
Groute: An Asynchronous Multi-GPU
Programming Model for Irregular Computations

Tal Ben-Nun Michael Sutton
The Hebrew University of Jerusalem, Israel

{talbn, msutton}@cs.huji.ac.il

Sreepathi Pai Keshav Pingali
The University of Texas at Austin, USA

sreepai@ices.utexas.edu pingali@cs.utexas.edu

Abstract
Nodes with multiple GPUs are becoming the platform of
choice for high-performance computing. However, most ap-
plications are written using bulk-synchronous programming
models, which may not be optimal for irregular algorithms
that benefit from low-latency, asynchronous communication.
This paper proposes constructs for asynchronous multi-GPU
programming, and describes their implementation in a thin
runtime environment called Groute. Groute also implements
common collective operations and distributed work-lists, en-
abling the development of irregular applications without
substantial programming effort. We demonstrate that this
approach achieves state-of-the-art performance and exhibits
strong scaling for a suite of irregular applications on 8-GPU
and heterogeneous systems, yielding over 7x speedup for
some algorithms.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords Multi-GPU, Asynchronous Programming, Ir-
regular Algorithms

1. Motivation
Nodes with multiple attached accelerators are now ubiqui-
tous in high-performance computing. In particular, Graph-
ics Processing Units (GPUs) have become popular be-
cause of their power efficiency, hardware parallelism, scal-
able caching mechanisms, and balance between specialized
instructions and general-purpose computing. Multi-GPU
nodes consist of a host (CPUs) and several GPU devices
linked via a low-latency, high-throughput bus (see Figure 1).
These interconnects allow parallel applications to exchange

CPU 1 CPU 2

RAM RAM

PCI-Express Switch

FSB Lanes FSB Lanes

Dual Board

Tesla M60

Dual Board

Tesla M60

P2P

GPU

1

GPU

2

GPU

3

GPU

4

Dual Board

Tesla M60

Dual Board

Tesla M60

P2P

GPU

5

GPU

6

GPU

7

GPU

8

Figure 1: Multi-GPU Node Schematic

data efficiently and to take advantage of the combined com-
putational power and memory size of the GPUs.

Multi-GPU nodes are usually programmed using one of
two methods. In the simple approach, each GPU is managed
separately, using one process per device [13, 19]. Alterna-
tively, a Bulk Synchronous Parallel (BSP) [32] programming
model is used, in which applications are executed in rounds,
and each round consists of local computation followed by
global communication [6, 26]. The first approach is subject
to overheads from various sources, such as the operating sys-
tem, and requires a message-passing interface for communi-
cation. The BSP model, on the other hand, can introduce un-
necessary serialization at the global barriers that implement
round-based execution. Both programming methods may re-
sult in under-utilization of multi-GPU platforms, particularly
for irregular applications, which may suffer from load imbal-
ance and may have unpredictable communication patterns.

In principle, asynchronous programming models can re-
duce some of these problems, because unlike in round-based
communication, processors can compute and communicate
autonomously without waiting for other processors to reach
global barriers. However, there are few applications that ex-
ploit asynchronous execution, since their development re-
quires an in-depth knowledge of the underlying architecture
and communication network, and involves performing intri-
cate adaptations to the code.

This paper presents Groute, an asynchronous program-
ming model and runtime environment [2] that can be used to
develop a wide range of applications on multi-GPU systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PPoPP '17, February 04-08, 2017, Austin, TX, USA
© 2017 ACM. ISBN 978-1-4503-4493-7/17/02…$15.00
DOI: http://dx.doi.org/10.1145/3018743.3018756

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Based on concepts from low-level networking, Groute aims
to overcome the programming complexity of asynchronous
applications on multi-GPU and heterogeneous platforms.
The communication constructs of Groute are simple, but
they can be used to efficiently express programs that range
from regular applications and BSP applications to nontrivial
irregular algorithms. The asynchronous nature of the run-
time environment also promotes load balancing, leading to
better utilization of heterogeneous multi-GPU nodes.

The main contributions of this paper are the following.

• We define abstract programming constructs for asyn-
chronous execution and communication.

• We show that these constructs can be used to define
a variety of algorithms including regular and irregular
parallel algorithms.

• We compare aspects of the performance of our imple-
mentations, using applications written in existing frame-
works as benchmarks.

• We show that using Groute, it is possible to implement
asynchronous applications that in most cases outperform
state-of-the-art implementations, yielding up to 7.28×
speedup on 8 GPUs compared to a baseline execution on
a single GPU.

2. Multi-GPU Node Architecture
In general, the role of accelerators is to complement the
available CPUs by allowing them to offload data-parallel
portions of an application. The CPUs, in turn, are respon-
sible for process management, communication, input/output
tasks, memory transfers, and data pre/post-processing.

As illustrated in Figure 1, the CPUs and accelerators are
connected to each other via a Front-Side Bus (FSB, im-
plementations include QPI and HyperTransport). The FSB
lanes, whose count is an indicator of the memory trans-
fer bandwidth, are linked to an interconnect such as PCI-
Express or NVLink that supports both CPU-GPU and GPU-
GPU communications.

Due to limitations in the hardware layout, such as use of
the same motherboard and power supply units, multi-GPU
nodes typically consist of (∼1-25) GPUs. The topology of
the CPUs, GPUs and interconnect can vary between com-
plete all-pair connections and a hierarchical switched topol-
ogy, as shown in the figure. In the tree-topology shown in
Figure 1, each quadruplet of GPUs (i.e., 1–4 and 5–8) can
perform direct communication operations amongst them-
selves, but communications with the other quadruplet are
indirect and thus slower. For example, GPUs 1 and 4 can
perform direct communication, but data transfers from GPU
4 to 5 must pass through the interconnect. A switched inter-
face allows each CPU to communicate with all GPUs at the
same rate. In other configurations, CPUs are directly con-
nected to their quadruplet of GPUs, which results in variable
CPU-GPU bandwidth, depending on process placement.

The GPU architecture contains multiple memory copy
engines, enabling simultaneous code execution and two-way
(input/output) memory transfer. Below, we elaborate on the
different ways concurrent copies can be used to efficiently
communicate within a multi-GPU node.

2.1 Inter-GPU Communication
Memory transfers among GPUs can either be initiated by
the host or a device. In particular, host-initiated memory
transfer (Peer Transfer) is supported by explicit copy com-
mands, whereas device-initiated memory transfer (Direct
Access, DA) is implemented using inter-GPU memory ac-
cesses. Note that direct access to peer memory may not be
available between all pairs of GPUs, depending on the bus
topology. Access to pinned host memory, however, is possi-
ble from all GPUs.

Device-initiated memory transfers are implemented by
virtual addressing, which maps all host and device memory
to a single address space. While more flexible than peer
transfers, DA performance is highly sensitive to memory
alignment, coalescing, number of active threads and order
of access.

Using microbenchmarks (Figure 2) we measure 100 MB
transfers, averaged over 100 trials, on the 8-GPU system
from our experimental setup (see Section 5 for detailed spec-
ifications).

Figure 2a shows the transfer rate of device-initiated mem-
ory access on GPUs that reside in the same board; on dif-
ferent boards; and CPU-GPU communication. The figure
demonstrates the two extremes of the DA spectrum — from
tightly-managed coalesced access (blue bars, left-hand side)
to random, unmanaged access (red bars, right-hand side).
Observe that coalesced access performs up to 21× better
than random access. Also notice that the memory transfer
rate correlates with the distance of the path in the topology.
Due to the added level of dual-board GPUs (shown in Fig-
ure 1), CPU-GPU transfer is faster than two different-board
GPUs.

In order to support device-initiated transfers between
GPUs that cannot access each other’s memory, it is possi-
ble to perform a two-phase indirect copy. In indirect copy,
the source GPU “pushes” information to host memory first,
after which it is “pulled” by the destination GPU, using host
flags and system-wide memory fences for synchronization.

