CSC2/455 Software Analysis and Improvement Loop Transformations

Sreepathi Pai

URCS
April 3, 2019

Outline

Execution Order

Postscript

Outline

Execution Order

Postscript

Running Example

```
for(i = 0; i <= 5; i++) {
    for(j = i; j <= 7; j++) {
        Z[j, i] = 0;
    }
}
```

Dependences?

Dependences

The statements in this loop do not have any dependence.

Execution Order (Default)

$$
\begin{aligned}
& \begin{array}{rc}
{[0,0]} & {[1,0]}
\end{array}[2,0]\left[\begin{array} { l l }
{ [3 , 0] } & { [4 , 0] }
\end{array} [5 , 0] \left[\begin{array}{ll}
{[6,0]} & {[7,0]} \\
{[1,1]} & {[2,1]}
\end{array}[3,1][4,1][5,1][6,1][7,1]\right.\right. \\
& {[2,2][3,2][4,2][5,2][6,2][7,2]} \\
& {[3,3][4,3][5,3][6,3][7,3]} \\
& \begin{array}{r}
{[4,4]} \\
\\
\\
{[5,5]}
\end{array}\left[\begin{array}{cc}
{[6,4]}
\end{array}[7,4]\right.
\end{aligned}
$$

Assuming row-major ordering, what can you say about the locality of this execution order?

Execution Order (New)

```
[0, 0]
[1, 0] [1, 1]
[2, 0] [2, 1] [2, 2]
[3, 0] [3, 1] [3, 2] [3, 3]
[4, 0] [4, 1] [4, 2] [4, 3] [4, 4]
[5, 0] [5, 1] [5, 2] [5, 3] [5, 4] [5, 5]
[6, 0] [6, 1] [6, 2] [6, 3] [6, 4] [6, 5]
[7, 0] [7, 1] [7, 2] [7, 3] [7, 4] [7, 5]
```


Changing the order

```
for(i = 0; i <= 5; i++) {
    for(j = i; j <= 7; j++) {
        Z[j, i] = 0;
    }
}
```

What would the loop indices need to be if I wanted to execute j as the outermost loop？

```
for(j = ?; j <= ?; j++) {
    for(i = ?; i <= ?; i++) {
        Z[j, i] = 0;
    }
}
```


New Loop Bounds

$$
\begin{aligned}
& \operatorname{for}(j=0 ; j<=7 ; j++)\{ \\
& \quad \operatorname{for}(i=0 ; i<=\min (5, j) ; i++)\{ \\
& \quad Z[j, i]=0 ;
\end{aligned}
$$

The Problem

- Given:
- a set of affine constraints (inequalities) defining the iteration space
- an "preferred" execution order
- Can we generate a set of loop bounds for each loop in the loop nest?

Running Example

$$
\begin{gathered}
0 \leq i \\
i \leq 5 \\
i \leq j \\
j \leq 7
\end{gathered}
$$

- Order i (innermost loop) to j (outermost loop)

What are the loop bounds for j ?

Let's eliminate i :

$$
\begin{gathered}
0 \leq i \\
i \leq 5 \\
i \leq j \\
j \leq 7
\end{gathered}
$$

Loop bound for j（1）

Rearrange equations so that they are all in the form：

$$
\begin{aligned}
L \leq & c_{1} x_{m} \\
& c_{2} x_{m} \leq U
\end{aligned}
$$

－c_{1}, c_{2}, \ldots are constants，x_{m} is the index variable
－L and U are constraint expressions（possibly containing other variables）
－yields new constraint：$c_{2} L \leq c_{1} U$ with x_{m} eliminated！

What are the loop bounds for j ?

Let's eliminate i :

$$
\begin{aligned}
0 \leq & 1 i \\
& 1 i \leq 5 \\
& 1 i \leq j \\
& j \leq 7
\end{aligned}
$$

yields:
$0 \leq 5$
$0 \leq j$
$j \leq 7$

What are the loop bounds for i?

Let's eliminate j :

$$
\begin{aligned}
& 0 \leq i \\
& i \leq 5 \\
& i \leq 1 j \\
& \\
& \quad 1 j \leq 7
\end{aligned}
$$

yields:

$$
\begin{aligned}
0 & \leq i \\
i & \leq 5 \\
i & \leq 7
\end{aligned}
$$

Results

－ $0<=j<=7$ when i eliminated
－ $0<=i<=5$ when j eliminated－but this is original loop bounds
－not entirely unsurprising！
－This method is called Fourier－Motzkin elimination
－Can project one dimension at a time
－Now，need to iteratively construct projections

Fourier-Motzkin Elimination

- S is the original set of iteration space constraints
- C is the set of constraints involving x_{m}
- Form constraint $c_{2} L \leq c_{1} U$ with x_{m} eliminated for each pair of L and U in C
- Add to set $C_{\text {new }}$ if satisfiable
- Else projection is not possible since S is unsatisfiable (and hence contains 0 points)
- The projection is $S^{\prime}=S-C+C_{n e w}$

Algorithm 11.11 in the Dragon Book.

