CSC2/455 Software Analysis and Improvement Program Analysis II – Model Checking

Sreepathi Pai

URCS

April 24, 2019

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Outline

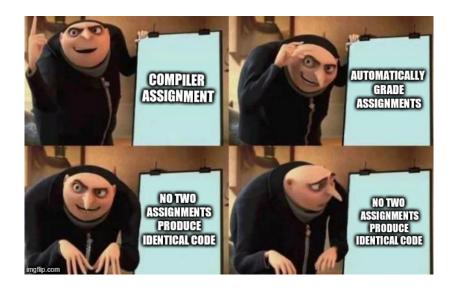
A Tour of CBMC

Model Checking

Liveness Properties

Postscript

The Plan



Check for Equivalence

- ► A: Original source program
- ▶ B: Compiler-generated program (e.g. your 3-address code)
- \blacktriangleright Is A = B?
 - Program equivalence problem
 - Undecidable in general

Test?

- Develop test cases
- ▶ Run B with these test cases
 - Works
 - ► Tests may miss bugs
- Also, many programs harder to test
 - Don't have main
 - Accept input interactively
 - Buggy compilers may introduce infinite loops

Solution

- Ended up using bounded model checking for C
 - ► CBMC
- Allows me to check that certain properties hold across all executions
- Can still require manual inspection
 - And I manually inspected all your results successful or not

Computing the minimum of three numbers

```
int min_of_3(int x, int y, int z) {
   int min3;
  if(x > y) {
      if(y > z) {
         min3 = z;
     } else {
        min3 = y;
  } else {
    if(x > z) {
         min3 = z;
    } else {
         min3 = x;
  return min3;
```

Adding Assertions

Verifying

```
$ cbmc --function min_of_3 filename.c
CBMC version 5.6 64-bit x86 64 linux
Removal of function pointers and virtual functions
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 64 steps
simple slicing removed 5 assignments
Generated 4 VCC(s), 4 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
** Results:
[min_of_3.assertion.1] must be one of inputs: SUCCESS
[min_of_3.assertion.2] <= x: SUCCESS</pre>
[min_of_3.assertion.3] <= y: SUCCESS</pre>
[min of 3.assertion.4] <= z: SUCCESS</pre>
** 0 of 4 failed (1 iteration)
VERIFICATION SUCCESSFUL
```

Another implementation

```
int min_of_3(int x, int y, int z) {
   int min3;
  if(x > y && y > z) {
    min3 = z:
  } else {
    if(x > y)
      min3 = y;
    else
      min3 = x;
  __CPROVER_assert(min3 == x || min3 == y || min3 == z,
                    "must be one of inputs");
  __CPROVER_assert(min3 <= x, "<= x");
   __CPROVER_assert(min3 <= y, "<= y");
   __CPROVER_assert(min3 <= z, "<= z");
  return min3;
```

Verifying

```
CBMC version 5.6 64-bit x86 64 linux
Partial Inlining
Generic Property Instrumentation
Starting Bounded Model Checking
size of program expression: 58 steps
simple slicing removed 5 assignments
Generated 4 VCC(s), 4 remaining after simplification
Passing problem to propositional reduction
converting SSA
Running propositional reduction
Post-processing
Solving with MiniSAT 2.2.1 with simplifier
 . . .
Runtime decision procedure: 0.018s
** Results:
[min_of_3.assertion.1] must be one of inputs: SUCCESS
[min of 3.assertion.2] <= x: SUCCESS</pre>
[min_of_3.assertion.3] <= y: SUCCESS</pre>
[min_of_3.assertion.4] <= z: FAILURE</pre>
** 1 of 4 failed (2 iterations)
VERIFICATION FAILED
```

4□ > <□ > < □ > < □ > < □ > ○

What! My code, wrong?

```
$ cbmc --trace --function min_of_3 file.c
State 17 file min3_2.c line 1 thread 0
 INPUT x: -1412553063 (10101011110011100010011010011001)
State 19 file min3_2.c line 1 thread 0
 INPUT y: -1151925590 (10111011010101110000001010101010)
State 21 file min3 2.c line 1 thread 0
 INPUT z: -1949367656 (10001011110011110000001010011000)
 . . .
State 30 file min3_2.c line 10 function min_of_3 thread 0
 min3=-1412553063 (10101011110011100010011010011001)
Violated property:
 file min3_2.c line 17 function min_of_3
 <= 7.
 min3 \le z
```

Loops: Definite Bounds

```
for(i = 0; i < 10; i++) {
   ...
}</pre>
```

CBMC will unroll loop.

Loops: Symbolic Bounds

```
for(i = 0; i < N; i++)
    B;</pre>
```

gets unrolled by a fixed number (B is body), with unroll assert:

```
i = 0;
if(i < N) {
    B;
    i++;

    if(i < N) {
        B;
        i++;

        assert(N == 2);
    }
}</pre>
```

- If assert fails, unrolling was insufficient.
 - ► Not sound!
 - Otherwise, conclusion is sound

Other complications

- Pointers, arrays, dynamic memory allocation, etc.
- See CPROVER manual for more details

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Basic Ideas

- ightharpoonup Formula φ
 - Correctness (Safety) property
 - Propositional logic
 - Example: first argument of all the __CPROVER_assert statements
- ightharpoonup Intepretation ${\cal K}$
 - ► More on this later
- ▶ We ask: $\mathcal{K} \models \varphi$?
 - ▶ Is φ true in \mathcal{K} ?