In topologies such as the one presented in Figure 1, GPUs
can only transmit to one destination at a time. This hinders
the responsiveness of an asynchronous system, especially
when transferring large buffers. One way to resolve this
issue is by dividing messages into packets, as in networking.
Figure 2b presents the overhead of using packetized memory
transfers as opposed to a single peer transfer. The figure
shows that the overhead decreases linearly as the packet size
increases, ranging between ∼1-10% for 1-10 MB packets.
This parameter can be tuned by individual applications to
balance between latency and bandwidth.

12.78

10.64

11.80

0.98
0.68 0.54

0

2

4

6

8

10

12

14

Same Board Direct Host to
Device

T
ra

n
s
fe

r
R

a
te

 [
G

B
/s

]

Coalesced Random

(a) Direct memory access order

1KB 10KB 100KB 1MB 10MB

O
v
e

rh
e

a
d
 [

%
]

Packet Size

Direct Indirect

10-1

100

101

102

103

104

105

(b) Packetization overhead

5

7

9

11

13

Direct Indirect

T
ra

n
s
fe

r
R

a
te

 [
G

B
/s

]

Peer Transfer Pkt. Peer Transfer Pkt. DA

(c) Packetized transfer rate

0

10

20

30

40

50

60

70

One-to-All Peer Transfer
Ring

Packetized Peer
Transfer Ring

DA Ring

R
u
n

ti
m

e
 [
m

s
]

(d) Peer broadcast performance

Figure 2: Inter-GPU Memory Transfer Microbenchmarks

Figure 2c compares the transfer rate of direct (push)
and indirect (push/pull) transfers, showing that packetized
device-initiated transfers and the fine-grained control is ad-
vantageous, even over the host-managed packetized peer
transfers. Note that since device-initiated memory access is
written in user-code, it is possible to perform additional data
processing during transfer.

Another important aspect of multi-GPU communication
is multiple source/destination transfers, as in collective op-
erations. Due to the structure of the interconnect and mem-
ory copy engines, a naive application is likely to congest the
bus. One approach, used in the NCCL library [24], creates
a ring topology over the bus. In this approach, illustrated in
Figure 3, each GPU transfers to one destination, communi-
cating via direct or indirect device-initiated transfers. This
ensures that both memory copy engines of every GPU are
used, and the bus is fully utilized. Packetization is also used
to begin transmitting information to the next GPU while it is
being received from the previous, pipelining operations.

CPU 1

GPU 2GPU 1
Buffer

Buffer Buffer

Buffer

GPU 4GPU 3
Buffer Buffer

CPU 2
Buffer Buffer

Push PushPush

PullPull

Push

Figure 3: DA Ring Topology

Figure 2d compares the performance of the different
methods of implementing one-to-all GPU peer broadcast,
ranging from 7 asynchronous transfers from one source,
through complete and packetized peer transfers, to the above
DA Ring approach. The figure shows that the ring topology
consistently outperforms separate direct copies. This can be
attributed to the lower amount of indirect peer transfers (one
peer transfer to the second quadruplet in ring vs. four in one-
to-all). Additionally, packetization induces copy pipelining,
which dramatically decreases the running time. DA Ring
performs only slightly better than host-controlled ring trans-
fer, consistent with the faster transfer rate in Figure 2c.

RAM

Memory Copy

Engine (Input)

Interconnect

Multiprocessor

C C C C

...

Multiprocessor

L1 Cache

Shared Memory

Warp

C C C

...

C...

C C C C

L1 Cache

Shared Memory

C C C

...

C...

L2 Cache

Memory Copy

Engine (Output)

Figure 4: Single GPU Architecture

2.2 GPU Programming Model
The structure of a single GPU device is depicted in Figure 4.
As shown in the figure, each GPU contains a fixed set of
multiprocessors (MPs) and a RAM unit (referred to as global
memory). GPU procedures (kernels) run on the MPs in paral-
lel by scheduling a grid of many threads, grouped to thread-
blocks. Within each thread-block, which is assigned to a sin-
gle MP, warps (usually comprised of 32 threads) execute
on the cores in lockstep. Additionally, threads in the same
thread-block can synchronize and communicate via shared
memory, as well as use the automatically managed L1 and
L2 caches. To support concurrent memory writes, atomic op-
erations are defined on both shared and global memory.

Kernel invocation and host-initiated memory transfers are
performed via command queues (streams), which can be
used to express task parallelism. Stream synchronization be-
tween one or more GPUs is usually performed using events,
which are recorded on one stream and waited for on another.

The GPU scheduler dispatches kernels by thread-blocks,
enabling multiple-stream concurrency on the same GPU by
scheduling other kernels’ thread-blocks when there are no
more thread-blocks to schedule for a running kernel. How-
ever, high-priority streams allow application developers to
immediately invoke kernels, scheduling thread-blocks from
a new kernel prior to thread-blocks from a running kernel.

While the stream/event constructs provide fine-grained
control over kernel scheduling, difficulties arise when pro-
gramming higher-level functionality that involves multiple
GPUs. In the following section, we present a programming

Table 1: Groute Programming Interface

Construct Description
Base Constructs

Context Singleton that represents the runtime
environment.

Endpoint An entity that can communicate (e.g.,
GPU, CPU, Router).

Segment Object that encapsulates a buffer, its
size, and metadata.

Communication Setup
Link(Endpoint src,

Endpoint dst,
int packet size,
int num buffers)

Connects src to dst, using multiple-
buffering with num buffers buffers
and packets of size packet size.

Router(int num inputs,
int num outputs,
RoutingPolicy policy)

Connects multiple Endpoints together,
enabling dynamic communication.

Communication Scheduling
EndpointList RoutingPolicy(
Segment message,
Endpoint source,
EndpointList router dst)

A programmer-defined function that
decides possible message destinations
based on sending Endpoint, and a list
of the Router destination Endpoints.
The Router will select destinations by
availability.

Asynchronous Objects
PendingSegment Represents a Segment that is

currently being received.
DistributedWorklist(
Endpoint src,
EndpointList workers)

Manages all-to-all work-item distribu-
tion, consists of a Router and per-GPU
links.

abstraction that complements the existing model to facili-
tate multi-GPU development, using insights from the mi-
crobenchmarks to minimize communication latency.

3. Groute Programming Model
The Groute programming model provides several constructs
to facilitate asynchronous multi-GPU programming. Table 1
lists a summary of these constructs and their programming
interface.

Groute applications consist of two phases: dataflow graph
construction and asynchronous computation. A Groute pro-
gram begins by specifying the dataflow graph of the compu-
tation. Nodes in this directed graph, which we call endpoints,
represent either (i) physical devices like CPUs and GPUs, or
(ii) virtual devices called routers, which are abstractions that
implement complex patterns of communication. Edges in the
dataflow graph represent communication links between end-
points, and can be created as long as there are no self-loops
(endpoints connected directly to themselves) nor multiple
identical edges as in multigraphs (i.e., a router can only have
one outgoing edge to the same endpoint). Note that to sup-
port multitasking, multiple virtual endpoints can be created
from the same physical device.

Send and Receive methods permit endpoints to send
and receive data on a link; upon receipt of data, an endpoint
may act upon it using a callback. When a router is created, a
routing policy is specified by the programmer to determine
the behavior when an input is received. For example, the in-
put can be sent to a single endpoint, or to a subset of end-
points according to their availability. When a link is created,

Host

GPU 1 GPU NGPU 2

Router (h2gpus) Policy: First available device

…

Router (gpus2h) Policy: Send to host

Host

…Input Data

Output Data

Intermediate Outputs

Input Segments

dist

collect

Figure 5: Predicate-Based Filtering Dataflow Graph

the packetization and multiple-buffering policies for that link
are specified (Section 2).

