
CSC2/455 Software Analysis and Improvement
Program Analysis

Sreepathi Pai

URCS

April 22, 2019



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Discussion



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Discussion



So far

I Data flow analysis

I Loop analysis

I What next?



Compilers are not the only program analyzers

I Compilers are probably the most used program analyzers

I But are severely time constrained
I Finding program errors is not primary goal

I Syntax errors, type errors
I Code generation primary goal



Program/Software Analysis

I Software is increasingly mission-critical
I Can kill people!

I Boeing 737 MAX(?)
I Therac-25 (X-ray)
I Industrial Robotics

I (less extreme?) Can lose money
I Software crashes
I Data loss

I Can we analyze programs for functional correctness?
I Topic of the next few lectures



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Discussion



SLAM (Microsoft, early 2000s)

I MS isolated most crashes to
buggy drivers

I Static Driver Verifier project
I Would verify driver code

(in C) for correctness

I Used model checking
I Models programs as

finite-state machines
I I used a similar tool

(CBMC) to check your
assignments

https://www.cprover.org/cbmc/


Infer (Facebook, early 2010s)

I Checks C, C++, Objective C, Java and Android code

I Used for checking Facebook’s mobile apps
I Open source, https://fbinfer.com/

I Used by Amazon, Mozilla, Uber and Facebook and its
affiliates, JD.com, etc.

I Comes with its own language AL to describe analyses
I Uses separation logic

I high-level: converts programs to logic

https://fbinfer.com/


SPARTA (Facebook, late 2010s)

I Language-independent
analyzer
I a C++ framework

I Open source,
https://code.fb.com/

open-source/sparta/

I Used in FB’s RedEx tools
I for analyzing Android

binary code (.dex)

I Uses abstract interpretation
I very similar to data flow

analysis frameworks

https://code.fb.com/open-source/sparta/
https://code.fb.com/open-source/sparta/


Other efforts

I Stanford Checker
I commercialized by Coverity, late 2000s
I CACM article, “A few billion lines of code later: using static

analysis to find bugs in the real world”

I Google’s static analysis tools
I Checker Framework for Java programs
I Shipshape (abandoned?) (Google Tricorder)
I CACM article, “Lessons from Building Static Analysis Tools At

Google”

I Oracle’s Soufflé
I Soufflé: Logic Defined Static Analysis

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://checkerframework.org
https://github.com/google/shipshape
https://dl.acm.org/citation.cfm?id=2818828
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://souffle-lang.github.io/


Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Discussion



Limitations

I None of these frameworks and tools can escape the fact that
analysis is an undecidable problem

I All compute approximations
I Must be designed to be sound

I Approximations are conservative/safe

I Leads to imprecision (i.e. incomplete)
I May model behaviour not in original programs
I (recall IDEAL vs MOP vs MFP)



States and Transitions

I A program’s state is a mapping of variables to values
I Programs move from one state to another

I begin execution in subset of (initial) states

I Notions of state before a program point (i.e. a statement)
and after a program point

I Relation that maps before-states to after-states is called a
transition relation (t)
I 〈x , y〉 (x is before-state, y is after-state)



Traces

I An execution trace of a program is a sequence of states
I s0s1s2 . . . sn

I An execution trace may be finite or infinite
I s0s1s2 . . .

I The collection of partial traces can actually happen (i.e. state
transitions obey the transition relation) is called the collecting
semantics
I I.e. for all si sj in trace, 〈si , sj〉 ∈ t



Example

x = 0
while(x < 100)

x = x + 1;

I states are Z
I initial state is {0}
I transition relation is {〈x , x ′〉|x < 100 ∧ x ′ = x + 1}
I is 0 1 2 3 part of the collecting semantics?

I is 0 2 4 6 part of the collecting semantics?
Patrick Cousot and Radhia Cousot, Basic Concepts of Abstract Interpretation



Outline

And now for something (not so completely) different

Program Analysis in Industry

Basic Notions

Discussion



Topics

I Abstract Interpretation in a Nutshell

I Abstract Interpretation-based Formal Methods and Future
Challenges

I Liveness Analysis in SPARTA

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
https://www.di.ens.fr/~cousot/publications.www/Cousot-LNCS2000-sv-sb.pdf
https://www.di.ens.fr/~cousot/publications.www/Cousot-LNCS2000-sv-sb.pdf
https://github.com/facebook/redex/blob/master/service/dataflow/Liveness.h

	And now for something (not so completely) different
	Program Analysis in Industry
	Basic Notions
	Discussion

