CSC2/455 Software Analysis and Improvement Live variable analysis

Sreepathi Pai

URCS
January 30, 2019

Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript

Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript

What we know how to do so far

- Basic blocks to Control Flow Graphs
- Section 5.4.3 in Cooper and Turczon
- Local optimizations (Value Numbering)

Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript

Definitions

A variable x is live at a definition (i.e. a write) if there is a subsequent read of the variable along a program path from that definition.
Can we identify live variables just by analyzing basic blocks (i.e. local analysis)?

Motivation(?)

```
void test() {
    int i;
    // begin delay
    for(i = 0; i < 10000; i++);
    // end delay
}
```


GCC without optimization

```
test():
        push rbp
        mov rbp, rsp
        mov DWORD PTR [rbp-4], 0
    .L3:
        cmp DWORD PTR [rbp-4], }999
        jg .L4
        add DWORD PTR [rbp-4], 1
        jmp .L3
    .L4 :
        nop
        pop rbp
        ret
```

Code courtesy Compiler Explorer at godbolt．org（this is more convenient than gcc－Wa if you have the Internet）

GCC with -O3

```
test():
    ret
```

Code courtesy Compiler Explorer at godbolt.org

Example 1

$$
\begin{aligned}
& x=0 ; \\
& \text { if }(y>0) \\
& x=2 ; \\
& \text { else } \\
& x=3 ;
\end{aligned}
$$

printf("\%d\n", x);

Example 2

$$
\begin{aligned}
& x=0 \\
& i=0 \\
& \text { while(i++ < 10) \{ } \\
& \quad \text { if }(i \% 3==0)\{ \\
& \quad x=0 ; \\
& \quad x=x+1 ;
\end{aligned}
$$

- Which definition(s) of x are live at entry of loop?
- Which definition(s) of x are live in the loop?
- Which definition(s) of x are live at exit of loop?

Relook at the Motivating Example

```
    i = 1;
L1:
    if(!(i < 10000)) goto L2;
    i++;
    goto L1;
    L2:
        return
```

Where in the CFG must i be "dead" to eliminate it?

Some Definitions

For a basic block s：
－ $\operatorname{DEF}(s)$（for＂defined＂）is the set of variables written by s
－USE（s）is the set of variables read by s
For the blocks below，what are the DEF and USE sets？

$$
\begin{gathered}
\text { BB_eg_0: } \\
\text { i }=\text { i }+1 \\
\text { BB_eg_1: } \\
\begin{array}{c}
a=x ; \\
x=3 ;
\end{array} \\
\text { BB2_eg_2: } \\
t=a ;
\end{gathered}
$$

In general，which variables are kept＂alive＂and which are＂killed＂ by a basic block in terms of its DEF and USE sets？

More definitions

- Upwardly exposed $\mathrm{UE}(s)$ are those variables that are read before they are written to in basic block s.
- A variable is alive in a basic block if:
- ?
- A variable is killed in a basic block if:
- ?

Finding out if a definition is live

- Start from the definition, and see if it "reaches" a use
- i.e., it is not killed on some path (in the CFG) to a use
- Start from a use, and walk backwards to see if you can reach the definition
- Repeat for all uses

When does enumerating paths work in practice?

A More Practical Way：Iterative Data flow Analysis

－Setup data flow equations
－Solve these data flow equations

Outline

> Review

> Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript

Equations for Live Variables

- Remember that each basic block has "incoming" edges (from predecessors) and "outgoing" edges (to successors).
- When is an "incoming" variable live "into" a block?
- it is in UE for that block
- When is a variable live out of a block?
- it is live into a successor block
- first try: $\operatorname{LIVEOUT}(n)=\cup_{m} \mathrm{UE}(m)$ (where $m \in \operatorname{succ}(n)$)
- what are we missing?

Complete equation

$$
\operatorname{LIVEOUT}(n)=\cup_{m \in \operatorname{succ}(n)} \mathrm{UE}(m) \cup(\operatorname{LIVEOUT}(m) \cap \overline{\operatorname{DEF}(m)})
$$

The variables live out of block n must:

- be upwardly exposed in a successor m
- OR be live out of m and NOT be killed by m (i.e. $\overline{\mathrm{DEF}(m)}$)
- note this is equivalent to $(\operatorname{LIVEOUT}(m)-\operatorname{DEF}(m))$

How would you begin solving this equation?

Iterative Data flow Analysis Algorithm for Live Variables

- Live variables is a backwards dataflow analysis
- 'Facts" flow from a node's successors to it
- Initialization:
- Compute $\operatorname{DEF}(s)$ for all blocks s
- Compute UE(s) for all blocks s
- Set LIVEOUT(s) $=\emptyset$ for all s
- Repeat (iterate):
- Compute LIVEOUT(s) for all blocks s
- Until no set LIVEOUT(s) changes - i.e. until a fixpoint is reached.

Termination and correctness

－Termination
－Note LIVEOUT（s）only increases in size or remains the same in every iteration
－What is the maximum size of LIVEOUT（s）？
－Correctness
－When the algorithm terminates，all computed LIVEOUT（s） sets satisfy the equation
－and hence meet the definition of＂liveness＂．

Quality of solution?

How does the iterative solution differ from the path-based solution?

Outline

Review

Live Variable Analysis

Live Variables using Iterative Data flow Analysis

Postscript

References

- Chapter 8 of Cooper and Turczon
- Section 8.6.1
- Also recommended:
- Aho, Lam, Sethi and Ullman, Chapter 9, Section 9.2.5

