
Performance Improvement via Always-Abort HTM

Joseph Izraelevitz
Computer Science Department

University of Rochester
Rochester, NY, USA

Email: jhi1@cs.rochester.edu

Lingxiang Xiang
Parallel Computing Lab

Intel Corporation
Santa Clara, CA, USA

Email: lingxiang.xiang@intel.com

Michael L. Scott
Computer Science Department

University of Rochester
Rochester, NY, USA

Email: scott@cs.rochester.edu

Abstract—Several research groups have noted that hardware
transactional memory (HTM), even in the case of aborts, can
have the side effect of warming up the branch predictor
and caches, thereby accelerating subsequent execution. We
propose to employ this side effect deliberately, in cases where
execution must wait for action in another thread. In doing
so, we allow “warm-up” transactions to observe inconsistent
state. We must therefore ensure that they never accidentally
commit. To that end, we propose that the hardware allow the
program to specify, at the start of a transaction, that it should
in all cases abort, even if it (accidentally) executes a commit
instruction. We discuss several scenarios in which always-abort
HTM (AAHTM) can be useful, and present lock and barrier
implementations that employ it. We demonstrate the value
of these implementations on several real-world applications,
obtaining performance improvements of up to 2.5× with almost
no programmer effort.

Keywords-hardware transactional memory; thread-level
speculation; locks; barriers

I. INTRODUCTION

Programs for multicore machines traditionally synchro-
nize access to shared memory using blocking primitives like
locks. Threads that always acquire a lock before accessing
shared data prevent each other from performing conflicting
accesses: lock-protected critical sections provide mutual
exclusion and thereby atomicity. Unfortunately, it is typically
extremely difficult to specify the minimal locking required
for correctness, and overly conservative locking can waste
significant processing resources on semantically unnecessary
busy-waiting. Other blocking primitives, such as barriers,
exhibit similar inefficiencies.

Several recent machines provide a mechanism—hardware
transactional memory (HTM)—that reduces, but does not
eliminate, the blocking due to synchronization. HTM guar-
antees that all code executed within a transaction will appear
to be atomic to all other threads without requiring them
to wait. During transaction execution, the hardware buffers
writes in space invisible to other threads, and leverages the
cache coherence protocol to detect conflicts with concurrent

This work was supported in part by NSF grants CCF-0963759, CCF-
1116055, CNS-1116109, CNS-1319417, CCF-1337224, and CCF-1422649,
and by support from the IBM Canada Centres for Advanced Study and a
Google Faculty Research award.

execution in those threads. If the transaction cannot complete
and commit its changes (due to a conflict with another
thread, overflow of speculative hardware state, or the use
of an instruction that cannot easily be isolated) it aborts,
reverting all its changes. In the wake of an abort, the
thread may either retry the transaction or revert to a differ-
ent synchronization technique—typically a fall-back lock—
to guarantee progress [1]. In contrast with locks, which
conservatively prevent data races, transactions optimistically
assume that races will not occur, and recover when this
assumption is wrong. As a result, HTM may result in higher
concurrency than would otherwise be achievable. It cannot,
however, replace locking in all scenarios: some transactions
will never or rarely complete under HTM. Transactions with
large working sets, with I/O operations, or with frequent
conflicts with other transactions will typically perform better
if rewritten to use locks. Even on machines with HTM, some
programs must wait for synchronization.

We argue that the wasted cycles spent waiting for a lock
(or other blocking construct) should be turned into useful
work whenever possible. Our inspiration is an observation
made by a number of previous authors: HTM can improve
the performance of a program, even when it never succeeds.
This effect occurs because there is sometimes a significant
“prefetching” effect in which a failed transaction, despite
leaving behind no changes to semantic state, serves to
warm up various hardware structures—in particular, the
branch predictor and caches—for future executions of the
transaction [2], [3], [4], [5]. If a failed transaction exe-
cutes sufficiently far before aborting, its subsequent attempts
(protected by either HTM or a fall-back lock) will execute
significantly faster due to this accidental prefetching. Under
certain conditions, the speed-up can be quite significant,
even if the transaction never completes under HTM. In this
sense, HTM acts as accidental thread-level speculation.

A trivial (and incorrect) use of wasted waiting cycles for
prefetching would be to start an HTM transaction while
waiting for a lock, then speculatively execute the protected
critical section. This speculative execution of the critical sec-
tion would serve to warm up the cache and branch predictor
of the waiting thread, even if the transaction is unsafe to
commit (the speculator is reading inconsistent state, so its

Text Box
PACT 2017

int x = 0; int y = 0; // Invariant: x == y in quiescence.
class foo {
 ...
 virtual bar();
} *p = 0;
bool ready = false;
mutex l; // Lock for x, y, p, and ready.
...
l.acquire();
 x++;
 if (!ready) {
 ready = true;
 p = new foo();
 }
 p->bar();
 ...
 y++;
l.release();

XBEGIN;
x++;
if (!ready) {
 ... // not executed
}
p->bar(); // Follows uninitialized vtable ptr;
... // jumps to arbitrary code, which
 // happens to be:

XEND;
// Invariant is now broken, and
// arbitrary additional code is executed here.

Figure 1: Program state corruption via lazy subscription. If
an HTM transaction (right) executes between the indicated
lines of a lock-based critical section (left), the transaction
can read inconsistent state and accidentally commit, violat-
ing program invariants.

computation may not be correct). Unfortunately we cannot
guarantee that the speculator will not accidentally commit
its changes. Blind jumps to corrupted addresses in function
pointers or the virtual function table could cause a thread
to jump to a commit instruction and accidentally commit
its speculative HTM transaction, thereby violating program
invariants (this problem is a variant of the lazy subscription
problem [6], [7]; an example is shown in Figure 1).

Our work attempts to use wasted waiting cycles for
prefetching while avoiding the lazy subscription problem.
Our proposed solution is a new hardware primitive which we
call always-abort hardware transactional memory. Always-
abort HTM (AAHTM) acts just like traditional HTM, with
one exception: its transactions are guaranteed by the hard-
ware to always abort and never commit. In general, we
envision the use of always-abort HTM as an alternative
to busy-waiting in synchronization primitives: instead of
waiting, we can do something useful to prepare for future
execution.

The idea of program-controlled prefetching as an alterna-
tive to busy-waiting is widely applicable. We focus in this
paper on synchronization primitives such as locks and bar-
riers, but always-abort HTM is likely to be useful wherever
waiting is required, such as in synchronous communication
or requests to hardware accelerators. AAHTM execution is
always safe, because it can never affect semantic state. It
is also significantly more flexible than traditional hardware
prefetching: its speculative path can be explicitly controlled
and tuned by the programmer to achieve higher accuracy
and utility than are possible purely by watching the (pre-

wait) instruction stream. For processors that already support
HTM, the AAHTM extension should be straightforward to
implement—all that is required is a slightly different execu-
tion mode. Significantly improved hardware prefetching is
likely to require a much larger hardware investment.