To demonstrate the Groute model, we describe the imple-
mentation of Predicate-Based Filtering (PBF) using Groute,
shown in Figures 5 and 6. PBF is a kernel in many applica-
tions such as database management and image processing.
The input to PBF is a large one-dimensional array, and the
output is an array containing all elements of the input array
that satisfy a given predicate. In the Groute program, the host
divides the input array into segments, and sends them to free
GPUs on demand to promote load-balancing. Processed seg-
ments are transferred by the GPUs back to the host, where
they are assembled to produce the output. Figure 5 depicts
the resulting dataflow graph.

In Figure 6, the code sets up the dataflow graph for PBF
in lines 5-20. The physical devices present in the system
are determined by accessing a structure of type Context
(line 5). The PBF program creates a router named h2gpus
for scattering segments of the input array from the host to
the GPUs, as well as a router named gpus2h to gather
segments from the GPUs to create the output array (lines
9-10).

The code in lines 12-13 specifies the links between these
routers and the host, where the link between the host and
the h2gpus router is created without double buffering. The
code in lines 15-20 creates a worker-thread for each GPU us-
ing double-buffered links, and input segments are scattered
to the devices (line 22). Upon distributing all input segments,
the distributor notifies that it will send no further informa-
tion by sending a shutdown signal (line 23). The result is ob-
tained at the host (lines 25-31) and the program stops once
all GPUs send shutdown signals to gpus2h, notifying that
no additional data will be received (line 27).

The routing policy for both routers is straightforward, se-
lecting the first available device out of all possible router
destinations (line 36). On the GPU end, each device asyn-
chronously handles incoming messages (line 45). Once a
PendingSegment is assigned to the device, it is synchro-
nized with the active GPU stream (line 47) and processing

1 std::vector<T> input = ...;
2 std::vector<T> output;
3 int packet_size = ...;
4
5 Context ctx;
6 auto all_gpus = ctx.devices();
7 int num_gpus = all_gpus.size();
8
9 Router h2gpus(1, num_gpus, AnyDevicePolicy);

10 Router gpus2h(num_gpus, 1, AnyDevicePolicy);
11
12 Link dist (HOST, h2gpus, packet_size, 1);
13 Link collect (gpus2h, HOST, packet_size, 2);
14
15 for (device_t dev : all_gpus) {
16 std::thread t(WorkerThread,
17 Link(h2gpus, dev, packet_size, 2),
18 Link(dev, gpus2h, packet_size, 2));
19 t.detach();
20 }
21
22 dist.Send(input, input_size);
23 dist.Shutdown();
24
25 while(true) {
26 PendingSegment output_seg = collect.Receive().get();
27 if(output_seg.Empty()) break;
28 output_seg.Synchronize();
29 append(output, output_seg);
30 collect.Release(output_seg);
31 }
32 //--
33 EndpointList AnyDevicePolicy(
34 const Segment& message, Endpoint source,
35 const EndpointList& router_dst) {
36 return router_dst;
37 }
38
39 void WorkerThread(device_t dev, Link in, Link out) {
40 Stream stream (dev);
41 T *s_out = ...;
42 int *out_size = ...;
43
44 while(true) {
45 PendingSegment seg = in.Receive().get();
46 if(seg.Empty()) break;
47 seg.Synchronize(stream);
48 Filter<<<...,stream>>>(seg.Ptr(), seg.Size(),
49 s_out, out_size);
50 in.Release(seg, stream);
51 out.Send(s_out, out_size, stream);
52 }
53 out.Shutdown();
54 }

Figure 6: Predicate-Based Filtering Pseudocode

is performed (line 48). Line 50 queues a command to the
stream, which releases the incoming buffer for future use
upon processing completion. The results are then transmit-
ted back to the host using out (line 51). When a shutdown
signal is received, the worker thread is terminated (line 46)
and a shutdown signal is sent (line 53) to gpus2h.

Memory consistency and ownership are maintained by
the programmer in Groute. The link/router model does not
define a global address space or remote memory access op-
erations, but functions as a distributed memory environment.
In the paper, algorithms and high-level asynchronous objects
implemented over the model (such as Distributed Worklists)
define ownership policies, whereas the low-level constructs
provide efficient communication and message routing.

Groute Context

Topology Management
Low-Level

Communication

Pipelined Receiver

Distributed

Worklist

Collective

Operations

Direct

API

Low-Latency

Asynchronous Objects

High-Level

Interface

Low-Level

Interface

Communication

Constructs
Routing

Policy
RouterLink

Figure 7: The Groute Library

4. Implementation Details
We realize the Groute programming model by implement-
ing a thin runtime environment [2] over standard C++ and
CUDA to enable asynchronous multi-GPU programming.
The environment consists of three layers, illustrated in Fig-
ure 7. The bottom layer contains low-level management of
the node topology and inter-GPU communication, the mid-
dle layer implements the Groute communication constructs,
using the topology to optimize memory transfer paths, and
the top layer implements high-level operations that are com-
monly used in asynchronous regular and irregular applica-
tions. For direct control over the system, each of the layers
can be manually accessed by the programmer. In the rest
of this section, we elaborate on the implementation of each
layer in Groute.

4.1 Low-Level Interface
The low-level layer builds upon insights from Section 2 to
provide programmer-accessible interfaces for efficient peer-
to-peer transfers. Specifically, the layer provides Low-Level
Communication APIs for latency reduction; Pipelined Re-
ceivers to increase computation-communication overlap;
Topology Management for node interconnect hierarchy in-
trospection; and Low-Latency Asynchronous Objects to mit-
igate system overhead.

The low-level communication interface provides host-
and device-initiated memory copy functionality, abstracting
packetization and conditional transfer. In Groute, send and
receive operations are segmented into packets to increase the
overall responsiveness of the node and enable overlapping
communication between multiple devices. Without packeti-
zation, occasional small transmissions (e.g., GPUs sending
counters to the CPU) may suffer from head-of-line blocking
behind regular large transfers (e.g., GPU–GPU transfers).

On top of the low-level interface, asynchronous com-
munication is abstracted using a pipelined receiver object,
which efficiently utilizes the two memory copy engines and
the compute engine (Figure 4) by using double- and triple-
buffering [35]. The implementation of multiple-buffering
allocates read buffers, queuing virtual “future read opera-
tions”. When data are sent to a pipelined receiver, a read
operation is removed from the queue and the corresponding

GPU 1

GPU 2

GPU N-1

GPU N

Host Router

…

M
u
ltip
le
x
e
r

Routes

Segments

GPU 1

GPU 2

GPU N-1

GPU N

…

Send Queue

Recv. Queue

Link

Segmenter

Routing

Policy

Figure 8: Host-Controlled Router Diagram

buffer is assigned to the sender. Simultaneously, the reader
is notified of the incoming pending operation, which can ei-
ther be waited for or acted upon asynchronously, using the
receive stream.

Asynchronous programs often rely on a multitude of fine-
grained (non-bulk) synchronization points and impromptu
memory allocation to operate correctly. In order to minimize
the incurred driver overhead and involuntary system-wide
synchronizations, Groute provides several low-latency asyn-
chronous objects, among which are Event Pools and Event-
Futures. Event pools facilitate the creation of many short-
lived events by way of pre-allocation; whereas event-futures
are waitable objects implementing the future/promise pat-
tern [18] to maintain two-layered synchronization between
the CPUs and GPUs. In particular, event-futures handle sit-
uations where GPU events are known to be recorded in the
future, but not yet created. These objects are used as the pri-
mary building block for queuing various actions, such as fu-
ture receive operations for devices (CPU and GPU), and can
either be synchronized with a CPU thread or a GPU stream.

4.2 Communication and Scheduling
A link can only connect one pair of source and destination
endpoints. In Groute, there are two methods to create links:
directly, or using an existing router. Specifically, each link
specifies its maximal receivable packet size and the num-
ber of possible pipelined receive operations. The latter is op-
tional and determined automatically if not given. The Send
and Receive methods initiate memory transfer and return
an event-future. In particular, a receive operation returns a
future to a PendingSegment, which contains an event
and a segment that may not yet be ready for processing.
Links also provide a socket-like Shutdown function, sig-
naling that no further information will be sent.

