
An Unbounded Nonblocking Double-ended Queue
Matthew Graichen Joseph Izraelevitz Michael L. Scott

Computer Science Department
University of Rochester

Rochester, NY, USA
matt.graichen@gmail.com, {jhi1, scott}@cs.rochester.edu

Abstract—We introduce a new algorithm for an unbounded
concurrent double-ended queue (deque). Like the bounded deque
of Herlihy, Luchangco, and Moir on which it is based, the new
algorithm is simple and obstruction free, has no pathological
long-latency scenarios, avoids interference between operations at
opposite ends, and requires no special hardware support beyond
the usual compare-and-swap. To the best of our knowledge,
no prior concurrent deque combines these properties with un-
bounded capacity, or provides consistently better performance
across a wide range of concurrent workloads.

Index Terms—parallel processing; parallel algorithms; non-
blocking algorithms;

I. INTRODUCTION

Container classes—stacks, queues, sets, and maps—are
among the most widely used abstractions in both sequential
and parallel computing. Parallel containers are generally con-
sidered correct only if their operations (method calls) are lin-
earizable [1], meaning that they appear, from the perspective
of all threads, to take effect atomically at some point between
their call and return.

Atomicity of container operations may be achieved using
locks or via nonblocking programming techniques. An object
(class instance) is said to be nonblocking if no thread, through
inaction, can prevent other threads from making progress [2].
Nonblocking objects often scale better than those based on
coarse-grain locks. They are also much less prone to perfor-
mance anomalies caused by preemption.

Nonblocking objects can be classified in terms of liveness
properties. A wait-free object guarantees that any thread t
executing one of its methods will complete the operation in
a bounded number of steps. A lock-free object guarantees
that some thread will complete an operation in a bounded
number of t’s time steps. Finally, an obstruction–free [3]
object guarantees that t will complete its operation in a
bounded number of steps in the absence of contention. Wait-
free objects preclude starvation. Lock-free objects preclude
livelock. Obstruction-free objects require some sort of external
mechanism to prevent livelock; the “randomization” inherent
in most schedulers typically suffices.

Double ended queues (or deques) are lists that support push
and pop operations at both ends. In this work, we introduce

This work was supported in part by NSF grants CCF-0963759, CCF-
1116055, CNS-1116109, CNS-1319417, CCF-1337224, and CCF-1422649,
and by support from the IBM Canada Centres for Advanced Study. The
authors would also like to thank Sean Brennan for his early exploration on
this topic.

a new concurrent, nonblocking deque that avoids most of the
limitations of existing implementations. Our work builds on
the array-based, bounded HLM deque of Herlihy, Luchangco,
and Moir [3]. Like that deque, ours is obstruction free, and
allows operations on opposite ends to execute concurrently
without interference. We allocate additional arrays as needed,
however, to eliminate the bound on capacity. We also incorpo-
rate an optional elimination optimization [4], [5] to combine
matching pushes and pops. Experimental results confirm
that our deque maintains low latency while providing higher
throughput than that of any known alternative.

A. Related Work

Nonblocking stacks and queues have been studied exten-
sively, beginning with the Treiber stack [6] and the Michael
& Scott queue [7]. Subsequent breakthroughs include the in-
troduction of elimination, which allows matching operations to
complete without serializing [4], [8], [9]; flat combining [10],
which improves cache locality but reintroduces blocking; and
optimistic fetch-and-increment [11], which greatly reduces
contention.

Work-stealing queues [12] are commonly used to dispatch
tasks to worker threads. Access to one end of the structure
is limited to pushes and pops by a distinguished owner
thread. The other end supports concurrent access, but only for
pops. These restrictions are important, and can be leveraged
to significantly enhance performance [13], [14].

The first fully functional nonblocking concurrent deque is
due to Michael [15]. It is surprisingly complex, and suffers
from contention between the two ends of the queue. The lock-
free deque of Sundell and Tsigas [16] avoids this contention,
but it can require lengthy helping operations if threads stall
at inopportune times. The recent time-stamp deque of Dodds
et al. [5], [17] has significantly better throughput, but at
the expense of intentionally elevated latency, introduced to
facilitate elimination. Finally, the obstruction-free array-based
deque of Herlihy, Luchangco, and Moir [3] (the HLM deque)
is refreshingly simple, but bounded. We employ this deque as
the basis of a new, unbounded alternative.

II. UNBOUNDED DOUBLE ENDED QUEUE

A. Overview

At a global level, our deque consists of a doubly-linked
list of HLM linear bounded deques, with careful handling of
linking and unlinking operations. Consequently, we begin by

Text Box
ICPP 2016

Fig. 1: HLM Bounded Linear Deque structure. Counter values are
above, with data values below. The value x represents an arbitrary
valid data object.

reviewing the behavior of the HLM deque. In our pseudocode,
the keyword tuple indicates a single CAS-able value com-
prising several fields. We use the angle brackets 〈 and 〉 to
indicate creating a tuple from individual field values.

