
CSC2/455 Software Analysis and Improvement
Introduction to Loop Optimizations

Sreepathi Pai

URCS

March 18, 2019



Outline

Review

Loop Transformations

Postscript



Outline

Review

Loop Transformations

Postscript



Optimizations

I Part I: Analysis
I Iterative Dataflow Analysis
I SSA Form

I Part II-A: Optimization
I Dead Code Elimination
I Partial Redundancy Elimination

I Part II-B: Loop Optimizations
I Dependence Analysis
I Loop Transformations

I Part III: Code Generation
I Instruction Selection
I Instruction Scheduling
I Register Allocation

I Part IV: Advanced Topics



Remainder of the course

I Loop Optimization

I Use LLVM
I Advanced Topics

I Interprocedural Analysis
I Type Inference
I Abstract Interpretation
I Program Verification
I more, depending on time ...

I CSC455 paper reading
I 25% of final exam grade based on paper reading



Outline

Review

Loop Transformations

Postscript



Why Loop Transformations

I Potentially lots of computation
I A few operations execute many times

I Potentially lots of memory accesses
I Array-based data structures show up frequently

I Matrices, vectors, etc.

I Loops are naturally paired with arrays
I FORTRAN

I FORMula TRANslator
I World’s first high-level programming language



Important Applications

I Scientific Computing/Computational Science
I Simulation of Galaxies, Molecules, etc.
I Drug Discovery

I Audio/Video Processing
I Signal Processing
I Compression

I Machine Learning (specifically Deep Learning)
I Recognizing cats
I Showing targeted ads



Matrix Multiply – IJK

I Multiplying two matrices:
I A (m × n)
I B (n × k)
I C (m × k) [result]

I Here: m = n = k

for(ii = 0; ii < m; ii++)
for(jj = 0; jj < n; jj++)

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Matrix Multiply – IKJ

for(ii = 0; ii < m; ii++)
for(kk = 0; kk < k; kk++)

for(jj = 0; jj < n; jj++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];



Performance of the two versions?

I on 1024x1024 matrices of ints

I which is faster?

I by how much?



Performance of the two versions

I on 1024x1024 matrices

I Time for IJK: 0.554 s ± 0.003s (95% CI)

I Time for IKJ: 6.618 s ± 0.032s (95% CI)



What caused the nearly 12X slowdown?

I Matrix Multiply has a large number of arithmetic operations
I But the number of operations did not change

I Matrix Multiply also refers to a large number of array
elements
I Order in which they access elements changed
I But why should this matter?



Die shot of a processor (IBM Power 8)



Die shot of a processor (IBM Power 8)

extremetech

http://www.extremetech.com/computing/181102-ibm-power8-openpower-x86-server-monopoly


Motivation for a memory hierarchy

I Not all memory types are equal
I Consider: SRAM, DRAM and magnetic storage

I Speed to access data
I Depends on size and type of memory
I SRAM > DRAM > Magnetic storage

I Density of storing data
I Bits per square millimeter
I SRAM < DRAM < Magnetic storage



The Memory Hierarchy – Part I

I Registers
I managed by compiler
I “logic”

I L1 cache
I small (10s KB), usually 1-cycle access
I SRAM (also “logic”)

I L2 cache
I largish (100s KB), 10s of cycles
I SRAM

I ...



The Memory Hierarchy – Part II

I L3 cache
I usually on multicores
I much larger (MB), 100s of cycles
I SRAM or (recently) embedded DRAM

I DRAM
I off-chip, large (GB)

I HDD
I Magnetic/Rotating Storage (TBs)
I Flash memory (GBs)



Performance of the hierarchy?

Why structure memory in a hierarchy?

I Each level of hierarchy adds a delay
I Time to access memory increases!

I Or does it?



Performance of the hierarchy

I Structures in memory hierarchy duplicate data stored further
away
I original meaning of the word cache

I If data is found closer to processor (i.e. hit), read it from there

I Otherwise (i.e. miss), pass request to next level of the
hierarchy



Why the hierarchy works in practice

I Data Reuse (or “locality”)
I Temporal (same data will be referred again)
I Spatial (data close to each other in space will be referred close

to each other in time)

I Speed differences
I Time to access L1: 1ns
I Branch mispredict: 3ns
I Time to access L2: 4ns
I Main memory access time: 100ns
I SSD access time: 16µs
I Rotating media access time: < 5 ms
I From Latency Numbers Every Programmer Should Know

http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html


The cache equation (informal)

Assume a one-level cache (i.e. cache + RAM):

latency = latencyhit

or
latency = latencymiss



The cache equation for one level of caches

latencyavg = (fractionhit) ∗ latencyhit + (1− fractionhit) ∗ latencymiss



Goal 1 of Loop Transformation: Improve Locality

Can we analyze a program’s locality? Can we change the program
to get better locality [and hence, better performance]?



Parallel Processing

I Our matrix was 1024x1024
I 1 million output elements

I Each output matrix entry can be calculated independently of
others
I (Informally) Does not need other output values



Embarrassingly Parallel

I On a shared-memory machine with N processors
I Shared memory: Each processor can “see” the same memory
I I.e. your mobile phone and most modern desktops

I Each processor can be given (1024 × 1024)/N output
elements
I “Embarrassingly Parallel”

I Potentially reduce time by (up to) N



Embarrassingly Serial?

Consider a single processor’s work:

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];

Must this be executed serially?



Reductions

I Addition is associative

I Split up arrays into K parts

I Compute the sum of each part separately (in parallel)
I Combine the sums

I Tree reduction



Goal 2 of Loop Transformations: Exploit Parallelism

I Known as “vectorization”
I Coarse-grain

I Thread-level parallelism (across cores)

I Fine-grain
I SIMD-style parallelism (within a core)



Loop Interchange

for(ii = 0; ii < m; ii++)
for(jj = 0; jj < n; jj++)

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];

I 3 loops, 6 possible orderings
I All 6 orderings are “correct”

I How do we know?
I How can a compiler figure this out?

I The 6 orderings do not perform the same
I How can a compiler analyse this?



When are Loop Transformations Correct?

I Loosely speaking, loop transformations change ordering of
operations in loops
I to improve locality
I to increase parallelism

I These transformations are legal only if:
I (too restrictive) they preserve the semantics of the original

program
I (less restrictive) they preserve the dependences of the original

program



Outline

Review

Loop Transformations

Postscript



Next class

I Dependence Analysis

I Computational Geometry



References

I Dragon Book, Chapter 11

I Allen and Kennedy


	Review
	Loop Transformations
	Postscript