The internal structure and workflow of a router is de-
picted in Figure 8. The figure shows that the router contains
three main components. The Segmenter component controls
breaking down messages into segments according to the des-
tination device capabilities; the Routing Policy controls the
message destination(s); and the Multiplexer is responsible
for message assignment to available GPUs.

Given a message to send, a routing policy will determine
its one or several destinations using the programmer call-
back. The router then controls send operation scheduling, as-
signing destinations based on availability. Note that routing
performance depends on the underlying topology. For ex-
ample, in some nodes it is efficient to reduce with all-to-one
operations, while in others it is better to use a hierarchical
tree for concurrent reductions.

Upon receiving a segmented message and its possible
destinations, scheduling is managed by the multiplexer. As
shown in the top-right portion of Figure 8, the implemen-
tation involves queuing send operations to each of the target
devices’ send queues. Since links use pipelined receivers,
devices also maintain receive queues. If there is a match be-
tween a send operation and a receive operation, transfer as-
signment is performed, dequeuing one item from both the
send and receive queues of the link. Additionally, the redun-
dant send operations queued to other devices are marked as
stale and removed by each device upon inspection. This en-
sures that routers do not require a centralized locking mech-
anism, and per-device queues are the only constructs that
should implement thread-safety.

4.3 Distributed Worklists
The high-level interface provided by Groute implements
reusable operations that can often be found in multi-GPU
applications, such as broadcast and all-reduction. This sec-
tion details the implementation of distributed worklists, fre-
quently used in irregular algorithms and graph analytics.

Distributed worklists maintain a global list of compu-
tations (work-items) that should be processed. Each such
computation, in turn, may create new computations that are
queued to the same list. For example, breadth-first search
traverses a node’s neighbors, propagating through the graph
by creating new work-items for each neighbor.

Implementing efficient distributed multi-GPU worklists
is a challenging task. As each device may contain a different
portion of the input data, only certain devices are able to pro-
cess specific work-items. Thus, distributed worklists require
all-to-all communication. Using routers and bus topology,
Groute implements distributed worklist management.

In the implementation, global coordination and work
counting is centralized and managed by the host. During
runtime, devices periodically report produced and consumed
work-items for tracking purposes. Once the number of total
work-items becomes zero, processing stops and a shutdown
signal is sent to all participating devices via router links.

Figure 9 illustrates the implementation of a distributed
worklist in Groute, from the perspective of a single device.
As seen in the figure, the worklist is implemented over a sin-
gle, system-wide router. In order to support efficient all-to-
all communication, the ring topology is used for the routing
policy by default (see Section 2 for evaluation). Apart from
the router, each device contains a locally-managed work-
list, which comprises one or more multiple-producer-single-

Start

End

Pending

Router

SplitReceive
(High Priority)

Local Worklist

Remote Worklist

Pass

Filter

Take +

Unpack GPU K-1

GPU K+1

Work

SplitSend
Pass + Pack

Take
GPU K

Figure 9: Distributed Worklist Implementation

consumer queues for local tasks. The implementation con-
sists of two threads per device: worker thread and receiver
thread, which controls inter-GPU communication and work-
item circulation.

Over the ring topology, the workflow presented in Fig-
ure 9 is implemented as follows. Each device receives in-
formation from the previous device, according to the ring.
The received data then undergoes filtering and separation
(SplitReceive), which passes irrelevant information to
the next device. Items that are relevant to the current de-
vice are unpacked and “pushed” onto its local worklist,
signaling the worker thread that new work is arriving. At
the same time, the worker thread processes existing work-
items, separating the resulting items to local and remote
work (SplitSend), and packing outgoing information as
necessary. Note that the SplitReceive kernel is queued
on a separate, high-priority stream. This causes the kernel
to be scheduled during existing work processing, increasing
the performance and responsiveness of the system.

In order to implement an algorithm over a distributed
worklist, five functions must be given by the programmer,
listed in Table 2: Pack, Unpack, OnSend, OnReceive
and GetPrio. These functions usually consist of a single
line-of-code, but may adversely change work-item propa-
gation. In the OnSend and the OnReceive functions, the
Flags return value is a bit-map that controls the work-item
destination(s), e.g., pass to the next device, keep, duplicate,
or completely remove. The priority of a work-item, obtained
using GetPrio, is then used for scheduling higher priority
work before low priority items, as detailed below.

To implement local worklist queues, Groute uses GPU-
based lock-free circular buffers. Such buffers are beneficial
for asynchronous applications, as they eliminate the need for
dynamic allocation of buffers during runtime.

As shown in Figure 9, each worklist queue consists of
multiple producers and a single consumer. Our implemen-
tation contains a memory buffer and three fields: start,
end, and pending. Work consumption is performed by
atomically increasing the start field. To avoid consuming
items that are not ready, production is controlled by atomi-
cally increasing the pending field, reserving space in the
buffer. After a producer has finished appending its work,

Table 2: Distributed Worklist Programmer Callbacks

Function Description
RemoteWork Pack(LocalWork item) Pack item to send to an-

other device.
LocalWork Unpack(RemoteWork item) Unpack received work-

item.
Flags OnSend(LocalWork item) Determine outgoing item

destination.
Flags OnReceive(RemoteWork item) Determine incoming item

destination.
Priority GetPrio(RemoteWork item) Obtain priority of incoming

item.

end is increased by a single writer thread, synchronizing
with pending.

Additional optimizations to the circular buffers are per-
formed in Groute. If the consuming GPU stream also pro-
duces work (as in SplitSend), work is pushed to the
queue by way of prepending information (i.e., decreasing
start), which avoids producer conflicts. It is also worth
noting that circular buffers use warp-aggregated atomics [4],
which increase the efficiency of appending work by limiting
the number of atomic operations to one-per-warp.

4.4 Soft Priority Scheduling
A pitfall that should be considered in asynchronous worklist
algorithms is excess work resulting from intermediate value
propagation. In contrast to bulk-synchronous parallelism,
where all devices agree upon a global state in the algorithm,
asynchronous concurrency may propagate stale information
(“useless work”) as a result of lagging devices. Such work-
items, in turn, generate additional intermediate work that
may increase the overall workload exponentially with the
number of devices.

For example, in bulk-synchronous Breadth-First Search
(BFS), the current traversed level is a global algorithm pa-
rameter. If there are two paths to a given node, where one
is longer than the other, only the path with the least num-
ber of edges from the source will be registered, writing final
values to the nodes. In asynchronous BFS, however, if the
path with the least number of edges is located on a lagging
device, the “incorrect” path (intermediate value) would be
written first. This will, in turn, traverse the rest of the graph
using the intermediate value as input. After the device with
the short path completes its processing, it will overwrite the
node values, essentially recomputing all traversed values.

One way to mitigate this issue is to assign soft priorities
to each work-item, deferring items that are suspected as
generators of “useless work” to a later stage, in which they
will likely be filtered out [17].

In Groute, soft priority scheduling is implemented us-
ing the programmer-provided GetPrio callback. During
the runtime of the application, only high priority work-items
are processed, where the priority threshold is decided by a
system-wide consensus. Upon completion of all processable
items, the system modifies the threshold and the distributed
worklist will process the deferred items on each device. As

Table 3: Best Performance Comparison

Graph BFS [ms] SSSP [ms] PR [ms] CC [ms]
Gunrock B40C Groute Gunrock Groute Gunrock Groute Gunrock Groute

USA 617.85 (1) 56.83 (1) 128.38 (2) 60,656.91 (8) 725.93 (3) 1,394.25 (1) 167.89 (8) 335.65 (1) 15.11 (5)
OSM-eur-k 3,191.78 (1) 2,177.1 (2) 616.4 (5) 874,083.5 (4) 3,513.29 (8) — 1,045.33 (8) — 160.96 (4)
soc-LiveJournal1 99.11 (2) 14.07 (4) 24.96 (6) 83.36 (5) 30.98 (6) 2,782.06 (1) 371.71 (5) 110.05 (1) 14.19 (2)
twitter — — 713.6 (8) 1,310.7 (7) 649.2 (8) — 38,549.27 (1) — 384.13 (8)
kron21.sym 156.68 (3) — 46.55 (7) 208.43 (2) 213.92 (8) 9,800.43 (1) 5,342.73 (1) — 13.86 (8)

we shall show in Section 5, using soft priority scheduling de-
creases the amount of intermediate work, increasing overall
performance.