1) HLM Bounded Linear Deque: Figure 1 shows the struc-
ture of the HLM bounded linear deque, and Figure 2 shows
its type declarations [3]. The deque consists of a single array
of special hlm_slots. Each slot contains a single 64-bit
tuple comprising a 32-bit data value and a 32-bit counter.
The linear array stores nontrivial data tuples contiguously:
the reserved LN (left NULL) and RN (right NULL) tuples on
either side of the contiguous data tuples indicate empty slots.
A simple obstruction-free two-CAS protocol is used to push
and pop values at the edge of the contiguous span of data
values. To push_left, for example, a thread first finds the
left edge—the boundary between the rightmost LN tuple and
the data tuple to its right. It then performs a pair of CASes,
first to increment the count of the leftmost data tuple and
then to replace the rightmost LN tuple with a new data tuple
(see Figure 3). The two-CAS protocol verifies both that the
operation was enacted on the left edge and that any concurrent
left-edge–changing operation would fail. A similar two-CAS
protocol is used for pop_left (see Figure 3), and operations
on the right side are symmetric. An arbitrary oracle function
is used to find edges, but the expectation is that the structure
will store hints to the edges that are periodically updated.

1 Object LN, RN; //reserved 32 bit consts
2 int HLM_SIZE;
3 tuple hlm_slot{
4 Object val; // 32 bits
5 int ct; // 32 bits
6 };
7 class hlm_linear_deque {
8 hlm_slot[HLM_SIZE] array;
9 };

Fig. 2: HLM Linear Deque Declarations

2) Unbounded Deque Structure: Figure 4 shows the struc-
ture of our deque and Figure 5 declares the types. Within each
array-based node in our doubly linked list, we store a linear
array of slots similar to the HLM deque. Once again, the
linear array stores data tuples contiguously: the reserved LN
and RN tuples on either side of the contiguous data tuples
indicate empty slots, but the overall deque may span multiple
buffers. Our slots on the interior of a buffer, like those of
the HLM deque, contain either a NULL or a datum; we call
these data slots. The two slots at the ends of the buffer (the
borders), however, contain either a NULL or a pointer to an
adjacent node; we call these link slots.

Fig. 3: Interior deque operations. Slot counters are all set to one
initially—this is an unlikely scenario but simplifies exposition. We
also omit hint values, which are generally updated after a successful
transition.

Fig. 4: Unbounded deque structure, consisting of two nodes, their
slot arrays, and hints (both node local and deque global).

Given that the deque’s contents are contiguous and accessed
at both ends, we should like to discuss the algorithm in an
end-agnostic way. Consequently, we use inward to mean the
direction towards the center of the contiguous span of data
values, and we use outward to mean the direction away from
it. For example, the left edge of the contiguous span of data
values lies between the innermost LN and the outermost data
value (Figure 4). Similarly for the right edge.

We use explicit hints to find edges, and we update these
upon completion of each operation. To accommodate tem-
porarily incorrect hints, we use two auxiliary functions:
left_oracle() and right_oracle(). As in the HLM
algorithm, these functions return an index that was correct
sometime during the call [3]; in our code, they also return a
pointer to the appropriate node.

The reserved values LS and RS are “sealed” values, added to
facilitate node reclamation. Nodes are sealed in their innermost
data slot. A sealed node acts as a “cap” on its end of the deque
and prevents outward growth in that direction; e.g., a left seal
(LS) may be added in the rightmost data slot of a node (see
Figure 9). Once a node has been sealed it can be removed
from the deque and subsequently garbage collected.

3) Transitions: Modifications to the deque structure are
made via a limited set of transition actions, each of which uses
a short protocol to ensure that the transition’s preconditions are

10 // reserved 32 bit constants
11 Object LN, RN, LS, RS;
12 int SZ; // length of node buffers
13

14 tuple slot {
15 union{ // 32 bits
16 Object value;
17 node* ptr;
18 };
19 int ct; // 32 bits
20 };
21

22 class node {
23 int left_slot_hint;
24 int right_slot_hint;
25 slot[] buffer;
26

27 node(int split) {
28 buffer = new slot[SZ];
29 for (int i = 0; i < split; i++)
30 buffer[i] = 〈LN, 0〉;
31 for (int i = split; i < SZ; i++)
32 buffer[i] = 〈RN, 0〉;
33 left_slot_hint = split-1;
34 right_slot_hint = split;
35 }
36 slot& operator[](int i){return buffer[i];}
37 };
38

39 tuple node_hint {
40 node *buffer; // 32 bits
41 int ct; // 32 bits
42 };
43

44 class deque {
45 node_hint left_node_hint, right_node_hint;
46 deque() {
47 left_node_hint.buffer = new node(SZ/2);
48 left_node_hint.ct = 0;
49 right_node_hint = left_node_hint;
50 }
51

52 // trace from hint to left/right edge
53 // (code not shown)
54 〈node*, int〉 l_oracle(node_hint hint);
55 〈node*, int〉 r_oracle(node_hint hint);
56

57 // update left/right hint from old to
58 // new node + index; return the new version
59 // (code not shown)
60 node_hint hint_l (node_hint old, node* nw_nd,
61 int nw_idx);
62 node_hint hint_r (node_hint old, node* nw_nd,
63 int nw_idx);
64

65 // frees node after no longer accessible
66 // by any other thread (code not shown)
67 retire(node* nd);
68 };

Fig. 5: Unbounded deque globals and data types

not violated by a concurrent transition. As in the push and
pop operations of the HLM deque, our transitions rely on slot
counters.

Unlike the HLM deque, our algorithm must accommodate
node linking. Consequently, edges may arise in any of three
places, as illustrated in Figure 7. The simplest case is said to
be interior, where the edge occurs on the interior of a buffer.
In the most complex, an edge straddles a pair of adjacent
nodes, that is, it aligns with the link between them. In the
third, intermediate case, the edge may coincide with a node
boundary, where there is no adjacent node, yet the edge is at
the border of the buffer between the outer link slot and the
outer data slot.

