
CSC2/455 Software Analysis and Improvement
Interprocedural Analyses - I

Sreepathi Pai

URCS

April 8, 2019

Outline

Introduction to Points-to analysis

Points-to Analysis

Interprocedural Analyses

Postscript

Outline

Introduction to Points-to analysis

Points-to Analysis

Interprocedural Analyses

Postscript

Pointers

I Variables that contain addresses
I Support a dereferencing operation

I translates to a (indirect) function call if pointer to function
I translates to a memory load/store if pointer to data

I Language can contain an “address-of” operator
I e.g. & is C
I allows assignment to a pointer

I Languages usually contain facilities to create/destroy heap
objects
I i.e. dynamically allocated objects in heap
I e.g. new and delete in C++
I note: malloc (and free) in C are not part of language

I Most sane languages do not use pointers explicitly
I Some notion of a reference
I e.g. Java, Python, ...

The Points-To Problem

Given a pointer (or reference) variable x, what does it point to?

Data Pointers

void f(int *x, int *y, int N) {
for(int i = 1; i < N; i++) {

x[i] = y[i-1];
}

}

Is this loop parallelizable?

Parallelization

Case 1:

int x[100];
int y[100];
f(x, y, 100);

Case 2:

int x[101];
f(x, x, 100);

Parallelization

The restrict keyword tells the compiler that a restricted
pointer is the only way to access the memory region it points to.

void f(int * restrict x, int * restrict y)

would assume no calls like f(x, x) are possible.
CPP Reference: restrict type qualifier

https://en.cppreference.com/w/c/language/restrict

Code/Function Pointers

int (*cmp)(int x, int y)

cmp = my_cmp_fn

*(cmp)(1, 2);

Code/Function Pointers - II

x = my_obj.cmp(1, 2)

Which function does cmp point to?
What if cmp is a virtual function?

I recall a virtual function is a function that can be overridden in
a child class

I and is called even if the calling object’s type is the parent class

I also known as dynamic dispatch

Virtual Function Implementation

I Usually through a VTABLE implemented by the parent class
I An array of function pointers

I Compiler inserts code to fill in this table correctly for each
child class
I points function pointer to child’s implementation

I Calls are resolved by looking up this table
I First look up pointer in vtable
I Then call function

I Obviously slower than a direct function call
I Note, all function calls in Python are dynamically dispatched!

I Could be sped up if we knew which function to call at a
particular call site

Uses of points-to analysis

I Can be used to disambiguate data pointers
I Useful for parallelization

I Can be used to identify callees of an indirect function call
I If there is only one, no need to look up the vtable

I Lots of other uses
I Security: Can a user-controlled pointer be used to overwrite

sensitive data?
I Program verification: is there a null pointer dereference?

Outline

Introduction to Points-to analysis

Points-to Analysis

Interprocedural Analyses

Postscript

The end results of points-to analysis

I For each pointer variable
I Compute the set of objects it can point to

I Variant: Alias analysis
I Do two pointers potentially point to the same thing?

(Intersection of points-to sets of the two pointers is not empty)

Objects that can be pointed to

Points-to sets can contain the following classes of objects:

I Statically known variables
I These have names

I Heap-allocated variables (e.g. new, malloc, etc.)
I These are anonymous
I How do we handle these?

Basic facts and relations

How should the set pointsTo[x] for a pointer x be updated?

I Object creation
I x = malloc(...)

I Assignment
I x = y (where both x and y are pointers)

I AddressOf
I x = &y

I Indirect Assignment to a pointer
I *p = &y (what happens if p is a pointer to pointer?)

