisner and Satta, 1999). With the perplexity scores of
these TSG grammars under the simple parsing model approaching those of the more complicated
bilexicalized parsing models, this kind of modeling could be feasible for applications like machine
translation.

Beyond this, a growing intuition within the community is that the sorts of structures and models that
have been useful for parsing are not necessarily the same as those that will be useful for language
modeling. The improvements in perplexity gained from the use of automatically induced tree substi-
tution grammars under two different parsing models suggesta research direction for future language
modeling efforts, and the analysis presented here of the complicated interaction between grammar
lexicalization and parsing model lexicalization should help inform smoothing methods more suited
to language modeling with TSGs. In the future, we plan further experiments with this family of
grammars, including the investigation of models and smoothing procedures best-suited to language
modeling, and the optimal set of structures over which to train those models.
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