We can group the transitions into three categories: list
modifications, empty-checks, and the hint-update. List modifi-
cations (e.g., inserting a value) use a two-CAS protocol similar
to that of the HLM deque to modify the deque state. Empty
checks, which are read-only, employ a multi-step snapshot.
Hint update transitions are performance optimizations; they
do not affect the underlying list structure. The transitions are:
L1 An interior push (line 92 & Figure 3).
L2 An interior pop (line 170 & Figure 3).
L3 A straddling push (line 125 & Figure 9).
L4 A boundary pop (line 225 & Figure 10).
L5 Sealing a node (line 198 & Figure 10).
L6 Appending a new node (line 106 & Figure 9).
L7 Removing a sealed node (lines 132 and 209 &

Figures 9 and 10).
E1 An interior empty check (line 166 & Figure 11).
E2 A straddling empty check (lines 194 and 205 &

Figure 11).

E3 A boundary empty check (line 221 & Figure 11).
H Updating the hint (line 60).

Our implementation uses these transitions to ensure that the
deque is always in a valid state and that transitions are applied
when the thread’s perspective of the deque indicates that they
are appropriate.

In general, threads attempting an operation first use the hint
to find the edge node and slot for their operation (e.g., a
push_lefting thread looks for the leftmost value among
the contiguous data slots). Once the thread finds the edge data
value (called in), it views the next slot outward (called out)
and expects either a NULL value or a pointer. If it finds a
pointer, it accesses the innermost data slot of its neighboring
node (called far—effectively three slots outward from in),
and verifies that its neighbor points back at it by checking the
neighbor’s link slot (back). Based on these few values (see
Figure 8), the thread can determine if it has found an edge
and what sort of edge it is (interior, straddling, or boundary).
Based on the edge type, it applies the appropriate transitions(s)
to complete its overall operation.

B. Implementation Details
Figure 5 shows how the deque structure is initialized. To

start the doubly-linked list we allocate an initial node. The
left half of this node’s buffer is filled with LN values and
the right half with RN values. Finally, we point both the
left_node_hint and right_node_hint to this node
and set the slot hints appropriately.

Since the push and pop operations are side-agnostic, from
here on we will only discuss the details of push_left
(Figure 6) and pop_left (Figure 12).

69 Object deque:push_left(Object o) {
70

71 while (true) {
72 // find edge
73 int edge_idx;
74 node edge_nd;
75 node_hint hint_cpy = left_node_hint;
76 〈edge_nd, edge_idx〉 = l_oracle(hint_cpy);
77

78 slot* in = &edge_nd[edge_idx];
79 slot in_cpy = *in;
80 slot* out = &edge_nd→[edge_idx-1];
81 slot out_cpy = *out;
82

83 // check oracle’s edge
84 if ((in_cpy.val == LN || in_cpy.val == RS)
85 ||(edge_idx 6= 1 && out_cpy.val 6= LN)
86 ||(edge_idx == SZ - 1 && in_cpy.val 6= RN))
87 continue;
88

89 // interior push
90 if (edge_idx 6= 1) {
91 if (CAS(in, in_cpy, 〈in_cpy.val, in_cpy.ct+1〉)
92 && CAS(out, out_cpy, 〈o, out_cpy.ct+1〉)) {
93 hint_l(hint_cpy, edge_nd, edge_idx-1);
94 return OK; }
95 } // end interior push
96

97 // edge is either straddling or boundary
98 else {
99 // check state for boundary edge (append)

100 if (out_cpy.val == LN) {
101 // create new node
102 node* nw_nd = new node(SZ);
103 nw_nd→[SZ-2] = o;
104 nw_nd→[SZ-1] = edge_nd;

105 if (CAS(in, in_cpy, 〈in_cpy.val, in_cpy.ct+1〉)
106 && CAS(out, out_cpy, 〈nw_nd, out_cpy.ct+1〉)) {
107 hint_l(hint_cpy, nw_nd, SZ-2);
108 return OK; }
109 }
110 // edge is straddling, so either straddle push or
111 // help remove sealed node on left
112 else {
113 node* out_nd = out_cpy.val;
114 slot* far = &(out_nd→[SZ-2]);
115 slot far_cpy = *far;
116

117 // ensure left neighbor points back
118 slot* back = &(out_cpy.val→[SZ-1]);
119 slot back_cpy = *back;
120 if (back.val 6= edge_nd) {continue;}
121

122 // check state for straddling push
123 if (far_cpy.val == LN) {
124 if (CAS(in, in_cpy, 〈in_cpy.val, in_cpy.ct+1〉)
125 && CAS(far, far_cpy, 〈o, far_cpy.ct+1〉)) {
126 hint_l(hint_cpy, out_nd, SZ-2);
127 return OK; }
128 }
129 // remove sealed node on left
130 else if (far_cpy.val == LS) {
131 if (CAS(in, in_cpy, 〈in_cpy.val, in_cpy.ct+1〉)
132 && CAS(out, out_cpy, 〈LN, out_cpy.ct+1〉)) {
133 // for memory reclamation update both hints
134 hint_l(hint_cpy, edge_nd, 1);
135 hint_r(oracle_r(right_node_hint));
136 retire(out_nd); }
137 }
138 } // end straddling edge
139 } // end boundary or straddling edge
140 } // end while
141 } // end method

Fig. 6: Unbounded deque push_left() (symmetric code for push_right())

Fig. 7: Edge types

Fig. 8: Thread local values from snapshot

1) push_left: Our push_left operation (Figure 6)
illustrates the general pattern for operations: find the edge,
read the in, out, and far pointers, then apply the appropriate
transitions.