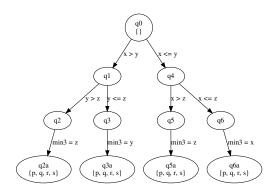
Transition System

- $ightharpoonup \mathcal{T} = (Q, I, E, \delta)$
 - set of states Q (e.g. values of all variables)
 - ▶ initial states $I \in Q$
 - \triangleright action labels E (e.g. program statements)
 - ▶ (total) transition relation $\delta \subset Q \times E \times Q$
- \blacktriangleright A run of $\mathcal T$ is the same as a trace of states
 - ▶ s0e0s1... where $(s0, e0, s1) \in \delta$, and $s0 \in I$
- A reachable state is a state that exists in some run.

Kripke Structures

- \blacktriangleright Let $\mathcal V$ be a set of propositions
 - ▶ e.g. min3 <= x
 - ▶ e.g. min3 <= y
- ▶ A Kripke structure $\mathcal{K} = (Q, I, E, \delta, \lambda)$ is a transition system where:
 - $\lambda: Q \rightarrow 2^{\mathcal{V}}$
- $ightharpoonup \lambda$ is a function that maps a state q to the (subset) of propositions from $\mathcal V$ that are true in that state
 - ▶ $q \models P$ where $P \in \mathcal{V}$

Kripke structure for our min-of-3 example



- Let p be the "must be one of inputs" proposition
- ▶ Let q, r, s be the $\langle = x, < = y, < = z$ proposition
- ► (Note: True propositions in internal states not shown)

Invariants

- ► An invariant is a safety property for the system that holds in every reachable state
- ► An inductive invariant holds in the initial state, and is preserved by all transitions
 - including transitions from unreachable states
 - more on this when we discuss Hoare Logic

Invariant Checking Algorithm: High level details

- Assume finite Kripke structure
- Given an invariant to check,
 - Enumerate all reachable states
 - Check that invariant holds in all of them

Invariant Checking Algorithm: Pseudocode

```
def verify_inv(ks, inv):
    done = set()
    todo = set()
    for s in ks.initial states():
        if s in done: continue
        todo.add(s)
        while len(todo) > 0:
             ss = todo.pop()
             done.add(ss)
             if not ss.satisfies(inv): return False
             for succ in ss.successors():
                 if succ not in done: todo.add(succ)
```

return True

based on Figure 3.3 in S. Merz, An introduction to Model Checking.

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Progress

- ▶ Does something "good" eventually happen?
- Does the system ever deadlock?
- ▶ Does the system livelock?
 - An action e is no longer possible after a particular state q_i
- ► These require reasoning over *sequences* of states
 - ▶ These can be infinite even in a finite Kripke structure

These properties need a *temporal* logic, that incorporates notions of (logical) "time points" into formulae we want to check.

Specifying temporal properties in PTL

- Let $\sigma = q_0 q_1...$ be a sequence of states
 - $ightharpoonup \sigma_i$ is the state *i*
 - $ightharpoonup \sigma|_i$ is the suffix $q_iq_{i+1}\dots$ of σ
- ightharpoonup Let φ be a formula
- $ightharpoonup X\varphi$ (also a formula), read as "next φ ",
- $ightharpoonup \varphi U \psi$ (also a formula), read as " φ until ψ "
 - $ightharpoonup \sigma \models \varphi U \psi$ if and only if there exists $k \in N$
 - $ightharpoonup \sigma|_{k} \models \psi$
 - for all $1 \le i < k$, $\sigma|_i \models \varphi$
 - Note: φ can continue to hold after k

More temporal properties

- ightharpoonup F φ , "eventually φ "
 - ightharpoonup trueU φ
- $ightharpoonup G\varphi$, "always φ "
 - ightharpoonup $\neg F \neg \varphi$
- $\blacktriangleright \varphi W \psi$, " φ unless ψ "
 - \blacktriangleright $(\varphi U \psi) \vee G \psi$
- ightharpoonup GF φ
- ightharpoonup FG φ

Some examples of invariants

- $ightharpoonup G \neg (own_1 \land own_2)$
 - where own_1 and own_2 are propositions representing states in which locks for resource are obtained by process 1 and 2
- Other properties (see the reading)
 - weak and strong fairness
 - precedence
 - etc.

Existential and Universal Properties: CTL

- ▶ Branching time logic for properties of systems
 - Computation Tree Logic (CTL)
- $ightharpoonup \mathrm{EX} \varphi$, there exists a transition where φ holds from current state
- ▶ $EG\varphi$, exists a path from current state where φ holds on all states
- ► EU, exists a path until...
- ► Also Ax properties, properties that hold on all possible paths from current state

Verifying PTL and CTL invariants?

- ► State sequences of infinite length possible
- ► How do we check invariants?

Büchi Automata

- \triangleright ω -automaton
 - run on infinite strings
- \triangleright strings represent state sequences (actually $\lambda(q_0)\lambda(q_1)...$)
- non-deterministic as well as deterministic
 - but non-deterministic Büchi automata more powerful

Büchi Automata Example

Stephan Merz, An Introduction to Model Checking

Outline

A Tour of CBMC

Model Checking

Liveness Properties

Postscript

Further Reading and Links

- ► Stephan Merz, An Introduction to Model Checking
 - Accessible and good introduction, with links to other material
- ► Spin Model Checker
- Selected industrial applications
 - ► CACM, "How Amazon Web Services Uses Formal Methods
 - ► CACM, "A Decade of Software Model Checking with SLAM
- ► A segue into compiler verification
 - Ken Thompson, Reflections on Trusting Trust, Turing Award Lecture 1984
 - ▶ The COMPCERT project