Why NachOS?
| Nachos user programs |
User programs /// “\‘..\
-develop from scratch on real hardware 7 Nachesstent =
/ \
too complex, Systemmeatis Wachos bernsl FRErREna
hard enough just to start the machine i : Host nser

programs

-adjust existing OS

lacking a brief view of whole operation system

Normal computer structure Wachos structure

" " J
Main drawback of NachOS Basic NachOS toolkit
Kernel run on real machine while user program run on Simulated hardware(MIPS, memory, 1/0)

simulated machine Cross compiler complie C user program to MIPS executable

So not using the same CPU and same memory

Limited synchronization primitives (only semaphore)

.
Why not changing it Only Halt system call

Make projects too complex .
Single user program

Hard to debug kernel part

Job is to augment it

Do not modify the simulated hardware and compiler

Strengthen the skeleton step by step

-Synchronization
-Multiple user program
-Virtual memory

-File system and disk scheduling

"
Work on NachOS

Code in C++

Run an executable:

Inachos —x [executable]

Debug
.Inachos —d [debug flag]
DEBUG function — very useful

Nachos files

Threads/ thread.cc thread data structure
scheduler.cc manage threads run
synch.cc synchronization routine
boundedbuffer.cc for bounded buffer
list.cc list manage
synchlist.cc list with lock
system.cc kernel data structure

startup/shutdown

utility.cc

" JEE
Nachos files
Machine/ disk.cc

interrupt.cc

machine.cc

timer.cc

stat.cc

should not change here

keep reference files here

" A
Nachos files

Userprog/ addrspace.cc addressspace management

bitmap.cc bit map class useful for page
management
exception.cc handle exec, exit, and fork
Test/ easy C test program, using cross compiler

Nachos files
filesys/ directory.cc
filehdr.cc file header operation
filesys.cc manage overall file system
openfile.cc open, read, close file
synchdisk.cc synchronized read/write sector
Disk file: Nachos.xml
Seagate.xml
IBM36G.xml

Project 1 threads and synchronization

Add mutex lock and condition variable
Implement a thread-safe bounded buffer class
Implement an alarm clock

Implement an elevator (useful for disk scheduling)

" JEE
Project 1 a place to get start
Synch.cc

void
Semaphore::P()

IntStatus oldLevel = interrupt->SetLevel(IntOff); /Il disable
interrupts
while (value == 0) { /I semaphore not available

queue->Append((void *)currentThread); // so go to sleep
currentThread->Sleep();
}
value--; /I semaphore available,
/I consume its value

(void) interrupt->SetLevel(oldLevel); // re-enable interrupts

}

Project 1 a place to get start
Synch.cc

void
Semaphore::V()

Thread *thread;
IntStatus oldLevel = interrupt->SetLevel(IntOff);

thread = (Thread *)queue->Remove();
if (thread != NULL) /I make thread ready, consuming the V
immediately
scheduler->ReadyToRun(thread);
value++;
(void) interrupt->SetLevel(oldLevel);

}

" JEE
Project 2 multiple user program

-Address space management

A memory manager to allow kernel to allocate frames for
processes, keep track of which frame is in use

Set up process page table correctly

-Process management
Handle Exec, Exit and Join system call
Exec- fork and exec

Exit and Join

Project 3 virtual memory

-Page faults

Fault exception happen once accessing invalid Page Table

Entry

-Page Replacement

Evict victim page

Save dirty page in backstore
FIFO/LRU

" JEE
Project 4 file system and disk I/O
-Basic file system
Synchronization between threads on file operation
Caching

File size: multilevel indexed file allocation

-Prefetching

-Disk scheduling