If push_left finds an interior edge based on the
edge_idx, it simply attempts to apply an interior push which

follows exactly the two-CAS protocol of the HLM deque
(Figure 3). If the interior push fails, then the edge may have
moved, so the entire operation retries (including re-finding the
edge).

If push_left instead discovers that the outermost data
value is in an outermost data slot, it is possible that the deque’s
left edge is in the straddling or boundary case. In the boundary
case, the thread uses the append transition (Figure 9) to add a
new node to the left of the current deque. The append transition
is effectively an HLM push but the pushed “value” is a pointer
in the link slot. By using the two-CAS protocol for append,
the thread ensures that the boundary edge has not changed.

Alternatively, if the deque’s left edge is in the straddling
case, then edge_nd has a left neighbor. We copy the inner-
most data slot of our left neighbor (far) and verify that the
right link slot of our neighbor (back) indeed points back to
our starting node. If the edge is a valid straddling edge, far
slot is either LS or LN. If it is LN we can push our value into it
using the straddling push transition (Figure 9). However, if it
is LS then we must remove our left neighbor to progress using
the remove transition (Figure 9); then we begin the operation
again. Both operations may be interrupted—and forced to start
over—by a concurrent straddling operation.

2) pop_left: Our pop_left method (Figure 12), like
push_left, follows the established pattern: find the edge,
read the in, out, and far pointers, then apply the appropriate

Fig. 9: Non-interior push operations

transitions.
If pop_left finds an interior edge based on the

edge_idx, it applies the interior pop of the HLM deque
(Figure 3).

If pop_left finds that the outermost data value is in an
outermost data slot, it is again possible that the deque’s left
edge is in the straddling or boundary case.

If the deque’s left edge is in the straddling case, edge_nd
has a left neighbor pointed to by the left link slot (out).
A straddling edge for a pop operation triggers a series
of transitions we call the “straddling pop progression” (see
Figure 10). Assuming that we truly have a straddling edge,
we read the innermost data slot of our left neighbor (far),
and verify that the left neighbor points back (back). If the
far slot is not sealed, we seal it using the seal transition.
Now that our left neighbor is sealed (by us or another thread),
we remove the left neighbor node with the remove transition.
Finally, since we have no left neighbor, we have a boundary
edge.

In the boundary edge case, whether because the current
thread found a boundary edge or because it followed the
straddling pop progression, the thread uses the boundary pop
transition to remove from the outermost data slot (Figure 10).

For all transitions in pop_left, if we notice that the
leftmost data value (in) is either RN or RS, we use a snapshot
empty check to verify the deque is empty and that our edge
remains valid (Figure 11). This empty check also prevents us
from having two sealed nodes pointing at each other, since the
second node to get sealed will instead return EMPTY.

C. Memory Management

Our pseudocode for the most part ignores memory man-
agement, except for the retire method. After a thread has
detached a node from the deque, it keeps it in a thread local
retirement list. After no threads are able to access the node,
we know that the node can be freed.

Our memory reclamation scheme leverages the invariant that
removed nodes cannot be accessed from active (unremoved)
nodes; the remove operation breaks the link in this direction

Fig. 10: Non-interior pop operations

Fig. 11: Empty check operations

(Figure 10). Consequently, when a node is retired, we update
the global hints to any active node using a CAS. Any future
thread that reads these new hints cannot trace to our retired
node, and, if all node_hint updates use a CAS, our node
will be inaccessible from all future hinted nodes. We use
hazard pointers [18] to track threads with earlier hints as they
traverse the chain in the oracle function.

D. Optimizations

We enacted one key optimization not discussed in the
algorithm description. As noted by Dodds et al. [5], deques,
like stacks, can use elimination arrays [4] on each end—a like-
sided push and pop never need to actually access the deque
structure and instead can “cancel out” if they overlap in time.

We use modified elimination arrays (Figure 13) to optimize
our algorithm, one on each side of the deque (l_elim and
r_elim). The elimination class exports three methods:
an insert method, which stores details of the operation in
a thread-local elimination slot, a scan method, which scans
the entire elimination array searching for opposite operations
to eliminate with, and a remove method, which removes the

142 Object deque:pop_left() {
143

144 while (true) {
145

146 // find edge
147 int edge_idx;
148 node edge_nd;
149 node_hint hint_cpy = left_node_hint;
150 〈edge_nd, edge_idx〉 = l_oracle(hint_cpy);
151

152 slot* in = &edge_nd→[edge_idx];
153 slot in_cpy = *in;
154 slot* out = &edge_nd→[edge_idx-1];
155 slot out_cpy = *out;
156

157 // check oracle’s edge
158 if ((in_cpy.val == LN || in_cpy.val == RS)
159 || (edge_idx 6= 1 && out_cpy.val 6= LN)
160 || (edge_idx == SZ - 1 && in_cpy.val 6= RN))
161 continue;
162

163 // interior edge,
164 // so interior pop or empty check
165 if (edge_idx 6= 1) {
166 if (in_cpy.val == RN && *in == in_cpy) {
167 return EMPTY;
168 }
169 if (CAS(out, out_cpy, 〈LN, out_cpy.ct+1〉)
170 && CAS(in, in_cpy, 〈LN, in_cpy.ct+1〉)) {
171 hint_l(hint_cpy, edge_nd, edge_idx+1);
172 return in_cpy.val;
173 }
174 } // end interior pop
175

