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Abstract. This paper provides a theoretical and practical framework
for crash-resilient data structures on a machine with persistent (non-
volatile) memory but transient registers and cache. In contrast to cer-
tain prior work, but in keeping with “real world” systems, we assume a
full-system failure model, in which all transient state (of all processes)
is lost on a crash. We introduce the notion of durable linearizability to
govern the safety of concurrent objects under this failure model and a
corresponding relaxed, buffered variant which ensures that the persistent
state in the event of a crash is consistent but not necessarily up to date.

At the implementation level, we present a new “memory persistency
model,” explicit epoch persistency, that builds upon and generalizes prior
work. Our model captures both hardware buffering and fully relaxed con-
sistency, and subsumes both existing and proposed instruction set archi-
tectures. Using the persistency model, we present an automated trans-
form to convert any linearizable, nonblocking concurrent object into one
that is also durably linearizable. We also present a design pattern, analo-
gous to linearization points, for the construction of other, more optimized
objects. Finally, we discuss generic optimizations that may improve per-
formance while preserving both safety and liveness.

1 Introduction

Current industry projections indicate that nonvolatile, byte-addressable memory
(NVM) will become commonplace over the next few years. While the availability
of NVM suggests the possibility of keeping persistent data in main memory (not
just in the file system), the fact that recent updates to registers and cache may be
lost during a power failure means that the data in main memory, if not carefully
managed, may not be consistent at recovery time.

Maintaining a consistent state in NVM requires special care to order main
memory updates. Several groups have designed libraries to support such order-
ing using failure atomic updates, via either a transactional memory inter-
face [6,7,20,26] or one inferred from mutex synchronization [5,17]. Others
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Fig. 1. Linearization bounds for interrupted operations under thread reuse failure
model. Displayed is a concurrent abstract (operation-level) history of two threads (T1

and T2) on two objects (O1 and O2); linearization points are shown as circles. These
correctness conditions differ in the deadline for linearization for a pending operation
interrupted by a crash (T1’s first operation). Strict linearizability [1] requires that the
pending operation linearizes or aborts by the crash. Persistent atomicity [10] requires
that the operation linearizes or aborts before any subsequent invocation by the pend-
ing thread on any object. Recoverable linearizability [2] requires that the operation
linearizes or aborts before any subsequent linearization by the pending thread on that
same object; under this condition a thread may have more than one operation pending
at a time. O2 demonstrates the non-locality of persistent atomicity; T2 demonstrates a
program order inversion under recoverable linearizability.

have designed data structures that tolerate power failures (e.g. [25,27]), but
the semantics of these structures are typically specified informally; the criteria
according to which they are correct remain unclear. Guerraoui and Levy have
proposed persistent atomicity [10] as a safety condition for persistent concurrent
objects. This condition ensures that the state of an object will be consistent in
the wake of a crash, but it does not provide locality : correct histories of sepa-
rate objects, when merged, will not necessarily yield a correct composite history.
Berryhill et al. have proposed an alternative, recoverable linearizability [2], which
achieves locality but may sacrifice program order after a crash. Earlier work by
Aguilera and Frølund proposed strict linearizability [1], which preserves both
locality and program order but provably precludes the implementation of some
wait-free objects for certain (limited) machine models. These safety conditions
are illustrated in Fig. 1.

Interestingly, both the lack of locality in persistent atomicity and the loss
of program order in recoverable linearizability stem from the assumption that
an individual abstract thread may crash, recover, and then continue execution.
While well defined, this failure model is more general than is normally assumed
in real-world systems. More commonly, processes are assumed to fail together,
as part of a “full system” crash. A data structure that survives such a crash may
safely assume that subsequent accesses will be performed by different threads.
We observe that if we consider only full-system crashes (an assumption mod-
eled as a well-formedness constraint on histories), then persistent atomicity and
recoverable linearizability are indistinguishable (and thus local). They are also
satisfied by existing persistent structures. We use the term durable linearizability
to refer to this merged safety condition under the restricted failure model.
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Independent of failure model, existing theoretical work typically requires that
operations become persistent before they return to their caller. In practice, this
requirement is likely to impose unacceptable overhead, since persistent memory,
while dramatically faster than disk or flash storage, still incurs latencies of hun-
dreds of cycles. To address the latency problem, we introduce buffered durable
linearizability, which requires only that an operation be “persistently ordered”
before it returns. State in the wake of a crash is still required to be consistent,
but it need not necessarily be fully up-to-date. Data structures designed with
buffering in mind will typically provide an explicit sync method that guarantees,
upon its return, that all previously ordered operations have reached persistent
memory; an application thread might invoke this method before performing I/O.
Unlike its unbuffered variant, buffered durable linearizability is not local: a his-
tory may fail to be buffered durably linearizable even if all of its object sub-
histories are. If the buffering mechanism is shared across all objects, however,
an implementation can ensure that all realizable histories—those that actually
emerge from the implementation—will indeed be buffered durably linearizable:
the post-crash states of all objects will be mutually consistent.