Computing New Loop Bounds Iteratively

- Let S_{n} be the original iteration space constraints
- Let ordering of variables be v_{1} (outermost) to v_{n} (innermost)
- I.e. $v=[j, i]$
- In reverse order i from n to 1 :
- Let $L_{v_{i}}$ be lower bound constraints on v_{i} in S_{i}
- Let $U_{v_{i}}$ be upper bound constraints on v_{i} in S_{i}
- Let S_{i-1} be the result of Fourier-Motzkin elimination of v_{i} in S_{i}
- In order of v_{1} to v_{n} :
- Remove any redundant constraints in $L_{v_{i}}$ and $U_{v_{i}}$ implied by cumulative previous lower bound and upper bound constraints

Figure 11.15 in the Dragon Book.

For our example

- S_{2} was original iteration space constraints
- $L_{i}: 0<=i$
- $U_{i}: i<=5, i<=j$ implies $i<=\min (5, j)$
- S_{1} is $0<=j$ and $j<=7$ (i.e. i was eliminated)
- $L_{j}: 0<=j$
- $U_{j}: j<=7$

More than permutations: Traversal Axis

- Original loop was iteration in 2-D space.
- Say, j was x-axis and i was y-axis
- Original loop with i outermost traversed "horizontally" (along x-axis) first
- Outermost j traversed "vertically" first
- Now we want to traverse "diagonally"

How can we traverse diagonally?

```
[0, 0] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5]
[1, 0] [2, 1] [3, 2] [4, 3] [5, 4] [6, 5]
[2, 0] [3, 1] [4, 2] [5, 3] [6, 4] [7, 5]
[3, 0] [4, 1] [5, 2] [6, 3] [7, 4]
[4, 0] [5, 1] [6, 2] [7, 3]
[5, 0] [6, 1] [7, 2]
[6, 0] [7, 1]
[7, 0]
```


Add new constraints

－$k=j-i$ is a constant in inner loop，increasing from 0 to 7 across outer loop
－Substitute $i=j-k$ in the original constraints：
－ $0 \leq j-k \leq 5$
－$j-k \leq j \leq 7$
－Order loop in k, j order
－$L_{j}: k<=j$
－$U_{j}: j<=7, j<=5+k$
－$L_{k}: 0$
－$L_{k}: 7$

Result

```
for(k = 0; k <= 7; k++) {
    for(j = k; j <= min(7, 5 + k); j++) {
        Z[j, j - k] = 0;
    }
}
```

If loop traversal order can be specified as an affine transformation， then the loop bounds can be generated as usual．
－Not all traversal orders are affine
－Deciding which axis to traverse is a harder problem
－For example，to improve locality or parallelism or both！
－Recall transformations from last class．

Affine Transformations Workflow

－Identify loops with affine iteration spaces
－Compute dependences
－Figure out transforms of affine spaces
－must respect dependences
－may optimize other metrics（e．g．locality，parallelism）
－Generate loops such that：
－Dependence constraints are met
－Transformed iteration space constraints are met
－Parallelize resulting loops
－Vectorization
－Software Pipelining

Software Pipelining

```
for(i = 1; i <= m; i++)
    for(j = 1; j <= n; j++)
        X[i] = X[i] + Y[i, j];
```

－Inner loop is sequential
－Outer loop can be parallelized
－Processor i handles loop iteration i of outer loop

Software Pipelined Loop

Each iteration of the inner loop is executed on a different processor, with data being passed from one processor to another.

$$
\begin{array}{cccc}
& \mathrm{P} 0 & \mathrm{P} 1 & \mathrm{P} 3 \\
\mathrm{X}[1] & +=\mathrm{Y}[1,1] & & \\
\mathrm{X}[2] & +=\mathrm{Y}[2,1] & \mathrm{X}[1] & +=\mathrm{Y}[1,2] \\
\mathrm{X}[3] & +=\mathrm{Y}[3,1] & \mathrm{X}[2] & +=\mathrm{Y}[2,2]
\end{array} \mathrm{X}[1]+=\mathrm{Y}[1,3]
$$

What are the advantages of doing this?

Stuff we did not cover

- Loop tiling/blocking
- Simple, see textbook
- Many other loop transformations
- See the slides in the readings on polyhedral compilation posted on Blackboard

Outline

Execution Order

Postscript

References

- Chapter 11 of the Dragon Book
- Section 11.3.2 of the Dragon Book
- Section 11.9 of the Dragon Book