176 // edge is on border of array, so follow straddling
177 // pop progression as necessary: seal left node,
178 // remove left node, then boundary pop
179 else {
180 // check if we have a straddling edge
181 if (out_cpy.val 6= LN) {
182 node* out_nd = out_cpy.val;
183 slot* far = &(out_nd→[SZ-2]);
184 slot far_cpy = *far;
185

186 // ensure left neighbor points back

187 slot* back = &(out_cpy.val→[SZ-1]);
188 slot back_cpy = *back;
189 if (back.val 6= edge_nd) {continue;}
190

191 // check for straddled edge and seal
192 if (far_cpy.val == LN) {
193 if ((in_cpy.val == RN || in_cpy.val == RS)
194 && *in == in_cpy) {
195 return EMPTY;
196 }
197 if (CAS(in, in_cpy, 〈in_cpy.val, in_cpy.ct+1〉)
198 && CAS(far, far_cpy, 〈LS, far_cpy.ct+1〉)) {
199 far_cpy = 〈LS, far_cpy.ct+1〉;
200 in_cpy = 〈in_cpy.val, in_cpy.ct+1〉;
201 }
202 }
203 // check for sealed left node and remove it
204 if (far_cpy.val == LS) {
205 if (in_cpy.val == RN && *in == in_cpy) {
206 return EMPTY;
207 }
208 if (CAS(in, in_cpy, 〈in_cpy.val, in_cpy.ct+1〉)
209 && CAS(out, out_cpy, 〈LN, out_cpy.ct+1〉)) {
210 // for memory reclamation update both hints
211 hint_cpy = hint_l(hint_cpy, edge_nd, 1);
212 hint_r(oracle_r(right_node_hint));
213 retire(out_nd);
214 in_cpy = 〈in_cpy.val, in_cpy.ct+1〉;
215 out_cpy = 〈LN, out_cpy.ct+1〉;
216 }
217 }
218 }
219 // check for boundary edge, then boundary pop
220 if (out_cpy.val==LN) {
221 if (in_cpy.val==RN && *in==in_cpy) {
222 return EMPTY;
223 }
224 if (CAS(out, out_cpy, 〈LN, out_cpy.ct+1〉)
225 && CAS(in, in_cpy, 〈LN, in_cpy.ct+1〉)) {
226 hint_l(hint_cpy, edge_nd, 2);
227 return in_cpy.val;
228 }
229 }
230 } // end boundary or straddling edge
231 } // end while
232 } // end method

Fig. 12: Unbounded deque pop_left() (symmetric code for pop_right())

operation from the slot, possibly after it has combined with
an opposite operation.

Figure 13 shows the use of our elimination arrays for
the pop_left operation (other methods are similar). When
they begin an operation, threads insert the details of their
operation into a thread local slot in the appropriate elimination
array. This information remains in the array while the thread
searches for an edge in the oracle function. Once a thread
finds an edge, it removes itself from its slot. Conceivably,
the thread has already eliminated with an overlapping opposite
operation, in which case the thread has completed. If the thread
does not eliminate, it begins to attempt transitions on the actual
deque. Should the thread fail to complete its operation on
the actual deque, it scans the elimination array for opposite
operations to combine with. Should this scan fail, the thread
reinserts itself into the elimination array and retries the entire
operation from the beginning.

Our elimination design moves the high overhead elimination
scan off the critical path, reduces contention on the main
deque, and leverages the latency of the oracle function as

a strength. Furthermore, it relieves us of the need to pick an
appropriate period for threads to wait in the elimination array
before trying the actual deque.

III. CORRECTNESS

We here present an informal proof of our algorithm’s cor-
rectness, discussing both safety and liveness guarantees. For
clarity of exposition, we elide discussion of garbage collection
in the proof.

A. Safety

To prove our algorithm correct, we must explain the desired
sequential semantics, identify linearization points for our op-
erations, and, finally, demonstrate that any realizable parallel
execution has the same observable behavior as a sequential
execution performed in linearization order.

1) Sequential Semantics: A sequential deque exports
push_left, pop_left, push_right, and pop_right
methods with the usual semantics. At any given point in

233 class elimination {
234 // occupy thread local elimination slot
235 // using release store
236 void insert(int operation, Object val, int thread_id);
237 // remove self from thread local elimination slot
238 // using CAS; return partner’s value if eliminated
239 Object remove(int thread_id);
240 // scan for elimination partner
241 // notify partner using CAS on their slot
242 // return partner’s value if successfully combined
243 Object scan(int operation, Object val, int thread_id);
244 };
245

246 class deque {
247 ...
248 elimination l_elim;
249 elimination r_elim;
250 };
251

252 Object deque:pop_left() {
253 l_elim.insert(POP, NULL, thread_id);

254 while (true) {
255 ...
256 〈edge_nd, edge_idx〉 = l_oracle(left_node_hint);
257 Object retval;
258 if ((retval = l_elim.remove(thread_id)) 6= NULL)
259 return retval;
260 // check oracle’s edge
261 if ((in_cpy.val == LN || in_cpy.val == RS)
262 ||(edge_idx 6= 1 && out_cpy.val 6= LN)
263 ||(edge_idx == SZ - 1 && in_cpy.val 6= RN))
264 goto try_elim;
265 // transitions
266 if (edge_idx 6= 1) {...}
267 else {...}
268

