
CSC2/455 Software Analysis and Improvement
Program Analysis III – Deductive Techniques

Sreepathi Pai

URCS

April 29, 2019



Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript



Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript



Proving Programs Correct

How do we:

I specify the behaviour of programs?

I prove that an implementation matches its specification?

I check that the proof is sound?



Floyd-Hoare Logic

Developed by Robert Floyd and Tony Hoare in the 1960s.

{P}C{Q}

I P is a precondition

I C is a statement, function or program

I Q is a postcondition

I Both P and Q are logical statements, e.g., what you would
put in an assert

Read as: If P holds, and C executes (and terminates), then Q
holds. Therefore, P and Q are assertions, usually over program
state.



Partial and Total Correctness

I Note that if C does not terminate, Q may or may not be true
I This is the notion of partial correctness

I If C can be shown (formally) to terminate, then we achieve a
proof of total correctness

Total correctness = Termination + Partial Correctness



Some examples

I {X = 1} Y := X {Y = 1}
I {X = 1} Y := X {Y = 2}
I {true}C{Q}
I {P}C{true}
I {P}C{false}



Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript



Formal Proof

I (informally) Proofs at the level of rigour that even a computer
could understand!

I Usually, each step in the proof is explicitly annotated as to
how it was obtained from the previous steps
I Makes it easy to check (esp. for computers)
I Either the use of an axiom or a rule of inference

I Painful to construct by hand
I Interactive proof assistants like Coq and Isabelle usually make

it more fun
I (if you’ve disliked writing proofs, try them!)

https://coq.inria.fr/
https://isabelle.in.tum.de/


The assignment axiom of Hoare Logic

I P[E/V ] is read as P with all instances of V replaced by E
I P with E for V

I {X = 1}[Y /X ] leads to {Y = 1}
I Considering proving this:

I {X = 1} Y := X {Y = 1}
I We can do this using the assignment axiom

I ` {P[E/V ]} V := E {P}



Two incorrect assignment axiom forms

I ` {P}V := E{P[E/V ]}
I ` {P}V := E{P[V /E ]}



Precondition strengthening

If ` {P ′}C{Q}, and P =⇒ P ′, then we can write ` {P}C{Q}
I {X + 1 = n + 1} X := X + 1 {X = n + 1} (assignment

axiom)

I ` X = n =⇒ X + 1 = n + 1 (from arithmetic)

I {X = n} X := X + 1 {X = n + 1} (precondition
strengthening)



Postcondition weakening

If ` {P}C{Q ′}, and Q ′ =⇒ Q, then we can write ` {P}C{Q}
I {R = X} Q := 0 {R = X ∧ Q = 0}
I R = X ∧ Q = 0 =⇒ R = X + (Y × Q)

I {R = X} Q := 0 {R = X + (Y × Q)} (postcondition
weakening)



Conjunctions and Disjunctions

I If ` {P1}C{Q1} and ` {P2}C{Q2}, then
` {P1 ∧ P2}C{Q1 ∧ Q2}

I If ` {P1}C{Q1} and ` {P2}C{Q2}, then
` {P1 ∨ P2}C{Q1 ∨ Q2}



Sequencing Rule

I If ` {P}C1{Q} and ` {Q}C2{R}, then ` {P}C1;C2{R}

I You can combine the sequencing rule and the rules of
consequence (i.e. precondition strengthening and
postcondition weakening) to extend this to multiple
statements.



The Conditional Rule

I If ` {P ∧ S}C1{Q} and ` {P ∧ ¬S}C2{Q}, then
I {P} IF S THEN C1 ELSE C2 {Q}



The While Rule

I If {P ∧ S}C{P} then
I {P} WHILE S DO C ENDDO {P ∧ ¬S}

I Here, P is called a inductive loop invariant
I It is true on entry and exit into loop
I It is true after every iteration of the loop



More rules

I FOR-rule
I Handling arrays

I variant of assignment, due to McCarthy



Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript



Example

X = x ∧ Y = y

R := X;
X := Y;
Y := R;

X = y ∧ Y = x



Summary of steps

I Add assertions/specifications that must hold at points in the
program
I called annotations

I Generate a set of verification conditions (VCs) from the
program + specification

I Prove the verification conditions
I These imply the annotations are true



Generating VCs for assignment

I The verification condition for a statement {P}V := E{Q} is:
I P =⇒ Q[E/V ] (assignment verification condition)

I How does showing this is true prove ` {P}V := E{Q}?



Why the VC for assignment works

I From Hoare Logic, we have:
I {Q[E/V ]}V := E{Q}

I If we prove P =⇒ Q[E/V ], then by precondition
strengthening, we have:
I {P}V := E{Q}

I Which is what we had to prove.

What if we can’t prove P =⇒ Q[E/V ]? Does that mean
{P}C{Q} does not hold?



Sufficiency and Incompleteness

I VCs are sufficient, but not necessary
I There may be other ways to prove {P}C{Q}

I Mechanical provers cannot prove everything
I Gödel’s Incompleteness Theorem



More complicated example: Integer Division

Source material, page 45

https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf#page=45


Can machines really do this?

Dafny

https://rise4fun.com/Dafny/GoqD


Summary

I Annotations are inserted by programmer

I Verification conditions are generated by compiler/verifier
I Verification conditions are proved by theorem prover

I Cannot always be automated



More stuff

I Generating VCs for other statements in language

I Soundness?

I Completeness?

I Decidability?

I Pointers: Separation logic



Outline

Introduction

Proving a program correct

Program Verification using Hoare Logic

Postscript



Sources, further reading and links

I Background Reading on Hoare Logic, by Mike Gordon
I The Dafny Project at Microsoft Research

I Try it in your browser: dafny at rise4fun (work through the
Dafny tutorial)

I More reading (including 4-part video lectures)

I IEEE CSDL, Accessible Software Verification with Dafny
I Textbooks

I Software Foundations: Vol 1: Logical Foundations,
I Software Foundations: Vol 2: Programming Language

Foundations

https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://rise4fun.com/dafny/Hello
https://rise4fun.com/Dafny/tutorial/Guide
https://github.com/Microsoft/dafny
https://ieeexplore.ieee.org/document/8106874
https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://softwarefoundations.cis.upenn.edu/current/plf-current/index.html
https://softwarefoundations.cis.upenn.edu/current/plf-current/index.html

	Introduction
	Proving a program correct
	Program Verification using Hoare Logic
	Postscript