The rest of this paper explores the uses and utility of
always-abort HTM. We begin with a motivating micro-
benchmark, which demonstrates the potential gains and
pitfalls of our technique. Using the lessons learned there,
we propose several synchronization primitives that incor-
porate AAHTM. We continue with performance results on
micro- and real-world benchmarks. Our results confirm that
AAHTM based primitives can significantly outperform both
lock and HTM solutions. Finally, we turn to a review of
related work, and conclude with additional ideas regarding
other potential uses of our hardware primitive. Source code
for this project is available at http://github.com/greenshell/
aahtm.

II. MOTIVATION AND IMPLEMENTATION

Our argument for always-abort HTM is twofold: under
amenable conditions, it provides significant performance
benefits over busy-waiting or traditional HTM alternatives,
and, furthermore, hardware implementation of the technique
is likely to be trivial on a machine that already supports
HTM.

A. Performance

To quantify the potential benefits of AAHTM, we be-
gin by exploring a simple micro-benchmark—ArrayBench
(Figure 2)—which investigates what we see as a standard
use case for our hardware primitive: using AAHTM as an
alternative to busy waiting in lock acquisition. Note that
this strategy is quite different from lock elision: instead of
replacing locks with HTM, we retain true mutual exclusion
but accelerate critical sections with AAHTM.

In ArrayBench, threads repeatedly write to pseudorandom
and deterministic locations within a shared array A. The
array is protected by a global lock. We vary critical section
size by changing the number of locations touched under the
lock, either ten in the “small footprint ” case or one hundred
in the “large footprint” case. In the “high contention” case,
we start the critical section by writing to A[0]; in the “low
contention” case, we skip that write. Our results report write
throughput.

We benchmark several alternatives. The first is regular
HTM supported by a fall-back test-and-set lock. On trans-
action abort, we either fall back to the lock immediately
(htm-1) or after nine more tries (htm-10). The second
is a simple test-and-test-and-set lock (tatas). The third
alternative, tatas-aahtm, is an enhanced test-and-test-and-
set lock in which, if the first test fails, we start an AAHTM
execution of the critical section (pseudocode in Fig. 3). For
our experiments, since AAHTM does not exist, we instead

use regular HTM in an unsafe manner, admitting the lazy
subscription problem. We do not believe that the error case
(accidental jump to a commit instruction) ever arises in our
experiments.

As expected, when critical section size is small and
contention is low, HTM is by far the best choice, since most
of the transactions complete without conflicts and without
being terminated by time or space constraints. In contrast,
when contention is high and transaction size is large, most
transactions fail due to conflict and eventually revert to
the fall-back lock, meaning that the simple lock (tatas)
outperforms HTM. Furthermore, by using the busy-wait time
to prefetch for the critical section, we can reduce the time
threads hold the lock and increase throughput via always-
abort HTM (tatas-aahtm).

Using ArrayBench we can also explore a optimized
form of AAHTM prefetching—one in which the prefetching
thread switches to an alternative code path, created by the
programmer or the compiler. Since AAHTM is a sandbox
that never writes anything to the memory, the alternative,
speculative code path can aggressively circumvent abort-
prone code (such as I/O operations or accesses to highly
contended variables), without compromising correctness. In
the ArrayBench experiment, we created a speculative path
(tatas-aahtm-opt) that avoids the contentious access to the
first element of the array when in AAHTM, reducing the
likelihood of a conflict abort when prefetching.

This motivating example illustrates the best case for our
new hardware primitive: high abort-rate critical sections with
large memory footprints. In this case, AAHTM provides
the best performance, surpassing both regular HTM and
traditional locks. Regular HTM in particular is likely to fail
(here due to contention, but conceivably also due to cache
overflow or I/O), and the prefetching of AAHTM provides
a real benefit by warming up the cache. Note that under
non-optimal circumstances, AAHTM doesn’t significantly
hurt performance relative to a simple lock, but might deliver
significantly worse performance than regular HTM since it
requires all critical section executions to be serialized.

B. Implementation

We envision an implementation of always-abort HTM
with two new instructions, AAHTM BEGIN, which begins
a new always-abort transaction, and AAHTM TEST, which
tests to see whether the thread is currently in an always-
abort transaction (our instructions are analogous to Intel’s
TSX instructions XBEGIN and XTEST). We expect that other
HTM instructions, namely XTEST and as XABORT, should
work as normal within an always-abort transaction, but an
XEND commit instruction is unsupported within an AAHTM
transaction and results in an abort. Always-abort transactions
will also abort wherever a normal HTM transaction would
fail, such as at an unsupported instruction, or on interrupt
or cache overflow.

0.0e0

5.0e6

1.0e7

1.5e7

2.0e7

2.5e7

3.0e7

3.5e7

 1 2 4 8 12 16 18

tatas

tatas-aahtm

htm-1

htm-10

(a) low contention, small footprint.

1.5e5

2.0e5

2.5e5

3.0e5

3.5e5

4.0e5

4.5e5

5.0e5

5.5e5

6.0e5

 1 2 4 8 12 16 18

tatas-aahtm-opt

(b) high contention, large footprint.

Figure 2: ArrayBench throughput for TATAS lock and HTM.
The X axis is the number of concurrent threads; the Y axis
is transactions per second.

The primary hardware cost for always-abort HTM is an
extra architectural state bit per hardware thread indicat-
ing that the transaction underway must abort. This bit is
set by the AAHTM BEGIN instruction and is queried by
AAHTM TEST. The only additional cost is a small amount
of logic to verify, before committing a transaction, that the
always-abort flag is not set.

III. DESIGNS

We have developed implementations of synchronization
primitives that use always-abort HTM as an alternative to
busy waiting. Exactly how to incorporate the new HTM
technique is not always obvious. In particular, our exper-
iments revealed two important design considerations. The
first consideration is that the value of prefetching declines
with time: if a thread that has performed an AAHTM
prefetch does not get to execute its “real” code soon, the
prefetch may be wasted, as prefetched cache lines are stolen
and overwritten by the lock holder or simply displaced by
other lines. The second consideration is that it is best to limit
the number of threads concurrently prefetching, especially
when waiting for a lock. Since their write sets may overlap,
concurrent AAHTM transactions may result in early aborts,
negating the prefetching advantage. In general, it seems
better to limit the number of prefetchers, particularly if (in
keeping with the first consideration) threads that do prefetch
have priority access to the critical section when the lock
becomes available.

