CSC2/455 Software Analysis and Improvement Array/Loop Dependence Analysis

Sreepathi Pai

URCS
March 20, 2019

Outline

Characterizing loop dependences

Identifying Loop Dependences

Distance and Direction Vectors

Postscript

Outline

Characterizing loop dependences

Identifying Loop Dependences

Distance and Direction Vectors

Postscript

Dependences

－Definition：Two dynamic statements have a dependence if：
－Both access same location（memory or register）
－And one of the accesses is a write
－Dynamic required，since we＇re talking about loops（examples later）

Dependence types

S_{1} occurs "earlier" than S_{2} (in the dynamic trace)

- True dependence
- $S_{1} \delta S_{2}$
- S_{1} writes, S_{2} reads
- Anti-dependence
- $S_{1} \delta^{-1} S_{2}$
- S_{1} reads, S_{2} writes
- Output dependence
- $S_{1} \delta^{\circ} S_{2}$
- Both S_{1} and S_{2} write

Loop-independent dependence

- What are the dependences in the loop body below?
- Can you change the order of the statements in the loop body?

$$
\begin{array}{rl}
\mathrm{DO} & I=0,9 \\
\mathrm{~A}(\mathrm{I}) & =\mathrm{A}(\mathrm{I})+B \\
\mathrm{C}(\mathrm{I}) & =\mathrm{A}(\mathrm{I})+D
\end{array}
$$

ENDDO

- Can you change the (execution) order of loop iterations?

Note: FORTRAN uses parentheses in array references: e.g., A(I). FORTRAN arrays usually start at 1 , but for this lecture, we will assume they start at 0 .

Loop－independent dependences visualized

NOTE：Only dependences from first four iterations visualized．

Loop-carried dependences

- What are the dependences in the loop body below?
- Can you change the order of the statements in the loop body?

```
DO I = 0, 9
    A(I + 1) = A(I) + B
        C(I) = A(I) + D
ENDDO
```

- Can you change the (execution) order of loop iterations?

Loop－carried dependences visualized

NOTE：Only dependences from first three iterations visualized．

Dependence Level for Loop－Carried Dependences

```
DO \(\mathrm{I}=0,9\)
    DO \(\mathrm{J}=0,1\)
        \(A(I+1, J)=A(I, J)+1\)
    ENDDO
ENDDO
```

－Can you change the order of inner loop？
－Can you change the order of the outer loop？

Dependences Visualized

NOTE：Only dependences from first three iterations visualized．

Loop Dependences

－Loop－independent dependence
－In same iteration，independent of loops
－Loop－carried dependence
－Across different iterations of atleast one loop
－Dependence Level of a Loop－carried Dependence
－The nesting level k of loop that carries the dependence
－$S_{1} \delta_{k} S_{2}$

Iteration Spaces

$$
\begin{aligned}
& \text { DO I = 1, } 2 \\
& \text { DO } \mathrm{J}=1,2 \\
& \text { S } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

－S has four instances $(I, J):(1,1),(1,2),(2,1),(2,2)$
－Each of these values represents an iteration vector
－Particular values of loop indices
－Ordered from outermost loop to innermost loop

Iteration Space Example

```
DO J = 1, 10
    DO I = 1, 10
        \(\mathrm{A}(\mathrm{I}+1, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{J})+\mathrm{X}\)
    ENDDO
ENDDO
```

Assuming A starts from 1. FORTRAN allows you to change the "origin" of arrays.

Iteration Space Figure

Iteration Vector Ordering (Definition)

For two vectors $i=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and $j=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$, each containing n elements, $i<j$ if there exists $m \in[0, n)$, such that:

- $i_{x}=j_{x}$ for $x<m$
- $i_{m}<j_{m}$

Iteration Vector Ordering（Code）

For two vectors i and j ，each containing n elements，$i<j$ is defined as：

```
def lessthan(i, j, n):
    if n == 1:
        return i[0] < j[0]
    # test prefix for elementwise-equality
    if i[0:n-1] == j[0:n-1]:
        return i[n-1] < j[n-1]
    else:
        return lessthan(i, j, n-1)
```

Can similarly define other order relations．

Loop dependence

Dependence from Statement S1（source）to statement S2（sink）if：
－There exist iteration vectors i and j such that $i<j$ or $i=j$
－There is a path from S 1 to S 2 in the loop
－ S 1 accesses memory location M in iteration i
－ S 2 accesses memory location M in iteration j
－and one of the accesses is a write

Outline

Characterizing loop dependences

Identifying Loop Dependences

Distance and Direction Vectors

Postscript

Generalizing Loop Indices

```
DO I_1 = ...
    DO I_2 = ...
    DO I_N =
        A(f1, f2, f3, ..., fM) = ...
        ... = A(g1, g2, g3, ..., gM)
        ENDDO
    ENDDO
ENDDO
```

where A is M-dimensional array, and $\mathrm{f} X$ and $\mathrm{g} X$ are index functions of the form