4.5 Worklist-Based Graph Algorithms
Using asynchronous Breadth-First Search (BFS), we illus-
trate how graph traversal algorithms such as Single-source
Shortest Path (SSSP) and PageRank (PR) are implemented
using distributed worklists.

In BFS, the input graph is given in the Compressed Sparse
Row (CSR) matrix format. The graph is first partitioned
among the available devices, where each device statically
maintains ownership of a contiguous memory segment, cor-
responding to a subset of the vertices.

When BFS processing starts, the host enqueues a single
work-item to the worklist – the source vertex. Groute ensures
that the initial work-item is sent to its owner device, where
it is processed by setting the vertex value (i.e. level) to zero
and creating work-items with level=1 for each neighboring
vertex. If a neighboring vertex is owned by the processing
device, it is queued to the device-local worklist (top-left por-
tion of Figure 9). Otherwise, it is asynchronously propagated
through the distributed worklist until another device claims
ownership on the work-item. The value of level is propa-
gated as well. Atomic operations are used to check if the re-
ceived value is lower, updating the vertex’s value and prop-
agating level+1 to the neighboring vertices through subse-
quent work-item processing. After all relevant edges have
been traversed, the worklist becomes empty and the algo-
rithm ends.

In addition to owned vertices, each device also stores a lo-
cal copy of its “halo” vertices, namely, neighboring vertices
owned by other devices. The level of a halo vertex can only
be updated by the local device, and is used to skip sending
irrelevant updates, thus conserving inter-device communica-
tion. Skipping such updates does not change the algorithm’s
behavior, due to the monotonic nature of BFS, i.e., the real
vertex value is either equal or lower than the halo value.

5. Performance Evaluation
This section evaluates the performance of five algorithms
implemented using Groute:

• Breadth-First Search (BFS): Traverses a graph from
a given source node, outputting the number of edges
traversed from the source node to each destination node.

Implementation is push-based and data-driven, i.e., using
distributed worklists.

• Single-Source Shortest Path (SSSP): Finds the shortest
path (using edge weights) from a source node to all other
nodes. Implementation is push-based and data-driven.

• PageRank (PR): Computes the PageRank measure for
all nodes of a given graph using a worklist-based algo-
rithm [34]. Implementation is the push-based variant pro-
posed in the paper.

• Connected Components (CC): Computes the number of
connected components in a given graph. Implementation
is topology-based, using two routers as explained below.

• Predicate-Based Filtering (PBF): Filters an array of
elements according to a given condition. GPU kernel
implementation is based on warp-aggregated atomics [4].

Groute is compared to two benchmark implementations
of multi-GPU parallel graph algorithms: Gunrock (version
0.3.1) and Back40Computing (B40C). Gunrock [26] is a
graph analytics library containing highly optimized imple-
mentations of various graph algorithms. Gunrock uses bulk-
synchronous parallelism for its multi-GPU implementations
of these algorithms. B40C, by Merrill et al. [20], contains
state-of-the-art hardcoded BFS implementations, enabling
multi-GPU processing by direct memory accesses between
peer GPUs.

All implementations, including Groute, contain the fol-
lowing kernel optimizations: warp-aggregated atomic oper-
ations, warp-based collectives for inter-thread communica-
tion, and intra-GPU load balancing on the warp and thread-
block level to exploit Nested Parallelism [25]. Additionally,
Groute’s asynchronous model allows us to perform kernel
fusion (Section 5.2).

Table 3 summarizes the best running times for BFS,
SSSP, PR and CC, with the number of GPUs used to achieve
the highest performance in parentheses. Asynchronous im-
plementations using Groute clearly dominate over bulk-
synchronous implementations and sometimes even outper-
form hardcoded versions.

Our experimental setup consists of two node types. The
first is an 8-GPU server of four dual-board NVIDIA Tesla
M60 (Maxwell architecture) cards, each containing 16 MPs
with 128 cores; and two eight-core Intel Xeon E5-2630 v3
CPUs. Bus topology is depicted in Figure 1, with 2 QPI
links per CPU at 8 GT/s per link for the PCI-Express switch.

1 2 3 4 5 6 7 8101

102

103

104

Ti
m

e
(m

s)

USA

1 2 3 4 5 6 7 8102

103

104
OSM-eur-k

1 2 3 4 5 6 7 8101

102

103
soc-LiveJournal1

1 2 3 4 5 6 7 8102

103

104
twitter

1 2 3 4 5 6 7 8101

102

103
kron21.sym

Groute B40C Gunrock

(a) Breadth-First Search

1 2 3 4 5 6 7 8102
103
104
105
106

Ti
m

e
(m

s)

USA

1 2 3 4 5 6 7 8103
104
105
106
107 OSM-eur-k

1 2 3 4 5 6 7 8101

102

103
soc-LiveJournal1

1 2 3 4 5 6 7 8102

103

104
twitter

1 2 3 4 5 6 7 8102

103

104
kron21.sym

Groute Gunrock

(b) Single-Source Shortest Path

Figure 10: Traversal Algorithm Timing (lower is better)

The second node type is a 2-GPU heterogeneous server that
contains one Quadro M4000 GPU (Maxwell, 13 MPs with
128 cores); one Tesla K40c GPU (Kepler architecture, 15
MPs with 192 cores); and one six-core Intel Xeon E5-2630
CPU with 2 total QPI links at 7.2 GT/s per link.

Table 4: Graph Properties

Name Nodes Edges Avg. Max Size
Degree Degree (GB)

Road Maps
USA [1] 24M 58M 2.41 9 0.62
OSM-eur-k [3] 174M 348M 2.00 15 3.90

Social Networks
soc-LiveJournal1 [10] 5M 69M 14.23 20,293 0.56
twitter [8] 51M 1,963M 38.37 779,958 16.00

Synthetic Graphs
kron21.sym [5] 2M 182M 86.82 213,904 1.40

Table 4 lists dataset information and statistics for input
graphs used in the evaluation. All graphs are partitioned
between GPUs using an edge-cut obtained from METIS [15]
except for kron21.sym and twitter. METIS fails to partition
these two graphs, so we simply partition the node array
equally among the GPUs.

5.1 Strong Scaling
Figure 10 presents the absolute runtime of the two graph
traversal algorithms (BFS and SSSP), running on 1 to 8
GPUs and comparing with the above frameworks. Miss-
ing data points indicate runs that failed due to crashes,
out-of-memory failures, or incorrect outputs (compared to
externally-generated results).

Overall, observe that in BFS and SSSP, which are com-
munication intensive, the topology of the bus starts affect-
ing the performance of applications when transfers are per-
formed beyond the single 4-GPU quadruplet. While Groute
mitigates these issues by optimizing communication paths

(Section 2), the phenomenon can still be seen in high-degree
graphs such as soc-LiveJournal1 in BFS, SSSP, and PR.

5.1.1 Breadth-First Search
Figure 10a compares Groute with Gunrock and B40C.
B40C’s multi-GPU implementation requires direct mem-
ory access between all devices, and thus only runs up to 4
GPUs. Additionally, B40C does not use METIS partition-
ing, failed on twitter and kron21.sym, and ran out of mem-
ory on the single-GPU version of OSM-eur-k. The Gunrock
implementation of BFS ran out of memory on all twitter
inputs, and produced incorrect results on kron21.sym and
soc-LiveJournal1.