A. Busy-wait Alternative

The above considerations notwithstanding, always-abort
HTM can be used as a simple drop-in replacement for
busy-waiting. Some simple designs are shown in Figure 3,
including an extension to pthread mutex and a test-and-set
lock. Basically, if a thread would normally busy-wait for
lock acquisition, it enters an always-abort transaction instead
and returns to user code, pretending that it holds the lock.
When the transaction eventually fails, the thread’s state is
rolled back to the lock acquisition method. The thread then

// we emulate AAHTM using regular Intel x86 HTM.
#define AAHTM BEGIN XBEGIN
#define AAHTM TEST XTEST

// how we enter AAHTM
int enter aahtm(){

if(AAHTM BEGIN() == HTM SUCCESSFUL)
return 1; // we are in AAHTM

return 0; // we just finished executing AAHTM
}

// used for both simple and prioritized tatas lock
struct tatas lock t{

union{
struct{int32 t held; int32 t n rdy;};
int64 t all;
};
};

// tatas lock with AAHTM as busy wait−alternative
void tatas lock aahtm(tatas lock t *lk){

if(AAHTM TEST()){return;}
int tries = 0;
while(lk→held || tas(&lk→held)){

// if lock is held, start speculating
if(enter aahtm()){return;}
else{tries++;}
// revert to the lock if out of tries
if(tries≥NUM TRIES){

while(lk→held || tas(&lk→held))
pause(INTERVAL);

break;
}
}
}
void tatas unlock aahtm(tatas lock t *lk){

if(!AAHTM TEST()){lk→held = 0;}
}

// pthreads lock with AAHTM as busy wait−alternative
void pthread lock aahtm(pthread mutex t *lk){

if(AAHTM TEST()){return;}
int tries = 0;
while(pthread mutex trylock(lk) 6=0){

if(enter aahtm()){return;}
else{tries++;}
if(tries≥NUM TRIES){

pthread mutex lock(lk);
break;
}
}
}
void pthread unlock aahtm(pthread mutex t *lk){

if(!AAHTM TEST()){pthread mutex unlock(lk);}
}

Figure 3: Busy-wait alternative

checks to see whether it can exit its busy wait by attempting
to grab the lock. If it needs to wait again, it can either retry
the always-abort transaction (to try to prefetch further in its
speculation) or fall into the normal busy-wait.

B. Test-and-Test-and-Set Priority Lock

The test-and-test-and-set lock of Figure 3 incorporates
AAHTM, but exerts little control over the waiting threads. In

// tatas priority lock with AAHTM
void tatas pri lock aahtm(tatas lock t *lk){

if(AAHTM TEST()){return;}
int tries = 0;
tatas lock t cp;
while(true){

cp.all = lk→all;
if(cp.n rdy == 0 && !lk→held && !tas(&lk→held))

break;
if(cp.n rdy < MAX SPECS){

if(enter aahtm()){return;}
else{

fai(&lk→n rdy,1);
while(lk→held || tas(&lk→held)){}
fai(&lk→n rdy,−1);
break;
}
}
pause(INTERVAL);
}
}
void tatas pri unlock aahtm(tatas lock t *lk){

tatas unlock aahtm(lk);
}

Figure 4: Test-and-test-and-set lock with priority

particular, arbitrary numbers of threads might speculatively
prefetch, increasing early aborts and diminishing the utility
of the technique. Furthermore, once a thread has completed
its prefetch, it might not acquire the lock for a while,
conceivably negating the prefetch’s benefits. To solve these
problems, we designed a slightly more complicated test-and-
test-and-set lock (Figure 4) which strictly prioritizes threads
that have completed their prefetch and roughly controls
the number of speculating threads. To control speculation,
this lock uses a counter (n rdy) to track the number of
threads that have completed an AAHTM execution (i.e.
“warm threads”). If n rdy is non-zero, no thread that has
not yet speculated in AAHTM can acquire the lock, thereby
guaranteeing that the lock will be acquired by a warm thread,
or that the lock is uncontended. As in the previous locks, if a
thread finds that the lock cannot be acquired (either because
the lock is held or because a warm thread is waiting), it
enters an AAHTM transaction and returns to user code,
pretending that it has the lock.

C. Ticket Lock

The test-and-test-and-set priority lock presented above
provides a number of advantages over simple busy-wait
elision. However, test-and-set locks in general are unfair, and
the presented priority design is no exception. It is possible
for a thread to fail to get the lock indefinitely by repeatedly
losing the tatas attempt. To provide fairness to waiting
threads, other locks may be used—for instance, the ticket
lock [8].

In a traditional ticket lock, threads increment two coun-
ters: next ticket and now serving. A thread that wishes
to acquire the lock atomically increments the next ticket

struct ticket lock t{
int next ticket;
int now serving;
};
void ticket lock aahtm(ticket lock t *lk){

if(AAHTM TEST()){return;}
int tries = 0;
int my ticket = fai(&lk→next ticket, 1);
int dist = 0;
while((dist=(my ticket−lk→now serving)) > 0){

if(dist≤MAX DIST && dist≥MIN DIST
&& tries<NUM TRIES){
if(enter aahtm()){return;}
else{tries++;}
}
else{pause(INTERVAL);}
}
}
void ticket unlock aahtm(ticket lock t *lk){

if(!AAHTM TEST()){lk→now serving++;}
}

Figure 5: Ticket lock

counter. It then spins on the now serving counter. When the
counter matches the ticket number obtained from next ticket,
the thread has acquired the lock. Upon exiting its critical
section, the thread increments the now serving counter,
passing the lock to the next thread in line. Figure 5 shows
the implementation of a ticket lock with always-abort HTM.
An advantage to the ticket lock is that there is a fixed order
in which threads will pass through the lock. Consequently,
we can delay speculation until we are close to acquiring the
lock by monitoring the now serving counter, only beginning
AAHTM speculation when we are approaching the head of
the line. With a similar mechanism, we can also control how
many threads are concurrently speculating.

D. Barrier

In addition to locks, always-abort HTM is useful for
barriers. Once early threads have reached the barrier, they
can speculate into the next phase of execution while waiting
for the straggling threads. There are two major design
points to note. First, in contrast to locks, the speculation
is generally restricted to local data; no data races typically
exist within a barrier phase. Consequently, the likelihood of
a conflict between concurrently speculating threads is very
low; the only conflicts that are likely to occur are between
the speculating threads and the straggling threads that have
yet to reach the barrier. Second, the design of our barrier,
based heavily on the GNU libGOMP implementation, also
allows us to avoid false sharing between the arriving thread
counter (awaited) and the release signal (gen). Consequently,
upon entering the always-abort transaction, we can subscribe
to the release signal and abort our transaction immediately
once all threads arrive.

struct barrier t {
int total; // number of threads to wait for
int gen; // generation counter with flags in low bits
char[] padding; // padding to avoid false sharing
int awaited; // number of threads at the barrier
};
void barrier wait(barrier t *bar){

int state = bar→gen;
if(fai(&bar→awaited,−1) == 0){

bar→awaited = bar→total;
state+=1;
bar→gen = state;
return;
}
int gen = state;
int tries = 0;
do{

if(bar→gen == gen){
tries++;
if(enter aahtm()){

if(bar→gen6=gen){XABORT();}
else{return;}
}else{

if(tries<NUM TRIES){continue;}
else{pause(INTERVAL);}
}
}
gen = bar→gen;
}while(gen6=state+1);
}

Figure 6: Barrier (heavily based on GNU libGOMP)

IV. EVALUATION

Our experiments were conducted on a dual-socket, 18-
core Intel Xeon E5-2697 v4 (Broadwell) machine running
Linux kernel version 3.10.0. The hardware cache prefetcher
was turned on. Code was compiled with gcc 5.3.0 using
the −O3 optimization flag. Unless otherwise noted, all
experiments were performed without hyperthreading, and
with each thread pinned to a separate core of a single 18-
core processor. Reported results show the average of three
runs at each configuration point, and no major performance
variation was seen across runs.