I Indirect Assignment from a pointer
I p = *y (if y is a pointer to pointer)

Basic facts and relations - II

I Object creation
I x = malloc(...)
I pointsTo[x].append(H) where H is our way of referring to

the anonymous object

I Assignment
I x = y (where both x and y are pointers)
I pointsTo[x].union(y) [inclusion-based]
I pointsTo[x].union(y) and pointsTo[y].union(x)

[equivalence-based]

I AddressOf
I x = &y
I pointsTo[x].append(y)

Basic facts and relations – II contd

I Indirect Assignment to a pointer
I *p = &y (what happens if p is a pointer to pointer?)
I forall o in pointsTo[p]: pointsTo[o].append(y)

I Indirect Assignment from a pointer
I p = *y (if y is a pointer to pointer)
I forall o in pointsTo[y]: pointsTo[p].union(o)

Flow-insensitive Points-To Analysis

h: a = malloc(...)
i: b = malloc(...)
j: c = malloc(...)

a = b;
b = c;
c = a;

I A flow insensitive analysis ignores control flow:
I pointsTo[a] = {h, i}
I pointsTo[b] = {i, j}
I pointsTo[c] = {j, h, i}

I A flow sensitive analysis respects control flow:
I pointsTo[a] = {h} at point h, then pointsTo[a] = {i} at

first assignment
I etc.

I Note: updates in previous relations slides were all
flow-insensitive!

What about function calls?

int f(int x, int y) {
x = y;

}

a = 1;
b = 2;
f(a, b)
// what are values of a and b?

What about function calls?

int f(int **x, int *y) {
*x = y;

}

a = &c;
b = 2;
f(&a, &b)
// what does a point to here?

Inter-procedural Analysis

I C is call-by-value language
I Arguments cannot be changed by function

I But pointers can be arguments
I And pointees can be changed!

I In general, incorporating the effects of function calls is called
interprocedural analysis
I Context-insensitive
I Context-sensitive

I Note: interprocedural analyses aren’t limited to functions with
pointers as arguments

Flavours of Points-To Analysis

I Flow:
I Flow-sensitive
I Flow-insensitive

I Context:
I Context-sensitive
I Context-insensitive

Outline

Introduction to Points-to analysis

Points-to Analysis

Interprocedural Analyses

Postscript

Strategies for handling effects of functions

Can we reuse our CFG-based analyses to handle function calls?

I Inlining, perhaps?

I What are the limitations of inlining?

Context-insensitive analysis

I Treat function calls as control flow
I Functions form node in CFG
I Invocations are treated as ”gotos” to entry of function
I The returns as goto to location after function call

I This results in CFG with:
I multi-entry nodes
I multi-exit nodes that are not branches (example in a few slides)

Example

for(i = 0; i < n; i++) {
c1: t1 = f(0);
c2: t2 = f(243);
c3: t3 = f(243);

X[i] = t1 + t2 + t3;
}

int f(int v) {
return (v+1);

}

Is the value of X[i] constant?

CFG for Example

i = 0

if i<n goto L

c1: v = 0 ...

f = retval = v + 1

t1 = retval
c2: v = 243

t2 = retval
c3: v = 243

t3 = retval
t4=t1+t2
t5=t4+t3
X[i]=t5
i = i+1

I values for:
I v into f
I retval out of f
I t1, t2 and t3?
I X[i]?

Context-sensitivity

I In treating function calls as control-flow, we lost the ability to
detect context

I Context is the call stack for the function
I Can be treated as a string, called a call string
I If c1 calls c2, which then calls c3, the context for c3 is (c1,

c2)

I How many contexts can there be?
I consider indirect function calls
I consider recursive functions

I k-limiting context sensitivity
I Limit context to k immediate call sites (important!)
I 0 is context-insensitive

Cloning-based Context-Sensitive Analysis
for(i = 0; i < n; i++) {

c1: t1 = f1(0);
c2: t2 = f2(243);
c3: t3 = f3(243);

X[i] = t1 + t2 + t3;
}

int f1(int v) {
return (v+1);

}

int f2(int v) {
return (v+1);

}

int f3(int v) {
return (v+1);

}

I Create a clone for each unique calling context and then apply
context-insensitive analysis

I Is this the same as inlining?
I See textbook for a differentiating example

Interprocedural Points-To Analysis?

Next class ...

Outline

Introduction to Points-to analysis

Points-to Analysis

Interprocedural Analyses

Postscript

References

I Chapter 12 of the Dragon Book
I Section 12.1
I Section 12.4

	Introduction to Points-to analysis
	Points-to Analysis
	Interprocedural Analyses
	Postscript