The figure shows that Groute outperforms Gunrock in
all cases, with significant improvements in road networks
(USA, OSM-eur-k). This is due to the kernel fusion opti-
mization enabled by asynchronous processing, which dra-
matically decreases kernel launch overhead in high-diameter
graphs (Section 5.2).

Groute also outperforms B40C on road networks on mul-
tiple GPUs. However, B40C is faster on one GPU on the
USA input and always outperforms Groute and Gunrock on
the soc-LiveJournal1 input. B40C’s BFS implementation is
highly optimized, containing a hybrid implementation that
switches between different kernels as described in their pa-
per [20], an optimization we did not implement due to its
highly specialized nature.

5.1.2 Single-Source Shortest Path
Figure 10b presents the strong scaling of SSSP in Groute.
In the figure, we see that the multi-GPU scaling patterns
are similar to BFS. The multi-GPU scalability of Groute is
especially apparent in large graphs, such as twitter, in which
performance increases even when using more than 4 GPUs.
Missing twitter results are caused by insufficient memory.

1 2 3 4 5 6 7 8102

103

104

105
Ti

m
e

(m
s)

USA

1 2 3 4 5 6 7 8

OSM-eur-k

1 2 3 4 5 6 7 8

soc-LiveJournal1

1 2 3 4 5 6 7 8102

103

104

105

Ti
m

e
(m

s)

twitter

1 2 3 4 5 6 7 8

kron21.sym

Groute Gunrock

Figure 11: PageRank Execution Time

Groute outperforms Gunrock (or matches it on soc-
LiveJournal1, single GPU) with the sole exception of the
kron21.sym input. Upon in-depth inspection, it was found
that the asynchronous implementation in Groute causes an
inflation in the number of performed atomic operations,
which increases memory contention and iteration time.

5.1.3 PageRank
The performance of PageRank (PR) is shown in Figure 11.
Results are compared with Gunrock in the single GPU case,
since the evaluated version of Gunrock’s multi-GPU PageR-
ank produced incorrect results. Also, the twitter graph does
not fit in the memory of 1 GPU.

As opposed to BFS and SSSP, PR is a computationally-
intensive problem. In addition, PR starts by processing all
the nodes simultaneously, so each GPU can be fully utilized.
Observe that in the figure, Groute outperforms Gunrock on
all inputs. Additionally, both road networks generate multi-
GPU scaling over the single-GPU version, owing to the
amount of independent work performed on each device, as
well as the communication latency that is hidden by Groute.
The same effect is observed in soc-LiveJournal1 up to a
single quadruplet of GPUs.

In particular, the best scaling results are obtained when
the ratio of computations to communications is high (i.e.,
less communications per computation). For example, run-
ning PageRank with Groute on USA yields a 7.28× speedup
on 8 GPUs over one, exhibiting near-linear scaling on all
multi-GPU configurations.

As the ratio of computation to communication decreases,
scaling becomes less substantial, as in the case of soc-
LiveJournal1, which exhibits a 3.02× speedup on 4 GPUs
over one. Additionally, nearly no speedup is observed in
twitter and kron21.sym, both of which are partitioned ran-
domly (i.e., without METIS) and heavily interconnected.

5.1.4 Connected Components
We implement a topology-driven [27] variant of multi-GPU
Connected Components (CC), which does not use a worklist,

1 2 3 4 5 6 7 8101

102

103

Ti
m

e
(m

s)

USA

1 2 3 4 5 6 7 8

OSM-eur-k

1 2 3 4 5 6 7 8

soc-LiveJournal1

1 2 3 4 5 6 7 8101

102

103

Ti
m

e
(m

s)

twitter

1 2 3 4 5 6 7 8

kron21.sym

Groute Gunrock

Figure 12: Connected Components Performance

in order to demonstrate the expressiveness of the Groute
asynchronous communication constructs. The performance
of CC is shown in Figure 12.

Figure 13 illustrates the dataflow graph of a pointer-
jumping topology-driven CC over Groute. In this version,
the input graph representation is an edge-list. The edges are
distributed to the GPUs, and each GPU keeps note of the
parent component of each vertex in its given graph subset.
Once a GPU converges locally, its results are merged (using
operations called Hook and Compress) with the results of
other GPUs to converge to the global component list.

Host

GPU 1 GPU NGPU 2

Scatter Router
Policy (Scatter)

Destinations: GPU {1,…,N}

…

Policy (Reduction)

Destinations: Reductive Tree

On receive: Hook and Compress
Host

Reduction Router

GPU N-1

Graph Segments

GPU 1 GPU N-1

GPU 1

…

…

Aggregate

Aggregate

Aggregate

Figure 13: Connected Components Router Structure

With Groute, we create one router to dynamically scat-
ter edges to the GPUs in multiple segments, computing and
aggregating local CC results for each segment. Upon com-
pletion, each GPU merges its results with the others using
an additional reduction router. According to the topology of
the measured 8-GPU node, the reduction is implemented as
concurrent hierarchical operations. In particular, each GPU
merges its results with a designated “sibling” GPU until
reaching the first GPU, which sends the information back
to the host. The single GPU kernels used in this implemen-
tation are based on a state-of-the-art adaptive variant [31] of
the pointer-jumping method described by Soman et al. [29].

The results in Figure 12 show that using an asynchronous
topology-driven variant is highly beneficial, both in terms
of raw performance and scalability, over the implementation
found in Gunrock. Specifically, Groute yields 10.99× and
49.6× speedups over Gunrock in USA on 1 and 8 GPUs
respectively. Furthermore, Groute achieves a strong scaling
of up to 2.9× (8 GPUs over 1) in the kron21.sym input.

Another advantage apparent in the figure is memory con-
sumption. Since the Groute implementation does not use dis-
tributed worklists, the tested multi-GPU system is able to
compute CC on large-scale graphs such as OSM-eur-k, twit-
ter and kron21.sym. Gunrock, on the other hand, runs out of
memory for all GPU configurations on these three inputs.

5.2 Distributed Worklist Performance
Our distributed worklist uses two optimizations – soft pri-
ority scheduling and worker kernel fusion – to significantly
improve the performance of asynchronous algorithms.

As explained in Section 4.4, a naive asynchronous irregu-
lar application propagates intermediate values from lagging
devices, which leads to an increase in work due to redundant
computations. Using METIS mitigates this effect somewhat
since it reduces the number of paths between the partitions.
However, our experiments show that deferring possibly re-
dundant work by using a soft priority scheduler can achieve
significantly better performance even with good partitions.

Table 5: Distributed Worklist SSSP Performance

Graph GPUs Soft Priority Fused
Scheduler Worker

soc-LiveJournal1
1 1.03× 1.03×
2 0.95× 0.95×
4 1.29× 1.31×
8 1.29× 1.09×

kron21.sym
1 1.02× 1.01×
2 1.10× 1.09×
4 1.58× 1.57×
8 1.45× 1.48×

USA
1 71.36× 166.27×
2 58.11× 142.57×
4 34.59× 89.94×
8 16.22× 39.34×

Table 5 compares the performance of the soft priority
scheduler and fused worker kernel with the unoptimized
version of Groute’s distributed worklists. In the table, we
see that both versions consistently outperform the origi-
nal implementation, with the exception of soc-LiveJournal1
(which slows down 5% on 2 GPUs). The most compelling
results can be found in road maps, in which we see perfor-
mance increase of up to two orders of magnitude.

Soft priorities improve performance by reducing the
amount of “useless” work that is performed. This increase in
useless work can be dramatic. For example, SSSP works on
13,998M workitems on the USA graph in a complete execu-
tion on a single GPU. Without soft-priorities, this increases
to 15,865M workitems on four GPUs. With soft-priorities,

the four GPU version executes only 59M workitems overall.
For SSSP, this reduction is comparable to those obtained by
using an SSSP algorithm with priorities such as SSSP Near-
Far [9]). However, BFS has no notion of priorities, but also
exhibits the same effect. Single-GPU BFS on USA executes
23.9M work items. Without soft-priorities, this increases to
4,244M work items on four GPUs (27M with METIS). With
soft-priorities this reduces to 134M workitems on four GPUs
(24.1M with METIS).

