
CSC2/455 Software Analysis and Improvement
Interprocedural Analyses - II

Sreepathi Pai

URCS

April 10, 2019



Outline

Interprocedural Analyses

Interprocedural Points-to Analysis

Postscript



Outline

Interprocedural Analyses

Interprocedural Points-to Analysis

Postscript



Strategies for handling effects of functions

Can we reuse our CFG-based analyses to handle function calls?

I Inlining, perhaps?

I What are the limitations of inlining?



Call graphs

I Basic graph structure for analysis
I Nodes for each procedure (and/or call site)
I Edge connect nodes from caller to callee

I Various definitions possible
I Your three textbooks have three different definitions

I Primary Purpose
I Capture how control flows at the procedure level



Context-insensitive analysis

I Treat function calls as control flow
I Functions form node in CFG
I Invocations are treated as ”gotos” to entry of function
I The returns as goto to location after function call

I This results in CFG with:
I multi-entry nodes
I multi-exit nodes that are not branches (example in a few slides)



Example

for(i = 0; i < n; i++) {
c1: t1 = f(0);
c2: t2 = f(243);
c3: t3 = f(243);

X[i] = t1 + t2 + t3;
}

int f(int v) {
return (v+1);

}

Is the value of X[i] constant?



CFG for Example

i = 0

if i<n goto L

c1: v = 0 ...

f = retval = v + 1

t1 = retval
c2: v = 243

t2 = retval
c3: v = 243

t3 = retval
t4=t1+t2
t5=t4+t3
X[i]=t5
i = i+1

I values for:
I v into f
I retval out of f
I t1, t2 and t3?
I X[i]?



Context-sensitivity

I In treating function calls as control-flow, we lost the ability to
detect context

I Context is the call stack for the function
I Can be treated as a string, called a call string
I If c1 calls c2, which then calls c3, the context for c3 is (c1,

c2)

I How many contexts can there be?
I consider indirect function calls
I consider recursive functions

I k-limiting context sensitivity
I Limit context to k immediate call sites (important!)
I 0 is context-insensitive



Cloning-based Context-Sensitive Analysis
for(i = 0; i < n; i++) {

c1: t1 = f1(0);
c2: t2 = f2(243);
c3: t3 = f3(243);

X[i] = t1 + t2 + t3;
}

int f1(int v) {
return (v+1);

}

int f2(int v) {
return (v+1);

}

int f3(int v) {
return (v+1);

}

I Create a clone for each unique calling context and then apply
context-insensitive analysis

I Is this the same as inlining?
I See textbook for a differentiating example



k-level Context-Sensitive Analysis

for(i = 0; i < n; i++) {
c1: t1 = g(0);
c2: t2 = g(243);
c3: t3 = g(243);

X[i] = t1 + t2 + t3;
}

int g(int v) {
if(v > 1)

return f(v);
else

return (v+1);
}

int f(int v) {
return (v+2);

}

To what depth shall we clone functions?



k-level Context-sensitive analysis

I A function call may be distinguished by its context
I Calling functions or
I Call-sites (i.e. call stack)

I If we do not distinguish contexts,
I context-insensitive
I k = 0

I Different values of k may yield different precision
I No value of k may be sufficient

I recursive function calls
I indirect function calls



Some numbers

I If there are N functions in a program, how many calling
contexts are possible
I if no recursion is involved?
I if recursion is involved?



Handling Recursion in Contexts

I Consider nodes in a call
graph
I non-recursive functions
I self-recursive functions
I mutually recursive

functions

I Look for strongly-connected
components
I trivial (non-recursive)
I non-trivial (the latter two)

f g h

i



Methods to “finitize” Recursion

f g

h

j

i

I Model them using regular expressions
I f(g h i)*j

I Eliminate all call information within SCC
I f g j



Have contexts, will analyze!

I Cloning-based analysis
I Clone functions, once per context
I Followed by context-insensitive analysis

I Summary-based analysis
I (Bottom-up phase) Compute summaries of each function for

an analysis (e.g. constant propagation) in terms of input
parameters

I (Top-down phase) Pass inputs to summaries, one per context
OR merge contexts using meet operator

I See textbook for details



Dynamic Call Graph Construction

class t {
t n() { return new r(); } /* call site g */

}

class s extends t {
t n() { return new s(); } /* call site h */

}

class r extends s {
t n() { return new r(); } /* call site i */

}

main() {
t a = new t(); /* call site j */
a = a.n();

}

What is a potential call graph for a.n() from the points-to
relationships?



Outline

Interprocedural Analyses

Interprocedural Points-to Analysis

Postscript



Recall

Recall how we compute and update pointsTo sets from last class...



Flavours

I Flow-sensitive/Flow-insensitive

I Context-insensitive
I Context-sensitive

I Cloning-based
I Summary-based



What the textbook describes

I Flow-insensitive
I Context-sensitive

I With non-trivial SCCs treated as a single node

I Cloning-based

Additionally, the Dragon book formulates the points-to analysis as
a (datalog) logical formula to be solved.



Outline

Interprocedural Analyses

Interprocedural Points-to Analysis

Postscript



References

I Chapter 12 of the Dragon Book
I Paper recommended:

I Reps et al. ”Precise interprocedural dataflow analysis via
graph reachability”


	Interprocedural Analyses
	Interprocedural Points-to Analysis
	Postscript

