
CSC2/455 Software Analysis and Improvement
Rust

Sreepathi Pai

URCS

April 17, 2019

Outline

Problems

Rust Concepts

Implementing Borrow Checking

Postscript

Outline

Problems

Rust Concepts

Implementing Borrow Checking

Postscript

Problems

I We want to prevent certain classes of errors
I For example, for heap-allocated data, we may want to:

I ensure there is (one writer and no readers) OR (multiple
readers and zero writers)

I automatically free data only when it can no longer be
referenced (i.e. no pointer to it exists)

I To prevent:
I data races (one writer and no readers)
I use-after-free errors (no pointer to data, so use-after-free is

impossible)

Current Solutions

I Preventing data races
I Use mutexes (i.e. locks)
I Use atomics (i.e. serialized writes/reads)

I Preventing use-after-free
I Never Free
I Garbage Collection (e.g., reference counting, mark-and-sweep,

etc.)

These are runtime solutions and carry a runtime cost.

Compiler-based Solutions

Can we have a compiler-based solution that:

I detects data races at the source level?

I automatically frees data when it is are no longer “reachable”?

I and has no runtime cost?

I and still allows everything we can do currently in C/C++?

Nope

Not really, but Rust tries to get very close.

Disclaimer

Warning: I only know Rust from its documentation, not by
implementing it.

Outline

Problems

Rust Concepts

Implementing Borrow Checking

Postscript

Immutability by default

All variables in Rust are immutable by default.

let x = 5
x = 6; // ERROR!

Variables can be made mutable by changing their type.

let mut x = 5;
x = 6;

Ownership

Values cannot be copied.

let s1 = String::from("hello");
let s2 = s1;

println!("{}, world", s1); // ERROR: can’t use s1

Values are moved, and s1 is invalidated after the assignment to
s2. I.e. values are “owned” (by a variable).

Moves on “primitive” values are copies

let x = 5;
let y = x; // IS A COPY, NOT A MOVE

println!("x = {}, y = {}", x, y); // WORKS

If a type is Copy-able, Rust makes a copy, not a move.

Functions with move-only values

fn takes_ownership(s: String) {
println!("{}", s);

}

fn main() {
let s = String::from("hello, world!");

takes_ownership(s);

println!("{}", s); // ERROR!
}

Functions with move-only values: Returning Ownership

fn takes_ownership(s: String) {
println!("{}", s);

s
}

fn main() {
let s = String::from("hello, world!");

let s2 = takes_ownership(s);

println!("{}", s2);
}

Why move semantics?

When a variable goes out of scope in Rust, its value may get
dropped (i.e. freed)

I Obviously, can’t do this if we don’t transfer ownership

I I.e., only the owner can drop a value

References aka Borrowing

We can create a reference to temporarily allow shared access – i.e.
“borrow” a value.

fn takes_reference(s: &String) {
println!("{}", s);

}

fn main() {
let s1 = String::from("hello, world!");

takes_reference(&s1);

println!("{}", s1); // should work!
}

References create aliases, i.e. multiple names for the same value.
Can this aliasing cause issues?

Aliases permit read-only sharing

Aliases, like the ones we’ve created so far with &:

I permit sharing, but not writing

I still only one owner (all non-owners are distinguished by & in
type)

I need to ensure that owner outlives all aliases

Mutability and References

let mut s = String::from("mutable string");

let r1 = &mut s;
let r2 = &mut s; // ERROR: can’t have two mutable references

println!("{}, {}", r1, r2);

Can’t have two mutable references to the same value live
simultaneously.

Mutability and References: Part Two

let mut s = String::from("mutable string");

let r1 = &s;
let r2 = &s;
let r3 = &mut s; // ERROR

println!("{}, {}, {}", r1, r2, r3);

Can’t have mutable and immutable references to the same value
live simultaneously.