Kernel fusion, on the other hand, tackles a problem ex-
hibited by graphs such as road maps which create small
workloads with each kernel call (∼19 microseconds), caus-
ing the GPUs to be under-utilized and increasing the com-
munication management overhead. We augment the worker
kernel to include the entire control-flow and communicate
with the host and other GPUs using flags shared by both
the CPU and GPU. This includes receiving incoming infor-
mation signals, determining work-item priorities, process-
ing a batch of work-items, running SplitSend (Section
4.3), and signaling the router to circulate the outgoing in-
formation. By performing this kernel fusion, many of the
CPU–GPU roundtrips can be reduced, increasing the over-
all performance of the system. In practice, kernel fusion in
Groute increases the work performed by each kernel invo-
cation, which take between ∼10 and 100 milliseconds. Note
that the reduction of CPU–GPU roundtrips causes both op-
timizations to also improve the runtime of a single GPU.

5.3 Load Balancing
Table 6 measures the performance of the PBF implementa-
tion from Figure 6 on the heterogeneous 2-GPU node, fil-
tering 250 MB of data. The runtime of each GPU is shown
with static scheduling (top three rows) and Groute’s “first
available device” routing policy (bottom three rows).

Table 6: Heterogeneous PBF Performance

Scheduler GPU Type Processed Time (ms)
Elements

Static
Tesla K40c 12.6M 5.73 ms
Quadro M4000 13.6M 27.04 ms
Total Time - 27.37 ms

Groute
Tesla K40c 20.9M 8.84 ms
Quadro M4000 5.2M 10.90 ms
Total Time - 11.26 ms

The table shows that Groute assigns 4 times more tasks
to the faster Tesla K40c than the slower Quadro M4000,
achieving better load balancing and decreasing overall run-
time. Note that the 2 millisecond time difference observed
in Groute is within the scheduling quantum, as it is shorter
than the runtime of a single kernel on the Quadro M4000.

6. Related Work
The presented link/router programming model can be seen
as a close relative of the Publish/Subscribe design pattern
[11], in which endpoints subscribe to specific channels that
other endpoints publish to. The link/router model differs
from this model by defining generalized policies, which are
more optimized for low-latency communication on multi-
GPU nodes than named channels.

Recently, multi-GPU frameworks that simplify program-
ming and provide reusable mechanisms have been proposed.
Notable examples include NCCL [24], which implements
collective operations on a single node; MGPU [28], which
simplifies task partitioning to multiple GPUs; and MAPS-
Multi [6], which proposes a scalable programming model
based on memory access patterns. Owing to the traditional
bulk-synchronous use of multi-GPU nodes, these libraries
focus on the efficient implementation of regular computa-
tions, such as stencil operators, rather than irregular algo-
rithms.

Data-driven graph algorithm implementations use work-
lists for processing [22]. These implementations were found,
in the general case, to be faster than their topology-driven
counterparts on GPUs [21]. These results motivated imple-
menting graph analytics using distributed worklists in this
paper.

Other asynchronous graph processing frameworks have
been researched. Galois[23] proposes a work-stealing sched-
uler for asynchronous multi-core CPU processing. Con-
current graph analytics on a single GPU (using multiple
streams) has also been proposed in GTS [16], showing that
this type of programming is promising for single-GPU ap-
plications as well. Additional single-GPU [7, 12, 14, 33] and
multi-GPU [20, 26] graph analytics libraries have been pro-
posed. However, as opposed to our asynchronous approach,
these implementations all utilize bulk-synchronous paral-
lelism.

The distributed worklist kernel fusion optimization pro-
posed in Section 5 is similar to the Megakernel single-GPU
approach, proposed by Steinberger et al. [30], which also
transfers portions of the control flow to the GPU.

7. Conclusions
The paper presented a scalable programming abstraction
and runtime environment for asynchronous multi-GPU ap-
plication development. In-depth study of the structure of a
multi-GPU node showed that creating such applications re-
quires careful tuning with respect to communication topol-
ogy and workload processing, particularly in irregular algo-
rithms, where lagging information may have a major impact
on scaling. The paper then showed that the programming ab-
straction is simple yet expressive, enabling the efficient im-
plementation of complex graph analytic algorithms, showing
strong scaling results.

This research can be extended in several directions. First,
the link/router abstraction concepts can be generalized to
other non-GPU architectures, as well as distributed systems.
Second, the majority of the router control flow relies on host-
based decisions. Similarly to worker kernel fusion, moving
these decisions to a device-based router may decrease sys-
tem overhead by further reducing CPU-GPU copies. Third,
load balancing in multi-GPU traversal algorithms may be
improved by employing asynchronous work-stealing sched-
ulers and dynamically-changing node ownership.

Acknowledgments
This research was supported by the German Research Foun-
dation (DFG) Priority Program 1648 “Software for ex-
ascale Computing” (SPP-EXA), research project FFMK;
NSF grants 1218568, 1337281, 1406355, and 1618425; by
DARPA BRASS contract 750-16-2-0004; and an equipment
grant from NVIDIA.

References
[1] 9th DIMACS Implementation Challenge. URL

http://www.dis.uniroma1.it/challenge9/
download.shtml.

[2] Groute Runtime Environment Source Code. URL
http://www.github.com/groute/groute.

[3] Karlsruhe Institute of Technology,
OSM Europe Graph, 2014. URL
http://i11www.iti.uni-karlsruhe.de/resou
rces/roadgraphs.php.

[4] A. Adinetz. Optimized filtering with
warp-aggregated atomics. 2014. URL
http://devblogs.nvidia.com/parallelfor
all/cuda-pro-tip-optimized-filtering-
warp-aggregated-atomics/.

[5] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, edi-
tors. Graph Partitioning and Graph Clustering, 10th DIMACS
Implementation Challenge Workshop, Georgia Institute of
Technology, Atlanta, GA, USA, February 13-14, 2012. Pro-
ceedings, volume 588 of Contemporary Mathematics, 2013.
American Mathematical Society.

[6] T. Ben-Nun, E. Levy, A. Barak, and E. Rubin. Memory ac-
cess patterns: The missing piece of the multi-GPU puzzle. In
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’15,
pages 19:1–19:12. ACM, 2015.

[7] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study
of irregular programs on GPUs. In Workload Characterization
(IISWC), 2012 IEEE International Symposium on, pages 141–
151, 2012.

[8] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi.
Measuring user influence in Twitter: The million follower
fallacy. ICWSM, 10(10-17):30, 2010.

[9] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-
efficient parallel GPU methods for single-source shortest

paths. In Parallel and Distributed Processing Symposium,
2014 IEEE 28th International, pages 349–359, 2014.

[10] T. A. Davis and Y. Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. ACM Comput.
Surv., 35(2):114–131, 2003.

[12] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ri-
peanu. A yoke of oxen and a thousand chickens for heavy
lifting graph processing. In Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, pages 345–354. ACM, 2012.

[13] P.-Y. Hong, L.-M. Huang, L.-S. Lin, and C.-A. Lin. Scalable
multi-relaxation-time lattice Boltzmann simulations on multi-
GPU cluster. Computers & Fluids, 110:1 – 8, 2015.

[14] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Acceler-
ating CUDA graph algorithms at maximum warp. In Proceed-
ings of the 16th ACM Symposium on Principles and Practice
of Parallel Programming, PPoPP ’11, pages 267–276. ACM,
2011.

[15] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci. Com-
put., 20(1):359–392, 1998.

[16] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim. GTS: A
fast and scalable graph processing method based on streaming
topology to GPUs. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages
447–461. ACM, 2016.