A. Locks

Our locks are implemented as a dynamically loaded
library that overwrites the pthread synchronization functions.
The library is linked in via LD PRELOAD at run time.
Within our library, we implemented several mutex alterna-
tives:

tatas: An exponential back-off test-and-test-and-set lock.
ticket: A FIFO ticket lock with linear back-off propor-

tional to the distance to the lock owner.
htm-1, htm-10: Simple uses of HTM, similar to lock

elision, that try the transaction either one or ten times before
falling back to a global test-and-test-and-set lock. htm-1
mimics Intel’s Hardware Lock Elision. Following the early
subscription convention, the global lock is checked at the
beginning of each hardware transaction. Here we take some

precautions to avoid the “lemming effect,” [9], [10] where
the held lock prevents HTM transactions from completing,
which in turn fall back to the lock and prevent more HTM
transactions from succeeding. In the case that the lock is
already held at the beginning of the transaction, the thread
jumps into an infinite loop, waiting for the lock holder to
abort it. In htm-10, after an HTM failure, we do exponential
back-off before retry.

tatas-aahtm: The trivial AAHTM test-and-test-and-set
lock of Section III-A. We set NUM TRIES to 4 based
on experimentation for reasonable parameters for generic
workloads.

tatas-pri-aahtm: The prioritizing AAHTM test-and-test-
and-set lock of Section III-B. We set NUM TRIES to 4 and
MAX SPECS to 1.

ticket-aahtm: The AAHTM ticket lock of Section III-C.
We set NUM TRIES and MAX DIST to 4 and MIN DIST
to 2.

1) Micro-benchmarks: We ran our locks on several
micro-benchmarks and real-world applications. ArrayBench
(Figure 7) is the micro-benchmark we introduced in Sec-
tion II-A. In it, threads contend to access an integer array
with one million elements. Each thread generates addresses
to touch within the array before contending to enter the
critical section. Tests run for approximately five seconds, and
we report operations (critical sections) per second (y-axis)
as a function of thread count (x-axis). The test has two
parameters—size and contention level. The size parameter
refers to the number of writes in each critical section; the
low size touches ten, the high size touches one hundred.
Under low contention, threads write to all their addresses and
then leave. Under high contention, all threads first touch the
zeroth array element at the beginning of the critical section
before touching the rest of their addresses. For this test we
also explored an optimized variant of each lock (marked opt
in Figure 7) which, when executing under AAHTM, employs
an alternative code path that elides the high contention write
to maximize prefetching gains.

The results of this benchmark are promising for always-
abort HTM. An AAHTM primitive is the best option in three
of the four configurations, and is only beaten by htm-10 on
the low contention, small footprint configuration (Figure 7a).
For configurations on which it wins, AAHTM outperforms
the nearest alternative by 10 to 200%. The AAHTM ticket
lock appears to be the best option for large footprint tests,
likely due both to its well-known tendency to mitigate lock
contention and to its orderly control of prefetchers. The
benefit of the prefetching is clearly seen in the large footprint
configurations: the AAHTM ticket lock outperforms its non-
prefetching variant by 2 to 3× in these tests. For smaller
footprint tests, prefetching becomes less important, and the
test is instead limited by the fairness of the lock. The
unfairness of the test-and-test-and-set implementations gives
them an advantage over the fair ticket locks by allowing

0.0e0

5.0e6

1.0e7

1.5e7

2.0e7

2.5e7

3.0e7

3.5e7

 1 2 4 8 12 16 18

tatas
tatas-aahtm
tatas-pri-aahtm
ticket
ticket-aahtm
htm-1
htm-10

(a) low contention, small footprint.

2.5e5

3.0e5

3.5e5

4.0e5

4.5e5

5.0e5

5.5e5

6.0e5

6.5e5

 1 2 4 8 12 16 18

(b) low contention, large footprint.

5.0e5

1.0e6

1.5e6

2.0e6

2.5e6

3.0e6

3.5e6

4.0e6

4.5e6

5.0e6

5.5e6

 1 2 4 8 12 16 18

tatas-aahtm-opt
tatas-pri-aahtm-opt
ticket-aahtm-opt

(c) high contention, small footprint.

1.0e5

2.0e5

3.0e5

4.0e5

5.0e5

6.0e5

7.0e5

 1 2 4 8 12 16 18

tatas-aahtm-opt
tatas-pri-aahtm-opt
ticket-aahtm-opt

(d) high contention, large footprint.

Figure 7: Throughput (critical sections per second) of Ar-
rayBench on Broadwell Xeon.

repeat acquisitions that reduce cache line movement. Finally,
note that HTM is the best option only when contention is
low and the footprint is small; even so, the retry parameter
is extremely important: htm-1 is outperformed by the locks
due to spurious aborts.

In MapBench (Figure 8) we once again contend on a
global data structure—this time, a std::map<int,int> (red-
black tree), protected by a global lock. Within its critical
section, each thread does a single operation on a randomly
chosen key within the key space. The test has two configura-
tion parameters. The first is the size of the key space: either
10K or 10M keys. During initialization, the map is filled
with 50% of all possible keys. The second configuration
parameter is the ratio of find/insert/delete operations; we
test both 80%/10%/10% and 0%/50%/50% configurations.
Since the map is half full at initialization, these ratios result
in 10% and 50% writes respectively. Each test runs for
approximately five seconds, and again we report operations
per second (y-axis) as a function of thread count (x-axis).

Once again in this benchmark, we see the benefit of
AAHTM, but under more specific conditions. Since the
critical sections are so small, and mostly read-dominated,
traditional HTM works well in most cases. However, when
the write percentage goes up and the tree size grows, HTM
becomes less likely to succeed. In such cases, it is useful
to prefetch tree state while waiting for the lock, and the
AAHTM ticket lock again dominates (Figure 8d).