269 try_elim: // there appears to be contention
270 if ((retval = l_elim.scan(POP, NULL, thread_id))
271 6= NULL)
272 return retval;
273 l_elim.insert(POP, NULL, thread_id);
274 } // end while
275 } // end method

Fig. 13: Elimination optimization of popleft(), modifications bolded

time, the deque has an abstract state comprising a fi-
nite sequence of elements; initially this sequence is empty.
A push_right(x) operation moves the abstract state
from S to S.x, by concatenating x to the end of S. A
push_left(x) operation moves the abstract state from S
to x.S, by concatenating x to the beginning of S. When S is
empty, pop_right and pop_left return EMPTY and leave
S unchanged. If the abstract state is S.x, pop_right moves
to S and returns x. Similarly, pop_left moves from x.S
to S and returns x. A sequential history is valid if we can
identify abstract states Si,∀i, such that S0 is empty and the
ith operation in the history moves from Si−1 to Si.

2) Linearization points: To prove the safety of our deque,
it is sufficient to show that in any realizable concurrent history
it is possible to identify linearization points (each between the
call and return of its operation) such that the history has the
same observable behavior (i.e., return values) as a sequential
execution that performs the same operations in linearization
order on a sequential deque.

1) A push operation linearizes when the second CAS of its
insertion transition succeeds (line 92 for an interior push,
line 125 for a straddling push, and line 106 for a node
append).

2) A pop operation that finds a nonempty container lin-
earizes when the second CAS of its removal protocol
succeeds (line 170 for an interior pop and line 225 for a
boundary pop).

3) A pop operation that finds an empty container linearizes
when the final read of its empty check succeeds (line 166
for an interior empty check, line 194 or line 205 for
a straddling empty check, and line 221 for a boundary
empty check).

Theorem 1 (Linearizability). Any realizable well-formed his-
tory of our concurrent deque containing only completed op-

erations is equivalent to a valid well-formed history of a
sequential deque.

Proof. By induction. In the base case, our deque begins in
a quiescent state with a single empty node. The left half of
the node’s array contains LN values, while the right side of
the array contains RN values. Both exterior hints point to the
single node, and both of the node’s interior hints point to the
center.

Our induction invariant requires that the deque is well-
formed as described below. All non-removed (active) nodes
are doubly-linked to their neighbors and form a contiguous
chain. For the active nodes, any empty slot on the left contains
the LN value, and any empty slot on the right contains the RN
value. The innermost non-value slots may be an LS or RS if
the associated edge is a straddling edge. Interior slots of active
nodes between the edges must contain stored values (non-
NULL non-SEALED values). We call the contiguous chain of
active nodes the active chain.

Sealed nodes are sealed on either the right or left side (right
sealed or left sealed) and lie on either side of the active chain.
Sealed nodes cannot interrupt the active chain, but may be on
one or both ends. A sealed node, on its inward side, may be
singly linked inward toward the active chain (its inward side
neighbor might not point back to it). A sealed node, on its
inward side, is the neighbor of either an active node, another
sealed node which has been sealed on the same side, or another
sealed node which has been sealed on the opposite side but
does not point back.

Examination of the code confirms that the deque’s state
can be changed by a small set of transitions (Section II-A3).
These transitions (or concurrent sets of them) are our induction
steps; they transition the deque from one well-formed state to
another.

All transitions act on one side of the deque and have
analogous operations on the other side. While the empty check
transitions do not actually change the underlying structure,

they can still be considered a valid “action” on the deque.
The non-structural edge transitions (L1–L5) use the double

CAS protocol to change the edge of the deque without
changing the underlying doubly linked list. For a given side,
these operations will all conflict with each other: only one of
these transitions can succeed at once. If the deque contains
zero or one elements, these transitions also conflict with the
opposite side. The empty check transitions (E1–E3) use a
snapshot read protocol to ensure that the edge does not change:
they conflict with the non-structural edge transitions (L1–L5)
but not with other empty check transitions (E1–E3).

The linking transitions (L6–L7) use a slightly different dou-
ble CAS protocol, yet this modified double CAS protocol also
conflicts with non-structural transitions (L1–L5) and empty
check transitions (E1–E3). The append transition (L6) will
fail if any other thread changes the edge: moving the edge
inward will cause the first CAS to fail, while moving the
edge outward will cause the second CAS to fail. The boundary
empty check’s triple read protocol will be aborted if it overlaps
with an append.

The remove transition (L7) also conflicts with the non-
structural transitions (L1–L5) and all empty checks (E1–E3).
Based on the initial condition for the remove transition, a non-
structural transition (L1–L5) which attempts to move the edge
outward or inward will fail due to the sealed slot as will any
empty check (E1–E3). Append and remove transitions conflict
with each other as they have different initial conditions and
they both trivially conflict with themselves. Finally, append
and remove transitions will never conflict with their opposite
side analogues if the node buffer size is sufficiently large.

The hint update (H) can occur simultaneously with any
other transition. Examination of the code confirms that the
hint always points to some valid node, either active or inactive.
From either node type, a traversal of a well formed deque can
always find the edges of an active chain. Thus a hint update
can safely occur simultaneously with any other transitions.

By induction, we know that the deque is always well-
formed. The linearized history is the induced order of tran-
sitions with non-exported transitions (sealing, detaching, hint
updating) dropped. The linearized history is correct since
the contents of the active chain are always equivalent to a
sequential deque with an equivalent history.