[17] A. Lenharth, D. Nguyen, and K. Pingali. Priority queues
are not good concurrent priority schedulers. In Euro-Par
2015: Parallel Processing: 21st International Conference on
Parallel and Distributed Computing, Vienna, Austria, August
24-28, 2015, Proceedings, pages 209–221. Springer Berlin
Heidelberg, 2015.

[18] B. Liskov and L. Shrira. Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems.
In Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, PLDI
’88, pages 260–267, 1988.

[19] E. Mejı́a-Roa, D. Tabas-Madrid, J. Setoain, C. Garcı́a,
F. Tirado, and A. Pascual-Montano. NMF-mGPU: non-
negative matrix factorization on multi-GPU systems. BMC
Bioinformatics, 16(1):43, 2015.

[20] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU
graph traversal. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’12, pages 117–128, 2012.

[21] R. Nasre, M. Burtscher, and K. Pingali. Data-driven versus
topology-driven irregular computations on GPUs. In Paral-
lel Distributed Processing (IPDPS), 2013 IEEE 27th Interna-
tional Symposium on, pages 463–474, 2013.

[22] R. Nasre, M. Burtscher, and K. Pingali. Morph algorithms on
GPUs. In ACM SIGPLAN Notices, volume 48, pages 147–
156. ACM, 2013.

[23] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infras-
tructure for graph analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 456–471, 2013.

[24] NVIDIA. NVIDIA Collective Commu-
nication Library (NCCL), 2016. URL
http://www.github.com/NVIDIA/nccl/.

[25] S. Pai and K. Pingali. A compiler for throughput optimization
of graph algorithms on GPUs. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOP-
SLA ’16. ACM, 2016.

[26] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens. Multi-
GPU graph analytics. CoRR, abs/1504.04804, 2015. URL
http://arxiv.org/abs/1504.04804.

[27] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of
parallelism in algorithms. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 12–25. ACM, 2011.

[28] S. Schaetz and M. Uecker. A multi-GPU programming library
for real-time applications. In Proceedings of the 12th Interna-
tional Conference on Algorithms and Architectures for Paral-
lel Processing - Part I, ICA3PP’12, pages 114–128. Springer-
Verlag, 2012.

[29] J. Soman, K. Kishore, and P. J. Narayanan. A fast GPU al-
gorithm for graph connectivity. In Parallel Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, pages 1–8, 2010.

[30] M. Steinberger, M. Kenzel, P. Boechat, B. Kerbl, M. Dokter,
and D. Schmalstieg. Whippletree: Task-based scheduling of
dynamic workloads on the GPU. ACM Trans. Graph., 33(6):
228:1–228:11, 2014.

[31] M. Sutton, T. Ben-Nun, A. Barak, S. Pai, and K. Pin-
gali. Adaptive work-efficient connected components
on the GPU. CoRR, abs/1612.01178, 2016. URL
http://arxiv.org/abs/1612.01178.

[32] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[33] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D.
Owens. Gunrock: A high-performance graph processing li-
brary on the GPU. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2015, pages 265–266, 2015.

[34] J. J. Whang, A. Lenharth, I. S. Dhillon, and K. Pingali. Scal-
able data-driven PageRank: Algorithms, system issues, and
lessons learned. In L. J. Träff, S. Hunold, and F. Versaci, ed-
itors, Euro-Par 2015: Parallel Processing: 21st International
Conference on Parallel and Distributed Computing, Proceed-
ings, pages 438–450. Springer Berlin Heidelberg, 2015.

[35] D. Wilson. Triple buffering: Why we love it. 2009. URL
http://www.anandtech.com/show/2794.

A. Artifact description
A.1 Abstract
This artifact contains all the source code necessary to com-
pile the Groute executables and repeat the results of this pa-
per. The package also contains shell scripts to generate the
figures and tables as CSVs, obtain code dependencies, and
download input graphs for the benchmarks.

A.2 Description
A.2.1 Check-list (artifact meta information)
• Algorithm: Micro-benchmarks, Breadth-First Search, Single-

Source Shortest Path, PageRank, Connected Components,
Predicate-Based Filtering.

• Compilation: Using CUDA (nvcc) for GPU code and GCC
(gcc, g++) for host code. Both compilers use the following
flags: -O3 -DNDEBUG -std=c++11.

• Binary: One CUDA executable for each algorithm.
• Data set: Publicly-available graphs converted to binary CSR

(Galois) format.
• Run-time environment: Debian 8 Linux with CMake 3.2,

GCC 4.9.3, and CUDA 7.5. Optional requirement (for compar-
ing with Gunrock): Boost 1.55.0.

• Hardware: CUDA-capable GPU with compute capability of
at least 3.5. Multiple GPUs on the same node are required for
multi-GPU tests.

• Output: CSV files representing each figure and table.
• Experiment workflow: Clone repository, setup environment,

run figure-generating shell scripts, review generated CSV files.
• Publicly available?: Yes.

A.2.2 How delivered
A Git repository that contains all the Groute code and figure-
generating scripts can be found in:
http://www.github.com/groute/ppopp17-artifact

The repository contains shell scripts that set up the envi-
ronment, obtain and compile external code, download the
dataset, and run the figure generators. See additional infor-
mation in Sections A.3 and A.4.

A.2.3 Hardware dependencies
To run GPU-based tests, Groute requires one or more
NVIDIA GPUs with compute capability of at least 3.5.
Multi-GPU tests will not run on a single-GPU node. For
the test performed in Table 6, a system with two heteroge-
neous GPUs (i.e., one faster than the other) is recommended
to repeat the results.

A.2.4 Software dependencies
To compile Groute, CMake 3.2, GCC 4.9 and CUDA 7.5 are
required. Later versions can be used but were not tested by
the authors.

The code contained in the above repository includes the
following external dependencies: METIS 5.1.0, gflags 2.1.2,
MGBench 1.01, NCCL 1.2.3, and Gunrock 0.3.1 (optional).

A.2.5 Datasets
The dataset for this artifact contains all graphs listed in
Table 4 of the paper, converted to the Galois CSR binary
format (.gr files). The dataset (10.6 GB compressed, 29 GB
uncompressed) is automatically downloaded by the setup
script. Each graph is located in a separate subdirectory, with
three additional files:

1. <graph>/<graphfile>.metadata: Metadata of the graph
properties (number of connected components, whether to
use METIS partitioning, soft-priority delta).

2. <graph>/bfs-<graphfile>.txt: Externally generated
BFS results (source node: 0), used for validation.

3. <graph>/sssp-<graphfile>.txt: External SSSP results
(source node: 0), also used for validation.

A.3 Installation
To install, follow the instructions below:

• Clone the Git repository recursively from
https://github.com/groute/ppopp17-artifact.git

• Run setup.sh. The script will automatically compile
Groute and the external code.

• When prompted whether to download the dataset, re-
spond ’y’ or ’n’. The dataset can be downloaded man-
ually by running dataset/download.sh at a later time.

A.4 Experiment workflow
After setting up the environment, either run runall.sh to
generate all figures and tables, or run each individual figure
separately by calling figures/figureXX.sh, where XX is
the figure number. The overall workflow as a list of shell
commands is as follows:

1 $ git clone --recursive
2 https://github.com/groute/ppopp17-artifact.git
3 $ cd ppopp17-artifact/
4 $./setup.sh
5 $./runall.sh
6 $ cat output/figure10b.csv

Note: Gunrock execution (for comparison with Groute) is
not enabled by default. To enable, export RUN GUNROCK=1

prior to running the figure-generating scripts.
Note 2: Each individual test may take time, but is limited to
2 hours to avoid waiting forever for a faulty application. For
slower GPUs, this timeout can be increased by modifying
the TIMEOUT variable from 2h to a different value (line 4 in
figures/common.sh).

A.5 Evaluation and expected result
The results, found in output/, are in Comma-Separated Val-
ues (CSV) format and represent each figure and table in the
paper (e.g., figure2a.csv, table6.csv). Prior to being in-
serted to the CSV, the results are averaged over at least 3
runs. The results will also be written to the console during
the process.

