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So far

I Data flow analysis

I Loop analysis

I What next?



Compilers are not the only program analyzers

I Compilers are probably the most used program analyzers

I But are severely time constrained
I Finding program errors is not primary goal

I Syntax errors, type errors
I Code generation primary goal



Program/Software Analysis

I Software is increasingly mission-critical
I Can kill people!

I Boeing 737 MAX(?)
I Therac-25 (X-ray)
I Industrial Robotics

I (less extreme?) Can lose money
I Software crashes
I Data loss

I Can we analyze programs for functional correctness?
I Topic of the next few lectures
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SLAM (Microsoft, early 2000s)

I MS isolated most crashes to
buggy drivers

I Static Driver Verifier project
I Would verify driver code

(in C) for correctness

I Used model checking
I Models programs as

finite-state machines
I I used a similar tool

(CBMC) to check your
assignments

https://www.cprover.org/cbmc/


Infer (Facebook, early 2010s)

I Checks C, C++, Objective C, Java and Android code

I Used for checking Facebook’s mobile apps
I Open source, https://fbinfer.com/

I Used by Amazon, Mozilla, Uber and Facebook and its
affiliates, JD.com, etc.

I Comes with its own language AL to describe analyses
I Uses separation logic

I high-level: converts programs to logic

https://fbinfer.com/


SPARTA (Facebook, late 2010s)

I Language-independent
analyzer
I a C++ framework

I Open source,
https://code.fb.com/

open-source/sparta/

I Used in FB’s RedEx tools
I for analyzing Android

binary code (.dex)

I Uses abstract interpretation
I very similar to data flow

analysis frameworks

https://code.fb.com/open-source/sparta/
https://code.fb.com/open-source/sparta/


Other efforts

I Stanford Checker
I commercialized by Coverity, late 2000s
I CACM article, “A few billion lines of code later: using static

analysis to find bugs in the real world”

I Google’s static analysis tools
I Checker Framework for Java programs
I Shipshape (abandoned?) (Google Tricorder)
I CACM article, “Lessons from Building Static Analysis Tools At

Google”

I Oracle’s Soufflé
I Soufflé: Logic Defined Static Analysis

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://checkerframework.org
https://github.com/google/shipshape
https://dl.acm.org/citation.cfm?id=2818828
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://souffle-lang.github.io/
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Limitations

I None of these frameworks and tools can escape the fact that
analysis is an undecidable problem

I All compute approximations
I Must be designed to be sound

I Approximations are conservative/safe

I Leads to imprecision (i.e. incomplete)
I May model behaviour not in original programs
I (recall IDEAL vs MOP vs MFP)



States and Transitions

I A program’s state is a mapping of variables to values
I Programs move from one state to another

I begin execution in subset of (initial) states

I Notions of state before a program point (i.e. a statement)
and after a program point

I Relation that maps before-states to after-states is called a
transition relation (t)
I 〈x , y〉 (x is before-state, y is after-state)



Traces

I An execution trace of a program is a sequence of states
I s0s1s2 . . . sn

I An execution trace may be finite or infinite
I s0s1s2 . . .

I The collection of partial traces can actually happen (i.e. state
transitions obey the transition relation) is called the collecting
semantics
I I.e. for all si sj in trace, 〈si , sj〉 ∈ t



Example

x = 0
while(x < 100)

x = x + 1;

I states are Z
I initial state is {0}
I transition relation is {〈x , x ′〉|x < 100 ∧ x ′ = x + 1}
I is 0 1 2 3 part of the collecting semantics?

I is 0 2 4 6 part of the collecting semantics?
Patrick Cousot and Radhia Cousot, Basic Concepts of Abstract Interpretation
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Topics

I Abstract Interpretation in a Nutshell

I Abstract Interpretation-based Formal Methods and Future
Challenges

I Liveness Analysis in SPARTA

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://www.di.ens.fr/~cousot/publications.www/Cousot-LNCS2000-sv-sb.pdf
https://www.di.ens.fr/~cousot/publications.www/Cousot-LNCS2000-sv-sb.pdf
https://github.com/facebook/redex/blob/master/service/dataflow/Liveness.h
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