
CSC2/455 Software Analysis and Improvement
Dead Code Elimination

Sreepathi Pai

URCS

February 20, 2019



Outline

Review

Dead Code Elimination

Postscript



Outline

Review

Dead Code Elimination

Postscript



So far

I Source code

I Three-address form

I Control-flow graphs

I SSA form

I Data flow analyses



Outline

Review

Dead Code Elimination

Postscript



Definitions

I Dead code
I Useless operation: Not externally visible
I Unreachable code: Cannot be executed

I Critical operation: (Direct) “Useful operation”
I Operation that computes return value
I Operation that stores to memory (i.e. is externally visible)
I Operation that performs I/O
I ...



Two Steps: Step 1

I Find all directly useful operations and mark them
I Find all indirectly useful operations and mark them

I I.e. those that feed into directly useful operations

I Iterate until all operations that ultimately feed into directly
useful operations have been found and marked



Two Steps: Step 2

I Remove all operations that remain unmarked



Example #1

void swap(int *x, int *y) {
int t;

t = *x;
*x = *y;
*y = t;

}



Example #2

int min(int x, int y) {
int r;

if (x > y) {
r = y;

} else {
r = x;

}

return r;
}



Example #2: 3AC

int min(int x, int y) {
int r;
int t;

t = x > y;
if(t == 0) goto L1;

r = y;
goto L2;

L1:
r = x;

L2:
return r;

}



Example #2: With useless operations removed

int min(int x, int y) {
int r;

r = y;
r = x;

return r;
}

I Marking and removing useless operations uses only dataflow
information

I Must also preserve control flow (i.e. control dependences)
I How to identify useful branches?



Handling Control Flow

I Assume all “jumps” (unconditional branches) are useful
I i.e. goto Lx

I What about conditional branches?



Conditional Branches: Example

int first_N_sum(int N) {
int s = 0;

for(int i = 1; i <= N; i++)
s = s + i;

return N * (N + 1) / 2;
}



3AC code for conditional branches

int first_N_sum(int N) {
int s = 0;
int i, t;

i = 1;
L1:

t = i <= N;
if(t == 0) goto L2;

s = s + i;
i++;
goto L1;

L2:
return N * (N + 1) / 2;

}

How do we recognize that the conditional branch is useless in this
case?



GCC 8.2 for x86-64 (-O0)
first_N_sum(int):

push rbp
mov rbp, rsp
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-4], 0 ; s = 0
mov DWORD PTR [rbp-8], 1 ; i = 1

.L3:
mov eax, DWORD PTR [rbp-8]
cmp eax, DWORD PTR [rbp-20]
jg .L2
; s = s + i
mov eax, DWORD PTR [rbp-8]
add DWORD PTR [rbp-4], eax
add DWORD PTR [rbp-8], 1
jmp .L3

.L2:
mov eax, DWORD PTR [rbp-20]
add eax, 1
imul eax, DWORD PTR [rbp-20]
mov edx, eax
shr edx, 31
add eax, edx
sar eax
pop rbp
ret



GCC 8.2 for x86-64 (-O1)

first_N_sum(int):
test edi, edi
jle .L2
lea edx, [rdi+1]
mov eax, 1 ; i = 1

.L3:
add eax, 1 ; i = i + 1
cmp eax, edx
jne .L3

.L2:
lea eax, [rdi+1]
imul edi, eax
mov eax, edi
shr eax, 31
add eax, edi
sar eax
ret



GCC 8.2 for x86-64 (-O2)

first_N_sum(int):
lea eax, [rdi+1]
imul edi, eax
mov eax, edi
shr eax, 31
add eax, edi
sar eax
ret

All compiler output examples obtained using the Compiler Explorer.

https://www.godbolt.org


Conditional Branches

I A conditional branch is useful only if:
I A useful operation depends on it

I Control dependence
I (informal) an operation O is dependent on a branch B if the

direction of the branch B affects if O is executed
I CFG property



Example of control dependence

t = x > y
if(t == 0) goto L1

r = y;
goto L2;

L1:
r = x;

L2:
return r;

The assignments to r are dependent on if(t == 0), but return
r is not



Control dependence in the CFG

ENTRY

t = x > y

EXIT

r = y r = x

return r



Control Dependence: Formal Definition

I Postdominance
I A node n postdominates m if it occurs on all paths from m to

EXIT

I A node k is control dependent on i if:
I For a path i → j0 → j1 → ... → k , k postdominates all jx
I k does not strictly postdominate i



Marking unconditional branches useful

I If node k contains useful operations,

I And if k is control-dependent on node i ,

I Then the (conditional) branch in i is useful.
I Operationalized as:

I If block k contains useful operations
I Mark all branches in k ’s reverse dominance frontier RDF(k)

as useful
I RDF computed as DF on edge-reversed CFG



Dead Code Elimination: High-level algorithm

I Mark all directly useful operations
I Repeat until convergence

I Mark all indirectly useful operations
I Mark all unconditional branches in RDFs of useful operations

as useful

I Remove all unmarked operations

I Remove empty nodes in CFG / remove all useless control flow
See algorithms in Figure 10.1 and 10.2 in Turczon and Cooper.



Outline

Review

Dead Code Elimination

Postscript



References

I Chapter 10 of Torczon and Cooper
I Section 10.2


	Review
	Dead Code Elimination
	Postscript