At the implementation level, prior work has explored the memory persistency
model (analogous to a traditional consistency model) that governs instructions
used to push the contents of cache to NVM. Existing persistency models assume
that hardware will track dependencies and automatically write dirty cache lines
back to NVM as necessary [8,19,23]. Unfortunately, real-world ISAs require the
programmer to request writes-back explicitly. Furthermore, existing persistency
models have been explored only for sequentially consistent (SC) [23] or total-store
order (TSO) machines [8,19]. At the same time, recent persistency models [19,23]
envision functionality not yet supported by commercial ISAs—namely, hardware
buffering in an ordered queue of writes-back to persistent memory, allowing
persistence fence (pfence) ordering instructions to complete without waiting for
confirmation from the physical memory device. To accommodate anticipated
hardware, we introduce a memory persistency model, explicit epoch persistency,
that is both buffered and fully relaxed (release consistent).

Just as traditional concurrent objects require not only safety but liveness, so
too should persistent objects. We define two optional liveness conditions: First,
an object designed for buffered durable linearizability may provide nonblocking
sync, ensuring that calls to sync complete without blocking. Second, a nonblock-
ing object may provide bounded completion, limiting the amount of work done
after a crash prior to the completion (if any) of operations interrupted by the
crash. As a liveness constraint, bounded completion contrasts with prior art
which imposes safety constraints [1,2,10] on completion (see Fig. 1).

We also present a simple transform that takes a data-race-free program
designed for release consistency and generates an equivalent program in which
the state persisted at a crash is guaranteed to represent a consistent cut across
the happens-before order of the original program. When the original program
comprises the implementation of a linearizable nonblocking concurrent object,
extensions to this transform result in a buffered durably or durably linearizable
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object. (If the original program is blocking, additional machinery—e.g., undo
logging—may be required. While we do not consider such machinery here, we
note that it still requires consistency as a foundation.)

To enable reasoning about our correctness conditions, we extend the notion
of linearization points into persistent memory objects, and demonstrate how
such persist points can be used to argue a given implementation is correct. We
also consider optimizations (e.g. elimination) that may safely be excluded from
persistence in order to improve performance. Proofs for our lemmas and theorems
can be found in an associated technical report [18].

2 Abstract Models

An abstract history is a sequence of events, which can be: (i) invocations of
an object method, (ii) responses associated with invocations, and (iii) system-
wide crashes. We use O.inv⟨m⟩t(params) to denote the invocation of opera-
tion m on object O, performed by thread t with parameters params. Similarly,
O.res⟨m⟩t(retvals) denotes the response of m on O, again performed by t, return-
ing retvals. A crash is denoted by C.

Given a history H, we use H[t] to denote the subhistory of H containing all
and only the events performed by thread t. Similarly, H[O] denotes the subhis-
tory containing all and only the events performed on object O, plus crash events.
We use Ci to denote the i-th crash event, and ops(H) to denote the subhistory
containing all events other than crashes. The crash events partition a history as
H = E0 C1 E1 C2 . . . Ec−1 Cc Ec, where c is the number of crash events in H. Note
that ops(Ei) = Ei for all 0 ≤ i ≤ c. We call the subhistory Ei the i-th era of H.

Given a history H = H1 AH2 B H3, where A and B are events, we say that
A precedes B (resp. B succeeds A). For any invocation I = O.inv⟨m⟩t(params)
in H, the first R = O.res⟨m⟩t(retvals) (if any) that succeeds I in H is called
a matching response. A history S is sequential if S = I0 R0 . . . Ix Rx or S =
I0 R0 . . . Ix Rx Ix+1, for x ≥ 0, and ∀ 0 ≤ i ≤ x,Ri is a matching response for Ii.

Definition 1 (Abstract Well-Formedness). An abstract history H is said
to be well formed if and only if H[t] is sequential for every thread t.

Note that sequential histories contain no crash events, so the events of a given
thread are confined to a single era. (In practice, thread IDs may be re-used as
soon as operations of the previous era have completed. In particular, an object
with bounded completion [Sect. 3.3, Definition 10] can rapidly reuse IDs.)

