
CSC2/455 Software Analysis and Improvement
Vectorization

Sreepathi Pai

URCS

March 25, 2019



Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript



Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript



Loop optimizations so far

I Important applications
I Scientific computing
I Audio/Video processing
I Deep Learning

I Loop Dependences
I True, anti- and output dependences
I Must examine dynamic trace
I Iteration spaces, vectors, lexicographic ordering

I Identifying loop dependences
I Restrict array index functions to affine functions
I Formulate dependence testing as an ILP
I Dependence exists if solutions exist
I ILP is NP-complete

I Today
I Vectorization



Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript



Fortran 90 Vectorization

I If a loop contains a single statement
I And there is no loop-carried dependence

I its iterations are independent of each other

I Then its iterations can be executed in parallel
I “vectorization”



Example #1

DO I = 1, N
X(I) = X(I) + C

ENDDO

can be vectorized as (Fortran-specific syntax)

X(1:N) = X(1:N) + C



Example #2

DO I = 1, N
X(I+1) = X(I) + C

ENDDO

cannot be vectorized as (Fortran-specific syntax)

X(2:N+1) = X(1:N) + C

Fortran 90 semantics say that RHS uses original values.

I Serial code computes:
I X(2) = X(1) + C
I X(3) = X(2) + C = X(1) + C + C

I Vectorized code computes
I X(2) = X(1) + C
I X(3) = X(2) + C
I i.e. updates on the LHS are not reflected in RHS until the

entire statement has finished executing



Example #3

DO I = 1, N
S1: A(I + 1) = B(I) + C
S2: D(I) = A(I) + E
ENDDO

Note loop-carried dependence S1 δ S2
Can this be vectorized?



Example #3: Vectorized by Distribution

DO I = 1, N
S1: A(I + 1) = B(I) + C
ENDDO
DO I = 1, N
S2: D(I) = A(I) + E
ENDDO

I Loop ”distribution”

A(2:N+1) = B(1:N) + C
D(1:N) = A(1:N) + E



Example #4

DO I = 1, N
S1: B(I) = A(I) + E
S2: A(I + 1) = B(I) + C
ENDDO

I Which dependences exist?

I Can this loop be vectorized by distributing?



Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript



Simple Dependence Tests

Goal: Find dependences by examining indices.

DO I = 1, N
A(I + 1) = A(I) + B

ENDDO

Is there a read-after-write dependence from A(I + 1) in iteration
I0 to the read A(I) in a subsequent iteration?

I0 + 1 = I0 + ∆I

What value of ∆I satisfies this equation?



True dependence testing

I0 + 1 = I0 + ∆I

is satisfied by

I ∆I = 1

I 1 > 0 (later, so true dependence, i.e. read after write)

I 1 < N (will execute, assuming N > 1)

I dk(i) = 1, so Dk(i) = (<)



Anti-dependence testing

Is there a write-after-read dependence from the read A(I) in
iteration I0 to the write A(I + 1) in a subsequent iteration?

I0 + 1 + ∆I = I0

is satisfied by:

I ∆I = −1

I −1 < 0, (earlier, no anti-dependence (i.e. write after read)
found)

What if the write was A(I - 1)?



Multiple (Separable) Indices

DO J = 1, 100
DO I = 1, 100

S1: A(I+1) = A(I) + B(J)
ENDDO

ENDDO

I True dependence for S1 in loop I is <
I Note that J does not appear in indices for A

I But there is a dependence!



The * dependence direction

I Can’t write equations for J though, so we assume “*” in
direction vector
I (∗, <)
I (<,<), (=, <), (>,<)
I Level-1 (i.e. J-level) true dependence
I Level-2 (i.e. I-level) true dependence
I Level-1 anti-dependence



Dependence Graphs

I Nodes are statements
I Edges are dependences

(from source to sink)
I δk , δ

−1
k , δok

S1 δ1, δ2, δ1
-1



Ordering in a dependence graph

I Recall, for a moment, the data flow graph used in instruction
scheduling of basic blocks

I How would you generate a linear order of instructions from
the DAG that respected the dependences?



Vectorizable

DO I = 1, N
S1: A(I + 1) = B(I) + C
S2: D(I) = A(I) + E
ENDDO

S1

S2

δ1



Not Vectorizable

DO I = 1, N
S1: B(I) = A(I) + E
S2: A(I + 1) = B(I) + C
ENDDO

S1

S2

δinfδ1



Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript



Will it vectorize? Example #5

DO I = 1, N
DO J = 1, M

S1: A(I+1, J) = A(I, J) + B
ENDDO

ENDDO

S1 δ1



Example #5: Vectorized at level 2

DO I = 1, N
A(I+1, 1:M) = A(I, 1:M) + B

ENDDO

S1



Final Example

DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J, N)

DO K = 1, 100
S3 A(J+1, K) = B(J) + C(J, K)

ENDDO

S4 Y(I+J) = A(J+1, N)
ENDDO

ENDDO



Step #1: Build Dependence Graph D



Step #2: Find Strongly Connected Components in D

I SCCs isolate cyclic regions

I Use Tarjan’s algorithm

I Yields SCCs Si



Step #3: Construct Rπ

I Construct a graph Rπ,
where each node πi
corresponds to a SCC Si
I Si is a SCC in D

I Connect nodes πi using
induced dependence graph
Dπ

I I.e., if there was an edge
between a node in Si and
a node in Sj , induce an
edge between πi and πj

S1

{S2, S3, S4}

δ1



Step #4: Toposort Rπ

I Rπ is now a DAG

I Order nodes πi of graph Rπ using topological sort



Step #5: Recurse into πi (if πi is cyclic)

I If a node πi is cyclic
I Loop at this level must be

executed serially

I However, inner loops may be
vectorizable, so
I Generate a new

dependence graph with
only dependences for
inner levels

I Recurse into this graph,
starting from Step #1

Algorithm codegen (Figure 2.2)
in Allen and Kennedy.

S2

S3

δinfδ2

S4

δinf

{S2, S3}

S4

δinf

S2

S3

δinf



Step #6: Vectorize each node πi in Rπ (if possible)

I Process nodes πj in topological order
I Is πj acyclic?

I Vectorize!

I Substitute all loop indices in inner dimensions with vectors



Result

DO I = 1, 100
DO J = 1, 100

B(J) = A(J, N)

A(J+1, 1:100) = B(J) + C(J, 1:100)
ENDDO

Y(I+1:I+100) = A(2:101, N)

ENDDO

X(1:100) = Y(1:100) + 10



Next steps

I More elaborate dependence testing
I Loop transformations

I Improve locality
I Improve parallelism



Outline

Review

Vectorization

Vectorization Algorithm Building Blocks

Vectorization Algorithm

Postscript



References

I Allen and Kennedy, Chapter 2, Sections 2.3 and 2.4


	Review
	Vectorization
	Vectorization Algorithm Building Blocks
	Vectorization Algorithm
	Postscript