2) Memcached: To investigate the usefulness of our
technique on real-world code, we explored the use of our

1.0e6

1.5e6

2.0e6

2.5e6

3.0e6

3.5e6

4.0e6

 1 2 4 8 12 16 18

(a) 10K elements, 10% writes.

4.0e5

6.0e5

8.0e5

1.0e6

1.2e6

1.4e6

1.6e6

1.8e6

2.0e6

2.2e6

 1 2 4 8 12 16 18

tatas
tatas-aahtm
tatas-pri-aahtm
ticket
ticket-aahtm
htm-1
htm-10

(b) 10M elements, 10% writes

5.0e5

1.0e6

1.5e6

2.0e6

2.5e6

3.0e6

 1 2 4 8 12 16 18

(c) 10K elements, 50% writes.

2.0e5

3.0e5

4.0e5

5.0e5

6.0e5

7.0e5

8.0e5

9.0e5

1.0e6

1.1e6

 1 2 4 8 12 16 18

(d) 10M elements, 50% writes

Figure 8: Throughput (operations per second) of MapBench
on Broadwell Xeon.

locks on memcached [11], a key-value store used to cache
query results. Memcached is widely used; its clients include
Facebook, Wikipedia, and Flickr. The software has been
in active development since 2003, and early versions used
coarse grain synchronization. Threads contended and bottle-
necked on two global locks [12], [13], [14]. The cache lock
protects access to the global hash table, and the stats lock
protects access to usage statistics.

Obviously, AAHTM cannot improve performance on
highly performant code which avoids busy-waiting through
fine-grained locking, as current versions of memcached do,
so, following others, we investigated an earlier version
(1.4.5) as a lock benchmark [12], [13].

Our setup ran both a memcached server and client on
our Intel Broadwell server, each isolated on its own socket.
Mirroring our other tests, each server thread was pinned to
its own core on the socket. Our tests followed the method-
ology of Dice et al. [12]. We used the tool memaslap [15]
as the client to generate a stream of memcached requests
according to a desired distribution. We used 32 client
threads, which generated requests with uniformly distributed
8-byte keys and 128-byte values. Tests ran for one minute,
and we recorded the average throughput across the interval.
As above, our locks were dynamically loaded into the
executable, overwriting the traditional pthread mutex. Our
results, shown in Figure 9, explore different read to write
ratios of client requests, reporting speedup over single-
threaded default performance (y-axis) as a function of thread
count (x-axis).

0

2

4

6

8

10

 1 2 4 8 12 16 18

default
tatas
tatas-aahtm
tatas-pri-aahtm
ticket
ticket-aahtm
htm-10
1.4.35-tatas

(a) 90% get, 10% set.

0

2

4

6

8

10

 1 2 4 8 12 16 18

(b) 50% get, 50% set

Figure 9: Speedup over single thread on memcached.

Our real-world memcached benchmark results reiterate
the lessons learned in the micro-benchmarks. In conditions
where HTM is likely to succeed—here the 90% read-
dominated workload of Figure 9a—it outperforms all lock-
based solutions at high thread counts, where the extracted
parallelism is greater than the cost of the HTM transaction.
Compared to the uninstrumented memcached (default in the
figure), HTM is about twice as fast. In conditions where
HTM is unlikely to succeed—here the 50% read-write ratio
of Figure 9b—locks are more performant. And as mem-
cached stores keys in a large table which cannot fit in last-
level cache, each critical section contains multiple random
accesses and prefetching via AAHTM is useful. The best
lock solution is the AAHTM TATAS lock, which is about
2.5× faster than the default implementation. Noticeably, in
the write-dominant case, the AAHTM-accelerated ticket lock
gives on-par performance with the test-and-test-and-set lock,
while also providing fairness.

For completeness, we also included performance tests of
a recent version of memcached (v.1.4.36), which has accel-
erated the performance from version 1.4.5 by about 3.7×
through a rewrite of the synchronization framework using
fine-grained locking across seven years of development and
over thirty versions. By simply using AAHTM locks on the
old version, we are able to achieve 50–60% of this speedup
with absolutely no programming effort.

3) Kyoto Cabinet: We further investigated the perfor-
mance of our primitives on Kyoto Cabinet [16], a fast
database management library written in C++. The library
employs global, coarse-grain synchronization using reader-
writer locks. It implements several data structures for use
as tables; we used the included in-memory B+ tree database
(GrassDB). Kyoto Cabinet also includes several benchmarks
with its distribution; we ran the kcgrasstest benchmark with
a total of 1M (Figure 10a) and 5M (Figure 10b) random
operations respectively.

Since the benchmark we chose is write dominant, the
default pthread reader-writer lock cannot take advantage of
parallel readers. This default is significantly slower than

0

0.2

0.4

0.6

0.8

1

1.2

 1 4 8 12 16 18

default
tatas
tatas-aahtm
tatas-pri-aahtm

ticket
ticket-aahtm
htm-1
htm-10

(a) small database (~1MB)

0

0.2

0.4

0.6

0.8

1

1.2

 1 4 8 12 16 18

(b) large database (~100MB)

Figure 10: Speedup over single thread on Kyoto Cabinet.

tatas in all cases. Similarly, both htm-1 and htm-10 fail to
deliver speedup due to excessive data conflicts. For instance,
with 20 threads, each HTM commit in htm-10 requires
4.3 tries on average, and 91% of all aborts are caused
by conflicts. This result suggests that HTM is far from
a silver bullet — trivial use of HTM may severely hurt
the performance. Moreover, given the lack of good HTM
debugging tools, we expect it would take non-trivial effect
to transactionalize this library.

In contrast, AAHTM enhances the performance of
locking-based code without extra programming effort. With
high thread counts (≥4), we see 15%–27% performance
gain from ticket-aahtm and 4%–25% gain from tatas-
aahtm, compared to their baseline versions. In general, the
larger database (Figure 10b) benefits more from speculation
because AAHTM can prefetch more data for a large data
set. As in memcached, FIFO ticket-aahtm outperforms the
unfair tatas.

4) STAMP: The Stanford Transactional Applications for
Multi-processing (STAMP) benchmark suite is a com-
monly used benchmark in the transactional memory commu-
nity [17]. The suite contains eight benchmarks built using
a transactional style of synchronization, each adapted from
some real-world application. Although these benchmarks
are optimized for transactional memory, we plugged our
AAHTM library into their single-global-lock version to
study the potential benefit of AAHTM. In order to exper-
iment with larger thread counts, we used a single socket
and assigned each thread to its own core, but also used
hyperthreading to obtain levels of concurrency beyond 18
(STAMP thread counts must be a power of two, giving us
a max of 32, instead of 36).

In Figure 11, we highlight the STAMP benchmarks
in which AAHTM lock performance varied significantly
(>10%) from the corresponding traditional lock imple-
mentation, in each case indicating a nontrivial benefit of
AAHTM. The results are shown as speedup over a single
thread execution (y-axis) as a function of thread count (x-
axis).