Mutability and References: Using Scopes

let mut s = String::from("mutable string");

{
let r1 = &mut s;

} // r1 goes out of scope here

let r2 = &mut s; // WORKS

Rules

I One owner
I Can have:

I zero or more immutable references
I one mutable reference
I but not both simultaneously in scope

Lifetimes

I All references have “scope of validity” or a lifetime associated
with them

{
let r;
{

let x = 5;
r = &x; // ERROR

} // x goes out of scope here

println("{}", r);
}

I r has lifetime ’a, and x has lifetime ’b

I ’a outlives ’b, so r can’t contain a reference to x

Lifetime annotations

I &i32, reference to an i32 variable

I &’a i32, reference to a i32 variable with lifetime ’a

I &’a mut i32, mutable reference to a i32 variable with
lifetime ’a

Note that lifetimes are inferred. The annotations only give us a
way to name them (i.e. annotations can’t specify lifetimes).
A special lifetime ’static indicates whole-program lifetime.

Function lifetime annotations: #1

fn example<’a>(arg1: &’a str, arg2: &’a str) -> &’a str {
}

I read as arg1 and arg2 have the same lifetimes, and the
return value also has the same lifetime.

I the <’a> syntax is the same as for generics (i.e.
polymorphism)

Function lifetime annotations: #2

fn example<’a, ’b>(arg1: &’a str, arg2: &’b str) -> &’b str {
}

read as?

Preventing mutation

fn example(v: &’a mut Vec<i32>) { // ’a begins
v.push(21); // ’c begins and ends

{
let mut head: &’b mut i32 = v.index_mut(0); // ’b begins
// cannot access v here
*head = 23; // ’b ends

}

v.push(42);
println!("{:?}", v); // prints [23, ..., 42]

} // ’a ends

What is the lifetime of the return type of the index mut function?
Jung, Jourdan, Krebbers and Dreyer, RustBelt: Securing the Foundations of the Rust Programming Language,
POPL 2018

https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf

The lifetime ’k

fn index_mut<’k>(a1: &’k mut Vec<i32>, a2: usize) -> &’k mut i32

I index mut return type must have the lifetime of head, which
is inferred.

I So ’k is the same as ’b

I this means that the borrow of a1 must be for the same
duration (from the type signature)

Story so far

I Rust values
I are immutable by default
I are moved when assigned
I have a lifetime associated with them

I Rust references
I point to a value, and borrow access to it
I can’t outlive original values

I Lifetimes are inferred

Outline

Problems

Rust Concepts

Implementing Borrow Checking

Postscript

Warning

I The behaviour of the borrow checker is not described
completely anywhere
I Use the source, Luke!

I Descriptions of the borrow checker have evolved over time
I on HIR
I on MIR
I using alias analysis, etc.

Checks

I Type checks
I Path checks

I There is only one mutable reference to a value in scope at any
time

I Lifetime checks
I References do not outlive their original values

An Alias Based Formulation of the Borrow Checker

An alias-based formulation of the borrow checker

http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker/

Outline

Problems

Rust Concepts

Implementing Borrow Checking

Postscript

References

I The Rust Book
I Chapter 4: Understanding Ownership
I Chapter 10: Generic Types, Traits and Lifetimes

I Jung et al., RustBelt: Securing the Foundations of the Rust
Programming Language, POPL 2018
I Section 2, in particular

I The Rust Language Reference

I The Rust C Guide: MIR Borrow Checker (incomplete)

I Rust Borrow Checker (old)

I Rust RFC 2094: Non-lexical Lifetimes

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch10-00-generics.html
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://doc.rust-lang.org/reference/
https://rust-lang.github.io/rustc-guide/borrow_check.html
https://github.com/rust-lang/rust/blob/master/src/librustc_borrowck/borrowck/README.md
https://rust-lang.github.io/rfcs/2094-nll.html

	Problems
	Rust Concepts
	Implementing Borrow Checking
	Postscript