We consider only well-formed abstract histories. A completed operation in H
is any pair (I,R) of invocation I and matching response R. A pending operation
in H is any pair (I,⊥) where I has no matching response in H. In this case, I
is called a pending invocation in H, and any response R such that (I,R) is a
completed operation in H R is called a completing response for H.

Definition 2 (Abstract Happens-Before). In any (well-formed) abstract
history H containing events E1 and E2, we say that E1 happens before E2
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(denoted E1 ≺ E2) if E1 precedes E2 in H and (1) E1 is a crash, (2) E2 is a
crash, (3) E1 is a response and E2 is an invocation, or (4) there exists an event
Ê such that E1 ≺ Ê ≺ E2. We extend the order to operations: (I1, R1) ≺ (I2, x)
if and only if R1 ≺ I2.

Two histories H and H′ are said to be equivalent if H[t] = H′[t] for every
thread t. We use compl(H) to denote the set of histories that can be generated
from H by appending completing responses, and trunc(H) to denote the set of
histories that can be generated from H by removing pending invocations. As is
standard, a history H is linearizable if it is well formed, it has no crash events,
and there exists some history H′ ∈ trunc(compl(H)) and some legal sequential
history S equivalent to H′ such that ∀E1, E2 ∈ H′ [E1 ≺H′ E2 ⇒ E1 ≺S E2].

Definition 3 (Durable Linearizability). An abstract history H is said to be
durably linearizable if it is well formed and ops(H) is linearizable.

Durable linearizability captures the idea that operations become persistent
before they return; that is, if a crash happens, all previously completed oper-
ations remain completed, with their effects visible. Operations that have not
completed as of a crash may or may not be completed in some subsequent
era. Intuitively, their effects may be visible simply because they “executed far
enough” prior to the crash (despite the lack of a response), or because threads in
subsequent eras finished their execution for them (for instance, by scanning an
“announcement array” in the style of universal constructions [15]). While this
approach is simple, it preserves important properties from linearizability, namely
locality (composability) and nonblocking progress [18].

Given a history H and any transitive order < on events of H, a <-consistent
cut of H is a subhistory P of H where if E ∈ P and E′ < E in H, then E′ ∈ P
and E′ < E in P. In abstract histories, we are often interested in cuts consistent
with ≺, the happens-before order on events.

Definition 4 (Buffered Durable Linearizability). A history H with c crash
events is said to be buffered durably linearizable if it is well formed and there
exist subhistories P0, . . . ,Pc−1 such that for all 0 ≤ i ≤ c, Pi is a ≺-consistent
cut of Ei, and P = P0 . . . Pi−1 Ei is linearizable.

The intent here is that events in the portion of Ei after Pi were buffered but failed
to persist before the crash. Note that since Pi = Ei is a valid ≺-consistent cut for
all 0 ≤ i < c, we can have P = ops(H), and therefore any durably linearizable
history is buffered durably linearizable. Note also that buffered durable lineariz-
ability is not in general local: if an operation does not persist before it returns,
we will not in general be able to ensure that it persists before any operation that
follows it in happens-before order unless we arrange for the implementations of
separate objects to cooperate.

3 Concrete Models

Concurrent objects are typically implemented by code in some computer lan-
guage. We want to know if this code is correct. Following standard practice, we
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model implementation behavior as a set of concrete histories, generated under
some language and machine model assumed to be specified elsewhere. Each con-
crete history consists of a sequence of events, including not only operation invo-
cations, responses, and crash events, but also load, store, and read-modify-write
(RMW—e.g., compare-and-swap [CAS]) events, which access the representation
of the object. Let x.ldt(v) denote a load of variable x by thread t, returning the
value v. Let x.stt(v) denote a store of v to x by t.

Given a concrete history H, the abstract history of H, denoted abstract(H),
is obtained by eliding all events other than invocations, responses, and crashes.
As in abstract histories, we use H[t] and H[O] to denote the thread and object
subhistories of H. The concept of era from Sect. 2 applies verbatim. We say that
an event E lies between events A and B in a concrete or abstract history H if A
precedes E and E precedes B in H.

Definition 5 (Concrete Well-Formedness). A concrete history H is well-
formed if and only if

1. abstract(H) is well-formed.
2. In each thread subhistory of H, each memory event either (a) lies between

some invocation and its matching response; (b) lies between a pending invo-
cation I and the first crash that succeeds I in H (if such a crash exists); (c)
succeeds a pending invocation I if no crash succeeds I in H.