In all benchmarks, traditional HTM scales well at low

0.5

1

1.5

2

2.5

3

3.5

4

 1 2 4 8 16 32

tatas
tatas-aahtm
tatas-pri-aahtm
ticket
ticket-aahtm
htm-10

(a) genome

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

 1 2 4 8 16 32

(b) intruder

0.5

1

1.5

2

2.5

3

3.5

4

 1 2 4 8 16 32

(c) vacation-hi

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

 1 2 4 8 16 32

(d) ssca2

Figure 11: Speedup over single thread on STAMP bench-
marks.

thread counts due to a relatively low abort rate. However,
HTM performance tends to drop off significantly at 16
threads in several benchmarks, suggesting that the lemming
effect has started to emerge as a result of high contention.
In contrast, global locks are quickly saturated reaching their
maximum throughput by four threads. The use of AAHTM,
however, generally gives the best global lock performance
by reducing the time spent in critical sections through
prefetching. This makes sense: the benchmarks vacationhi,
genome, and intruder all involve a relatively large number
of map operations; however, of these, all but vacationhi are
read dominated.

5) Avoiding performance collapse of HTM runtime: As
observed in earlier studies [9], [10], and shown in our
STAMP results (Figure 11), an HTM runtime may suffer
from the lemming effect, in which the fall-back lock prevents
other HTM transactions from completing and they in turn
fall back to the lock, generating a self-perpetuating abort
scenario. As a result, a sudden performance collapse may
occur at some high thread count even if the application scales
well at low thread counts.

Sophisticated contention management in HTM runtimes
[10], [18] is a possible solution to the above issue, as it
reduces HTM aborts. When serialized execution of the fall-
back path is unavoidable, however, due either to repeti-
tive overflow/conflict aborts or to unsupported instructions,
AAHTM can improve the fall-back lock of regular HTM
and mitigate the lemming effect somewhat. This hybrid
approach allows us to build a runtime that obtains the best

0

1

2

3

4

5

6

7

8

 1 2 4 8 16 32

htm-10

htm-10-fb-aahtm

(a) genome

0

0.5

1

1.5

2

2.5

 1 2 4 8 16 32

(b) intruder

0

1

2

3

4

5

6

7

 1 2 4 8 16 32

(c) vacation-hi

Figure 12: Speedup over single thread on STAMP bench-
marks with AAHTM fall-back lock.

of both worlds: improved parallelism when HTM succeeds,
and optimized serial execution of the fall-back path when
it cannot. The two approaches are further complementary
because HTM and the fall-back path cannot execute at the
same time; by using AAHTM to reduce the time under lock
of the fall-back path we can increase the proportion of the
time we spend in parallel executions of HTM transactions.

It is straightforward to enhance an existing HTM runtime
with AAHTM. In htm-10, for example, when the maximal
retry count is reached (10 in this case), the runtime can
simply acquires a AAHTM-optimized test-and-test-and-set
lock instead of the traditional TATAS lock. Figure 12 shows
the drastic improvements of this hybrid approach (htm-
10-fb-aahtm) on the three benchmarks whose performance
collapsed. The use of AAHTM in the fall-back lock extends
scalability out to sixteen threads and reduces the fall-off in
performance when the benchmark reaches its synchroniza-
tion bottleneck (the ssca2 benchmark sees no performance
collapse in HTM; its performance is unaffected by the
AAHTM fall-back lock).

6) Performance Hazards: While we have shown that
AAHTM-based locks can improve performance in many
cases, one can imagine scenarios in which they might have a
negative impact. In particular, speculators have the potential
to “steal” cache lines from the thread that is executing the
“real” critical section, thereby slowing down the critical path
of the application. We argue that this possibility is highly
unlikely to have a significant impact in real-world programs,
and can easily be controlled with simple mitigation strate-

0.0e0

1.0e5

2.0e5

3.0e5

4.0e5

5.0e5

6.0e5

7.0e5

 1 2 4 8 12 16 18

tatas
tatas-aahtm
tatas-pri-aahtm
ticket
ticket-aahtm

(a) 10 cache lines, 100 writes

0.0e0

1.0e5

2.0e5

3.0e5

4.0e5

5.0e5

6.0e5

7.0e5

 1 2 4 8 12 16 18

tatas-aahtm-opt
tatas-pri-aahtm-opt
ticket-aahtm-opt

(b) avoiding cache line stealing

Figure 13: Performance hazards and avoidance on Array-
Bench for small array.

gies. (Like all forms of speculation, AAHTM-based locks
also impose an energy penalty; we do not assess that here.)

To evaluate the potential for slowdown, we set out to
design an adversarial benchmark in which the effect would
be as large as possible. We began with the observation that
stealing will occur only if the lock holder and speculators
perform conflicting accesses to the same cache line, and
that the stealing will be a problem only if the lock holder
performs a subsequent access to the line (thereby incurring
a cache miss). We note, however, that the subsequent access
will conflict with the speculator that stole the line, causing
its transaction to abort. Multiple misses therefore require
either that there are multiple speculators or that a speculator
steals multiple lines before the lock holder accesses any of
those lines again. The first possibility is easily controlled
by limiting speculation. The second possibility is difficult to
engineer, even deliberately—particularly if the lock holder
and speculators are to execute the same source code.

Our adversarial benchmark is an instance of ArrayBench
in which the array is very small (10 cache lines), the
critical section / transaction performs 100 random writes (and
thus many repeated writes), and there is no limit on the
number of speculators. As shown in Figure 13a, this scenario
does indeed lead to slowdown, on the order of 20%. The
slowdown goes away if we scatter the writes across a larger
number of addresses, reduce the number of writes to any
single address, or perform the writes in sequential order,
allowing them to be combined in the processor’s write buffer.

Even in the adversarial case, the problem disappears if
we use a different speculative code path or simply limit
speculation. In ArrayBench, we optimized our locks (opt)
by adding a protective test at the beginning of the critical
section: if the test determines that the thread is speculating
(using AAHTM TEST) and the array size is too small, the
speculator immediately aborts itself so that the lock holder
will never be slowed down. The resulting performance
is shown in Figure 13b. When the protective test is not
triggered, speculation proceeds as normal and results are as
shown in Figure 7.

