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Loop optimizations so far

I Important applications
I Scientific computing
I Audio/Video processing
I Deep Learning

I Loop Dependences
I True, anti- and output dependences
I Must examine dynamic trace
I Iteration spaces, vectors, lexicographic ordering

I Identifying loop dependences
I Restrict array index functions to affine functions
I Formulate dependence testing as an ILP
I Dependence exists if solutions exist
I ILP is NP-complete

I Today
I Vectorization
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Fortran 90 Vectorization

I If a loop contains a single statement
I And there is no loop-carried dependence

I its iterations are independent of each other

I Then its iterations can be executed in parallel
I “vectorization”



Example #1

DO I = 1, N
X(I) = X(I) + C

ENDDO

can be vectorized as (Fortran-specific syntax)

X(1:N) = X(1:N) + C



Example #2

DO I = 1, N
X(I+1) = X(I) + C

ENDDO

cannot be vectorized as (Fortran-specific syntax)

X(2:N+1) = X(1:N) + C

Fortran 90 semantics say that RHS uses original values.

I Serial code computes:
I X(2) = X(1) + C
I X(3) = X(2) + C = X(1) + C + C

I Vectorized code computes
I X(2) = X(1) + C
I X(3) = X(2) + C
I i.e. updates on the LHS are not reflected in RHS until the

entire statement has finished executing



Example #3

DO I = 1, N
S1: A(I + 1) = B(I) + C
S2: D(I) = A(I) + E
ENDDO

Note loop-carried dependence S1 δ S2
Can this be vectorized?



Example #3: Vectorized by Distribution

DO I = 1, N
S1: A(I + 1) = B(I) + C
ENDDO
DO I = 1, N
S2: D(I) = A(I) + E
ENDDO

I Loop ”distribution”

A(2:N+1) = B(1:N) + C
D(1:N) = A(1:N) + E



Example #4

DO I = 1, N
S1: B(I) = A(I) + E
S2: A(I + 1) = B(I) + C
ENDDO

I Which dependences exist?

I Can this loop be vectorized by distributing?
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Simple Dependence Tests

Goal: Find dependences by examining indices.

DO I = 1, N
A(I + 1) = A(I) + B

ENDDO

Is there a read-after-write dependence from A(I + 1) in iteration
I0 to the read A(I) in a subsequent iteration?

I0 + 1 = I0 + ∆I

What value of ∆I satisfies this equation?



True dependence testing

I0 + 1 = I0 + ∆I

is satisfied by

I ∆I = 1

I 1 > 0 (later, so true dependence, i.e. read after write)

I 1 < N (will execute, assuming N > 1)

I dk(i) = 1, so Dk(i) = (<)



Anti-dependence testing

Is there a write-after-read dependence from the read A(I) in
iteration I0 to the write A(I + 1) in a subsequent iteration?

I0 + 1 + ∆I = I0

is satisfied by:

I ∆I = −1

I −1 < 0, (earlier, no anti-dependence (i.e. write after read)
found)

What if the write was A(I - 1)?



Multiple (Separable) Indices

DO J = 1, 100
DO I = 1, 100

S1: A(I+1) = A(I) + B(J)
ENDDO

ENDDO

I True dependence for S1 in loop I is <
I Note that J does not appear in indices for A

I But there is a dependence!



The * dependence direction

I Can’t write equations for J though, so we assume “*” in
direction vector
I (∗, <)
I (<,<), (=, <), (>,<)
I Level-1 (i.e. J-level) true dependence
I Level-2 (i.e. I-level) true dependence
I Level-1 anti-dependence



Dependence Graphs

I Nodes are statements
I Edges are dependences

(from source to sink)
I δk , δ

−1
k , δok

S1 δ1, δ2, δ1
-1



Ordering in a dependence graph

I Recall, for a moment, the data flow graph used in instruction
scheduling of basic blocks

I How would you generate a linear order of instructions from
the DAG that respected the dependences?



Vectorizable

DO I = 1, N
S1: A(I + 1) = B(I) + C
S2: D(I) = A(I) + E
ENDDO

S1

S2

δ1



Not Vectorizable

DO I = 1, N
S1: B(I) = A(I) + E
S2: A(I + 1) = B(I) + C
ENDDO

S1

S2

δinfδ1
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Will it vectorize? Example #5

DO I = 1, N
DO J = 1, M

S1: A(I+1, J) = A(I, J) + B
ENDDO

ENDDO

S1 δ1



Example #5: Vectorized at level 2

DO I = 1, N
A(I+1, 1:M) = A(I, 1:M) + B

ENDDO

S1



Final Example

DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J, N)

DO K = 1, 100
S3 A(J+1, K) = B(J) + C(J, K)

ENDDO

S4 Y(I+J) = A(J+1, N)
ENDDO

ENDDO



Step #1: Build Dependence Graph D



Step #2: Find Strongly Connected Components in D

I SCCs isolate cyclic regions

I Use Tarjan’s algorithm

I Yields SCCs Si



Step #3: Construct Rπ

I Construct a graph Rπ,
where each node πi
corresponds to a SCC Si
I Si is a SCC in D

I Connect nodes πi using
induced dependence graph
Dπ

I I.e., if there was an edge
between a node in Si and
a node in Sj , induce an
edge between πi and πj

S1

{S2, S3, S4}

δ1



Step #4: Toposort Rπ

I Rπ is now a DAG

I Order nodes πi of graph Rπ using topological sort



Step #5: Recurse into πi (if πi is cyclic)

I If a node πi is cyclic
I Loop at this level must be

executed serially

I However, inner loops may be
vectorizable, so
I Generate a new

dependence graph with
only dependences for
inner levels

I Recurse into this graph,
starting from Step #1

Algorithm codegen (Figure 2.2)
in Allen and Kennedy.

S2

S3

δinfδ2

S4

δinf

{S2, S3}

S4

δinf

S2

S3

δinf



Step #6: Vectorize each node πi in Rπ (if possible)

I Process nodes πj in topological order
I Is πj acyclic?

I Vectorize!

I Substitute all loop indices in inner dimensions with vectors



Result

DO I = 1, 100
DO J = 1, 100

B(J) = A(J, N)

A(J+1, 1:100) = B(J) + C(J, 1:100)
ENDDO

Y(I+1:I+100) = A(2:101, N)

ENDDO

X(1:100) = Y(1:100) + 10



Next steps

I More elaborate dependence testing
I Loop transformations

I Improve locality
I Improve parallelism
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