B. Liveness and Contention Freedom

Theorem 2 (Obstruction Freedom). The presented unbounded
concurrent deque is obstruction-free.

Proof. Only three loops exist in the code, one each in the
push and pop methods, and one in the oracle method. In the
absence of contention, the snapshots taken by threads from the
local variables in, out, and far remain valid. Examination
of the code confirms that, for any well-formed unbounded
deque state, some transition will be chosen. For a push
operation, assuming no contention, only a SEALED neighbor
will cause a retry. After removing the neighbor, a subsequent
append will complete the push. For a pop operation, assuming

XXXX

XXXX

XXXX

XXXX

XXXX
XXXX XXXX XXXX XXXX XXXX

XXXX
XXXX

XXXX
XXXX XXXX

XXXX

XXXX
>>>> >>>>

>>>> >>>> >>>>

>>>>
>>>> >>>>

>>>> >>>>

>>>>
>>>>

>>>> >>>> >>>> >>>>

>>>>
<<<<

<<<<

<<<<
<<<< <<<< <<<< <<<< <<<< <<<<

<<<<
<<<<

<<<<
<<<< <<<< <<<< <<<<

<<<<

0

5

10

15

0 20 40 60 80
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

o
n
 D

e
q
u
e

X

>

<

FCDeque
MMDeque−Elim
MMDeque−NoElim
STDeque−Elim
STDeque−NoElim
SGLDeque
TSDeque−FAI
TSDeque−HWClock
OFDeque−Elim
OFDeque−NoElim

Fig. 14: Throughput for deque access pattern

no contention, a series of one or more transitions will be
performed, ending in a successful pop.

In the absence of contention, assuming a well-formed deque,
we can always follow sealed nodes back to the active chain
since they always point to nodes that were sealed after them.
Eventually the oracle function will find the edge node and its
slot by following this chain.

IV. PERFORMANCE RESULTS

For data structure evaluation, we used an Intel machine with
two eighteen-core, two-way hyper-threaded Intel Xeon E5-
2699 v3 processors at 3.6 GHz (i.e., with up to 72 hardware
threads). Every core’s L1 and L2 caches are private to that
core (shared between hyper-threads); the L3 cache (45 MB) is
shared across all cores of a single processor. The machine runs
Fedora Core 19 Linux. Tests were performed in a controlled
environment when we were the sole users of the machine.
Threads were pinned to cores in a consistent order for all
experiments: one thread per physical core on the first processor
(1–18), then one thread for each additional hyper-thread on
that processor (19–36), then one thread per core (37–54)
and one per additional hyper-thread (55–72) on the second
processor. Code was written in C++ and compiled at the
-O3 optimization level using g++ 4.8.2. When a nonblocking
memory allocator would improve performance, we used one
adapted from the Rochester Software Transactional Memory
(RSTM) package [19].

Our test comprises a micro-benchmark, run for a fixed
period of time, in which every thread repeatedly executes some
method of the deque, uniformly and randomly choosing the
method at each iteration. We ran experiments in which threads
use the deque in a Stack, Queue, and Deque access pattern

XXXX

XXXX

XXXX

XXXX

XXXX
XXXX XXXX XXXX XXXX XXXX

XXXX
XXXX

XXXX
XXXX XXXX

XXXX
XXXX>>>>

>>>>
>>>> >>>> >>>>

>>>>
>>>> >>>> >>>> >>>>

>>>>
>>>> >>>> >>>>

>>>> >>>>

>>>>
<<<<

<<<<

<<<< <<<<
<<<<

<<<< <<<< <<<< <<<<
<<<<

<<<<
<<<<

<<<< <<<< <<<< <<<<

<<<<

0.0

2.5

5.0

7.5

10.0

0 20 40 60 80
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

o
n
 S

ta
c
k

X

>

<

FCDeque
MMDeque−Elim
MMDeque−NoElim
STDeque−Elim
STDeque−NoElim
SGLDeque
TSDeque−FAI
TSDeque−HWClock
OFDeque−Elim
OFDeque−NoElim

Fig. 15: Throughput for stack access pattern

XXXX XXXX

XXXX

XXXX

XXXX XXXX XXXX XXXX XXXX XXXX

XXXX
XXXX

XXXX
XXXX XXXX

XXXX

XXXX

>>>>

>>>>

>>>>
>>>>

>>>>
>>>>

>>>> >>>> >>>> >>>>

>>>>
>>>> >>>> >>>> >>>> >>>> >>>>

<<<<

<<<< <<<<

<<<<

<<<< <<<<
<<<< <<<< <<<< <<<<

<<<<
<<<< <<<< <<<< <<<< <<<< <<<<

0.0

2.5

5.0

7.5

10.0

12.5

0 20 40 60 80
Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

o
n
 Q

u
e
u
e

X

>

<

FCDeque
MMDeque−Elim
MMDeque−NoElim
STDeque−Elim
STDeque−NoElim
SGLDeque
TSDeque−FAI
TSDeque−HWClock
OFDeque−Elim
OFDeque−NoElim

Fig. 16: Throughput for queue access pattern

(e.g., under Stack, threads chose only between push_left
and pop_left). Each configuration was tested five times; we
report the average.