#pragma omp parallel {
...
for (int task = ...) {

for (int i = ...) {
int row = perm[i] + base;
double sum = b[row];
for (int j = rowptr[row + 1] − 1; j ≥rowptr[row]; −−j)

sum −= values[j]*y[colidx[j]];
y[row] = sum;
} // for each row
#pragma omp barrier
} // for each level
} // omp parallel

Figure 14: Code skeleton of BackwardSolver.

input offshore.mtx (75) inline 1.mtx (288) thermal2.mtx (991)
thd # baseline aahtm speedup baseline aahtm speedup baseline aahtm speedup

1 2.28 2.28 0.00% 3.18 3.18 0.00% 3.83 3.83 0.00%
2 3.87 4.02 3.88% 6.16 6.19 0.49% 3.50 3.51 0.29%
4 5.84 6.75 15.58% 11.26 11.40 1.24% 5.92 6.51 9.97%
8 7.14 8.01 12.18% 19.99 20.53 2.70% 10.46 11.66 11.47%

12 6.40 7.09 10.78% 26.55 27.09 2.03% 13.67 14.97 9.51%
16 5.27 5.43 3.04% 31.60 33.42 5.76% 14.77 16.37 10.83%

Table I: Throughput of BackwardSolver (measured as
GB/sec) for three input matrices with different degrees of
parallelism. baseline uses the default GOMP barrier. aahtm
uses the AAHTM enhanced barrier (see Section III-D).

B. Barrier

We evaluate our AAHTM-based barrier (described in
Section III-D) using BackwardSolver, an OpenMP imple-
mentation of a backward sparse triangular solver based on
level-scheduling with barriers [19]. As shown in the code
skeleton of Figure 14, in order to properly handle task
dependency, there is a barrier between two successive task
levels in the main loop. Due to the non-uniform distribution
of elements in sparse matrices, tasks processed by different
threads have different lengths, resulting in idle threads at
each barrier point.

With the AAHTM-based barrier integrated into the
OpenMP library, those idle threads are able to speculatively
cross the synchronization point to process their tasks in
the next loop iteration. Since accesses to the major matrix
structures (values) generally have poor spatial locality and
are read-dominated, AAHTM transactions can effectively
bring in data that would otherwise be cache misses. If the
speculating threads have more work than average in the next
iteration, overall performance improves (up to 15%).

Table I presents the performance results of Backward-
Solver for three input matrices from the University of
Florida Sparse Matrix Collection [20]. For offshore.mtx and
thermal2.mtx, we see significant performance improvement
when using the AAHTM barrier.

V. RELATED WORK

In proposing always-abort HTM we are building upon
two important lines of prior research: hardware transactional
memory and thread-level speculation.

Transactional memory was proposed by Herlihy and
Moss [21] as a hardware mechanism to simplify the con-
struction of concurrent data structures. Subsequent work
has explored both hardware and software implementations.
In recent years, hardware implementations have appeared
in mainstream processors from Intel [22] and IBM [23],
[24]. As result of its wide availability, HTM has been
incorporated into a variety of synchronization libraries and
general applications. Lock elision is a common use case
for HTM [25], in which ostensibly lock-protected critical
sections are run optimistically under HTM to achieve finer-
grain conflict detection. More complex runtimes also elide
locks with optimistic software synchronization techniques in
conjunction with HTM [1]. HTM and software transactional
memory have also been used together in hybrid systems [6],
[26], [27]. Beyond standard HTM, looser HTM primitives
have also been produced. IBM’s rollback only transactions
remove read tracking from transactions, reducing the size
and abort rate of transactions at the expense of seman-
tics [24]. Similar relaxations of the read/write set tracking
of HTM are proposed elsewhere [28]. Always-abort transac-
tions with such relaxed semantics could perform better than
our proposed AAHTM due to a lower conflict rate.

Hardware speculation is ubiquitous in modern proces-
sors, which execute instructions across predicted branches,
prefetch data into cache based on observed access pat-
terns, and even guess the values to be returned by load
misses. Thread-level speculation is a natural extension that
seeks to exploit predictable behavior at a somewhat coarser
grain. Always-abort HTM strongly resembles the thread-
level hardware speculation (TLS) of more ambitious pro-
cessors. In hardware scouting (or runahead execution), for
example, a checkpoint is taken on a load miss, and the
processor continues speculatively. Within the speculative
execution, no state is committed, and processing of in-
structions continues, bypassing additional load misses as
necessary and using the predictors for branches, until the
missed data is fetched. At this point all speculative state
is wiped and the processor continues, but with the advan-
tage of a warmed-up data cache, instruction cache, and
branch predictor [29], [30], [31]. Simultaneous speculative
threading expands on this idea to allow some independent
state from the hardware scout to commit once the load is
fulfilled; this more advanced technique was incorporated into
Sun’s Rock processor [32]. Our uses of AAHTM resemble
scouting across a lock acquisition rather than a load miss.
Others have also investigated the overlap between TLS and
HTM, proposing repurposing HTM logic to speculatively
parallelize sequential code [33], [34].

VI. CONCLUSION

Given its potential utility and negligible implementation
cost, we believe that always-abort HTM is an attractive
feature to include in future HTM implementations. For high
contention and large critical sections, it is an excellent way
to easily improve performance, with additional applications
when integrated into barriers or the HTM fall-back lock.

In ongoing work, we are exploring additional ways to use
AAHTM. We are particularly interested in using always-
abort HTM to elide other types of busy-waiting, such as
that incurred when using synchronous communication (e.g.,
RDMA or MPI) or on-chip hardware accelerators (e.g.,
as in IBM’s PowerEN [35]). We are also interested in
using queue- and stack-based locks to prioritize speculating
threads.

As AAHTM never impacts correctness, it seems that
compilers should be able to exploit the primitive in special-
ized passes. In particular, compiler assistance and points-to
analysis could be used to generate a faster AAHTM code
path that avoids possibly contentious memory accesses and
elides unnecessary computation, only retaining instructions
necessary to generate memory accesses and control flow. It
is possible that AAHTM can be used even in sequential code
by spawning a AAHTM run-ahead thread. A more ambitious
goal is to use compiler analysis to generate a speculative
code path that is guaranteed to avoid the lazy subscription
problem, thereby allowing the techniques presented here to
be used with traditional HTM.

As AAHTM’s intended purpose is different from HTM,
it can benefit from slightly different hardware implemen-
tations. In particular, traditional HTM need not abort on
a read eviction from its local cache, so long as it can
detect conflicts on the address (e.g. by using a Bloom filter).
Such an optimization is counter-productive for AAHTM,
as it could evict useful data and waste speculative effort.
Other hardware changes, such as removing conflict detection
on the transaction’s read/write set, would also improve
AAHTM.

ACKNOWLEDGMENT

The authors would like to thank Jongsoo Park for his
insights on the use of barriers in HPC applications, and
Chen Ding, Ryan Yates, and Dong Chen for their insights
into future applications of AAHTM.

REFERENCES

[1] D. Dice, A. Kogan, Y. Lev, T. Merrifield, and M. Moir,
“Adaptive integration of hardware and software lock elision
techniques,” in 26th ACM Symp. on Parallelism in Algorithms
and Architectures, Prague, Czech Republic, 2014, pp. 188–97.