- f $X($ I_1, I_2, ..., I_N $)$
- $\mathrm{g} X($ I_1, I_2,.., I _N $)$
- $1<=X<=M$

Dependence using Iteration Vectors

Let α and β be iteration vectors:

- $\alpha=\left(i_{1}, i_{2}, i_{3}, \ldots, i_{N}\right)$
- $\beta=\left(i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}, \ldots, i_{N}^{\prime}\right)$

Then a dependence exists if:

- (vectors) $\alpha<\beta$
- $f X(\alpha)=g X(\beta)$, for $1<=X<=M$

Example

$$
\begin{aligned}
& \text { DO } \mathrm{J}=0,9 \\
& \mathrm{DO} \mathrm{I}=0,9 \\
& \mathrm{~A}(\mathrm{I}+1, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{~J})+\mathrm{X} \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

- $f 1(J, I)=I+1, f 2(J, I)=J$
- $g 1(J, I)=I, g 2(J, I)=J$
- For $\alpha=(0,0)$ (i.e. $J=0, I=0)$ and $\beta=(0,1)$ (i.e.
$J=0, I=1)$:
- $f 1(\alpha)=g 1(\beta)$, i.e. $1=1$
- $f 2(\alpha)=g 2(\beta)$, i.e. $0=0$
- Many other values of α and β also satisfy these equations.

Dependence Testing

Do iteration vectors α and β exist such that:

- (vectors) $\alpha<\beta$
- $f X(\alpha)=g X(\beta)$, for $1<=X<=M$

How can we find α and β if they exist?

Restrictions on Index functions

- $f X$ and $g X$ must be decidable (i.e. computable)
- $f X$ and $g X$ must be "analyzable"
- to avoid brute force search

Affine Index Functions

－Let $f X$ and $g X$ must be affine functions of loop indices：
－i．e．for $f X\left(i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right)$
－$f X=a_{1} i_{1}+a_{2} i_{2}+\ldots+a_{n} i_{n}+e$
－e is optional loop invariant calculation（i．e．constant for the loop）

Dependence Testing on Restricted Index Functions

- Given that $f X$ and $g X$ are affine functions of loop indices
- Do iteration vectors α and β exist such that:
- (vectors) $\alpha<\beta$
- $f X(\alpha)=g X(\beta)$, for $1<=X<=M$

How can we find α and β if they exist?
What is this problem better known as? Hint: an affine function is
a linear function plus constant.

Dependence Testing

－Integer Linear Programming is NP－complete
－Lots of heuristics invented
－Profitable to know if no solution exists since it implies no dependence！
－See Chapter 3 of AK
－Or Chapter 11 of the Dragon Book
－We will cover this in a later class

Outline

Characterizing loop dependences

Identifying Loop Dependences

Distance and Direction Vectors

Postscript

Representing Dependences

Do we need to track all the iterations that have a dependence explicitly (e.g. in a list)?

Distance Vectors

$$
d(i, j)_{k}=j_{k}-i_{k}
$$

- Where $i, j, d(i, j)$ are n-element vectors
- i_{k} indicates k-th element of i

Example distance vector: $(0,1)$

Direction Vectors

$$
\begin{aligned}
& D(i, j)_{k}= \\
& \quad "<", \text { if } d(i, j)_{k}>0 \\
& \quad "=", \text { if } d(i, j)_{k}=0 \\
& >">", \text { if } d(i, j)_{k}<0
\end{aligned}
$$

Example direction vector for $(0,1):(=,<)$

Information we need to track

For every pair of memory references:

- Iteration Vectors i and j which have a dependence, or
- Unique Distance Vectors $d(i, j)$, or
- Unique Direction Vectors $D(i, j)$

Test

- Which of these indicates a loop-independent dependence?
- $(=,=)$
- $(=,<)$
- Of the loop-carried dependence in example above, what level is the loop-carried dependence?

Theorems

WARNING: Informal language

- Direction Vector Transform (Theorem 2.3 in AK)
- If a transformation reorders loop iterations, and preserves the leftmost non-" =" component as " $<$ ", all dependences are preserved.
- Theorem 2.4 in AK
- If a level- k dependence exists, and a transformation reorders loop iterations while not reordering the level- k loop
- And does not move loops inside k outside the loop and vice versa
- It preserves all level-k dependences.
- Iteration Reordering (Theorem 2.6 in AK)
- Iterations of a level k loop can be reordered if there is no level k dependence.

Outline

Characterizing loop dependences

Identifying Loop Dependences

Distance and Direction Vectors

Postscript

References

- Much of this lecture is based on AK, Chapter 2.
- Chapter 11 of the Dragon Book also presents this information, but differently.