We tested several different deques—SGLDeque: a deque
protected by a single global test-and-test and set lock; FCD-
eque: a concurrent deque using flat combining with an ex-
ponential backoff lock [10]; MMDeque, STDeque: the lock
free deque of Maged Michael [15] and the lock free deque

of Sundell and Tsigas [16] respectively, both deques with and
without exponential backoff elimination arrays [4]; TSDeque-
FAI, TSDeque-HW: the time stamping deque of Dodds et
al. [5], using a fetch-and-increment counter and the hardware
cycle counter respectively — both versions use an elimination
style optimization; and OFDeque: the obstruction free deque
which is the topic of this paper, shown with and without the
elimination optimization. We chose 1024 as a representative
number of slots in each buffer; no significant performance
impact was noted for different buffer sizes.

As can be seen in Figures 14, 15, and 16, our new con-
current OFDeque generally outperforms prior art across the
range of thread counts and for most access patterns. Its single-
thread throughput also exceeds that of all the nonblocking
alternatives.

The elimination technique provides a significant boost for
the Deque and Stack access patterns, allowing performance
of the OFDeque within one socket to scale with the number
of threads. Elimination is a general technique, and can also
be applied to the MMDeque and STDeque (the TSDeque
already incorporates an elimination mechanism). Given high
single-thread latency, however, the MMDeque with elimina-
tion is still slower than the OFDeque, and in the STDeque,
the fact that contention can happen after linearization prevents
elimination from helping much.

For the Queue access pattern, where elimination is not gen-
erally feasible, flat combining achieves the best performance
by maximizing cache locality and reducing contention, but
the presented obstruction free deque generally outperforms
all nonblocking alternatives. Note that on the Queue access
pattern, elimination will generally hurt performance, since
operations will never combine in this test, as seen in the OFD-
eque’s performance, unless it acts as a contention manager, as
seen in the MMDeque.

V. CONCLUSION

In conclusion, our algorithm provides a novel unbounded
and obstruction free double ended queue construction. Our
structure outperforms across the range of thread counts other
state of the art nonblocking solutions and, for certain access
patterns, also outperforms blocking solutions.

REFERENCES

[1] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trans. on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, Jul. 1990.

[2] M. Herlihy, “A methodology for implementing highly concurrent data
objects,” ACM Trans. on Programming Languages and Systems, vol. 15,
no. 5, pp. 745–770, Nov. 1993.

[3] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchro-
nization: Double-ended queues as an example,” in Proc. of the 23rd
Intl. Conf. on Distributed Computing Systems (ICDCS), Providence, RI,
USA, May 2003, pp. 522–529.

[4] D. Hendler, N. Shavit, and L. Yerushalmi, “A scalable lock-free stack
algorithm,” in Proc. of the 16th Annual ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), Barcelona, Spain, Jun. 2004, pp.
206–215.

[5] M. Dodds, A. Haas, and C. M. Kirsch, “Fast concurrent data-structures
through explicit timestamping,” Department of Computer Sciences,
Universitt Salzburg, Tech. Rep. 2014-03, Feb. 2014.

[6] R. K. Treiber, “Systems programming: Coping with parallelism,” IBM
Almaden Research Center, Tech. Rep. RJ 5118, Apr. 1986.

[7] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Proc. of the
1996 ACM Symp. on Principles of Distributed Computing (PODC),
Philadelphia, PA, USA, May 1996, pp. 267–275.

[8] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit, “Using elimination
to implement scalable and lock-free fifo queues,” in Proc. of the 17th
Annual ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), Las Vegas, NV, USA, Jul. 2005, pp. 253–262.

[9] M. Hoffman, O. Shalev, and N. Shavit, “The baskets queue,” in Intl.
Conf. on Principles of Distributed Systems (OPODIS), Dec. 2007, pp.
401–414.

[10] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining and
the synchronization-parallelism tradeoff,” in Proc. of the 22nd ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA), Santorini,
Greece, Jun. 2010, pp. 355–364.

[11] A. Morrison and Y. Afek, “Fast concurrent queues for x86 processors,”
in Proc. of the 18th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming (PPoPP), Shenzhen, China, Feb. 2013, pp. 103–
112.

[12] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-
putations by work stealing,” in Proc. of the Thirty-fifth Intl. Symp. on
Computer Foundations of Computer Science (FOCS), Santa Fe, NM,
USA, Nov. 1994, pp. 356–368.

[13] D. Hendler, Y. Lev, M. Moir, and N. Shavit, “A dynamic-sized nonblock-
ing work stealing deque,” Sun Microsystems, Inc., Mountain View, CA,
USA, Tech. Rep. SMLI TR-2005-144, 2005.

[14] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” Theory of Computing Systems,
vol. 34, no. 2, pp. 115–144, 2001.

[15] M. M. Michael, “CAS-based lock-free algorithm for shared deques,”
in Proc. of the 9th Intl. European Conf. on Parallel and Distributed
Computing (Euro-Par), Klagenfurt, Austria, Aug. 2003, pp. 651–660.

[16] H. Sundell and P. Tsigas, “Lock-free and practical doubly linked list-
based deques using single-word compare-and-swap,” in Intl. Conf. on
Principles of Distributed Systems (OPODIS), Grenoble, France, Dec.
2004, pp. 240–255.

[17] M. Dodds, A. Haas, and C. M. Kirsch, “A scalable, correct time-stamped
stack,” in Proc. of the 42nd Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL), Mumbai, India, Jan.
2015, pp. 233–246.

[18] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-
free objects,” IEEE Trans. on Parallel and Distributed Systems, vol. 15,
no. 8, pp. 491–504, Aug. 2004.

[19] “Reconfigurable Software Transactional Memory; Release 7,” https://
github.com/mfs409/rstm (Accessed 2015).