[2] L. Xiang and M. L. Scott, “Software partitioning of hardware
transactions,” in 20th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming, San Francisco, CA,
2015, pp. 76–86.

[3] A. Kleen, “Scaling existing lock-based applications with lock
elision,” Comm. of the ACM, vol. 57, no. 3, pp. 52–6, 2014.

[4] D. Dice, A. Kogan, and Y. Lev, “Refined transactional lock
elision,” in 10th ACM SIGPLAN Wkshp. on Transactional
Computing, Portland, OR, 2015.

[5] J. Izraelevitz, A. Kogan, and Y. Lev, “Implicit acceleration of
critical sections via unsuccessful speculation,” in 11th ACM
SIGPLAN Wkshp. on Transactional Computing, Barcelona,
Spain, 2016.

[6] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L.
Scott, and M. F. Spear, “Hybrid NOrec: A case study in the
effectiveness of best effort hardware transactional memory,”
in 16th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, CA,
2011, pp. 39–52.

[7] D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir,
“Hardware extensions to make lazy subscription safe,”
arXiv:1407.6968, 2014.

[8] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Trans. on Computer Systems, vol. 9, no. 1, pp. 21–65,
1991.

[9] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early ex-
perience with a commercial hardware transactional memory
implementation,” in 11th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, Wash-
ington, DC, 2009, pp. 157–168.

[10] N. Diegues and P. Romano, “Self-tuning Intel restricted
transactional memory,” Parallel Computing, vol. 50, pp. 25–
52, 2015.

[11] memcached.org, “memcached – a distributed memory object
caching system,” http://memcached.org/, accessed: 2017.

[12] D. Dice, V. J. Marathe, and N. Shavit, “Lock cohorting: A
general technique for designing NUMA locks,” ACM Trans.
on Parallel Computing, vol. 1, no. 2, p. 13, 2015.

[13] M. Pohlack and S. Diestelhorst, “From lightweight hardware
transactional memory to lightweight lock elision,” in 6th ACM
SIGPLAN Wkshp. on Transactional Computing, San Jose, CA,
2011.

[14] T. Vyas, Y. Liu, and M. Spear, “Transactionalizing legacy
code: An experience report using GCC and memcached,” in
8th ACM SIGPLAN Wkshop. on Transactional Computing,
Houston, TX, 2013.

[15] libMemcached.org, “libMemcached,” http://www.
libMemcached.org, 2011.

[16] FAL Labs, “Kyoto Cabinet: a straightforward implementation
of DBM,” http://fallabs.com/kyotocabinet/, 2011.

[17] C. C. Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “STAMP: Stanford transactional applications for multi-
processing,” in IEEE Intl. Symp. on Workload Characteriza-
tion, Seattle, WA, 2008, pp. 35–46.

[18] L. Xiang and M. L. Scott, “Conflict reduction in hardware
transactions using advisory locks,” in 27th ACM Symp. on
Parallelism in Algorithms and Architectures, Portland, OR,
2015, pp. 234–243.

[19] J. Park, “SpMP library,” https://github.com/IntelLabs/SpMP/.

[20] T. A. Davis and Y. Hu, “The University of Florida sparse
matrix collection,” ACM Trans. on Mathematical Software,
vol. 38, no. 1, pp. 1:1–1:25, Dec. 2011.

[21] M. Herlihy and J. E. B. Moss, “Transactional memory:
Architectural support for lock-free data structures,” in 20th
Intl. Symp. on Computer Architecture, San Diego, CA, 1993,
pp. 289–300.

[22] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill,
E. Hallnor, H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Ku-
mar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chap-
pell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther,
T. Piazza, and T. Burton, “Haswell: The fourth-generation
Intel core processor,” IEEE Micro, vol. 34, no. 2, pp. 6–20,
2014.

[23] C. Jacobi, T. Slegel, and D. Greiner, “Transactional mem-
ory architecture and implementation for IBM System z,” in
45th ACM/IEEE Intl. Symp. on Microarchitecture, Vancouver,
Canada, 2012, pp. 25–36.

[24] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams,
and H. Le, “Robust architectural support for transactional
memory in the Power architecture,” in 40th Intl. Symp. on
Computer Architecture, Tel-Aviv, Israel, 2013, pp. 225–36.

[25] R. Rajwar and J. R. Goodman, “Speculative lock elision:
Enabling highly concurrent multithreaded execution,” in 34th
ACM/IEEE Intl. Symp. on Microarchitecture, Austin, TX,
2001, pp. 294–305.

[26] Y. Lev, M. Moir, and D. Nussbaum, “PhTM: Phased transac-
tional memory,” in 2nd ACM SIGPLAN Wkshp. on Transac-
tional Computing, Portland, OR, 2007.

[27] D. Didona, N. Diegues, A.-M. Kermarrec, R. Guerraoui,
R. Neves, and P. Romano, “ProteusTM: Abstraction meets
performance in transactional memory,” in 21st Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems, Atlanta, GA, 2016, pp. 757–71.

[28] R. Titos-Gil, M. E. Acacio, J. M. Garcia, T. Harris, A. Cristal,
O. Unsal, I. Hur, and M. Valero, “Hardware transactional
memory with software-defined conflicts,” ACM Trans. on
Architecture and Code Optimization, vol. 8, no. 4, pp. 31:1–
20, 2012.

[29] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead
execution: an alternative to very large instruction windows
for out-of-order processors,” in 9th Intl. Symp. on High-
Performance Computer Architecture, Anaheim, CA, 2003, pp.
129–40.

[30] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay, “High-
performance throughput computing,” IEEE Micro, vol. 25,
no. 3, pp. 32–45, 2005.

[31] J. Dundas and T. Mudge, “Improving data cache performance
by pre-executing instructions under a cache miss,” in 11th Intl.
Conf. on Supercomputing, Vienna, Austria, 1997, pp. 68–75.

[32] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin,
S. Yip, H. Zeffer, and M. Tremblay, “Simultaneous specu-
lative threading: A novel pipeline architecture implemented
in Sun’s Rock processor,” in 36th Intl. Symp. on Computer
Architecture, Austin, TX, 2009, pp. 484–95.

[33] R. Odaira and T. Nakaike, “Thread-level speculation on off-
the-shelf hardware transactional memory,” in IEEE Intl. Symp.
on Workload Characterization, Raleigh, NC, 2014, pp. 212–
221.

[34] J. Salamanca, J. N. Amaral, and G. Araujo, “Evaluating and
improving thread-level speculation in hardware transactional
memories,” in IEEE Intl. Parallel and Distributed Processing
Symp., Chicago, IL, 2016, pp. 586–595.

[35] A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. Vander-
Wiel, “Hardware acceleration in the IBM PowerEN processor:
Architecture and performance,” in 21st Intl. Conf. on Parallel
Architectures and Compilation Techniques, Minneapolis, MN,
2012, pp. 389–400.