3. The values returned by the loads and RMWs respect the reads-see-writes rela-
tion (Definition 7, below).

3.1 Basic Memory Model

For the sake of generality, we build our reads-see-writes relation on the highly
relaxed release consistency memory model [9]. We allow certain loads to be
labeled as load-acquire (ld acq) events and certain stores to be labeled as store-
release (st rel) events. We treat RMW events as atomic ⟨ld acq, st rel⟩ pairs.

Definition 6 (Concrete Happens-Before). Given events E1 and E2 of con-
crete history H, we say that E1 is sequenced-before E2 if E1 precedes E2 in H[t]
for some thread t and (a) E1 is a ld acq, (b) E2 is a st rel, or (c) E1 and E2 access
the same location. We say that E1 synchronizes-with E2 if E2 = x.ld acqt′(v)
and E1 is the closest preceding x.st relt(v) in history order. The happens-before
partial order on events in H is the transitive closure of sequenced-before order
with synchronizes-with order. As in abstract histories, we write E1 ≺ E2.

Note that the definitions of happens-before are different for concrete and abstract
histories; which one is meant in a given case should be clear from context.

The release-consistent model corresponds closely to that of the ARM v8
instruction set and can be considered a generalization of Intel’s x86 instruction
set. Given concrete happens-before, we can define the reads-see-writes relation:
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Definition 7 (Reads-See-Writes). A concrete history H respects the reads-
see-writes relation if for each load R ∈ {x.ldt(v), x.ld acqt(v)}, there exists a
store W ∈ {x.stu(v), x.st relu(v)} such that either (1) W ≺ R and there exists
no store W ′ of x such that W ≺ W ′ ≺ R or (2) W is unordered with respect to
R under happens-before.

For simplicity of exposition, we consider the initial value of each variable to
have been specified by a store that happens before all other instructions in the
history. We consider only well-formed concrete histories in this paper. If case (2)
in Definition 7 never occurs in a history H, we say that H is data-race-free.

3.2 Extensions for Persistence

The semantics of instructions controlling the ordering and timing under which
cached values are pushed to persistent memory comprise a memory persis-
tency model [23]. Since any machine with bounded caches must sometimes evict
and write back a line without program intervention, the principal challenge for
designers of persistent objects is to ensure that a newer write does not persist
before an older write (to some other location) when correctness after a crash
requires the locations to be mutually consistent.

Under the epoch persistency model of Condit et al. [8] and Pelley et al. [23],
writes-back to persistent memory (persist operations) are implicit—they do not
appear in the program’s instruction stream. When ordering is required, a pro-
gram can issue a special instruction (which we call a pfence) to force all of its
earlier writes to persist before any subsequent writes. Periods between pfences in
a given thread are known as epochs. As noted by Pelley et al. [23], it is possible
for writes-back to be buffered. When necessary, a separate instruction (which we
call psync) can be used to wait until the buffer has drained.

Unfortunately, implicit write-back of persistent memory is difficult to imple-
ment in real hardware [8,19,23]. Instead, manufacturers have introduced explicit
persistent write-back (pwb) instructions. These are typically implemented in an
eager fashion: a pwb starts the write-back process; a psync waits for the comple-
tion of all prior pwbs (under some appropriate definition of “prior”).

We generalize proposed implicit persistency models [8,19,23] and real world
(explicit) persistency ISAs to define our own, new model, which we call explicit
epoch persistency. Like real-world explicit ISAs, our persistency model requires
programmers to use a pwb to force back data into persistence. Like other buffered
models, we provide pfence, which ensures that all previous pwbs are ordered
with respect to any subsequent pwbs, and psync, which waits until all previous
pwbs have actually reached persistent memory. We assume that persists to a
given location respect coherence: the programmer need never worry that a newly
persisted value will later be overwritten by the write-back of some earlier value.
Unlike prior art, which assumes sequential consistency [23] or total store order [8,
19,20], we integrate our instructions into a relaxed (release consistent) model.

Returning to concrete histories, we use x.pwbt to denote a pwb of variable
x by thread t, pfencet to denote a pfence by thread t, and psynct to denote a
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psync by thread t. We amend our definition of concrete histories to include these
persistence events. We refer to any non-crash event of a concrete history as an
instruction.

Definition 8 (Persist Ordering). Given events E1 and E2 of concrete his-
tory H, with E1 preceding E2 in the same thread subhistory, we say that E1 is
persist-ordered before E2, denoted E1 ! E2, if

(a) E1 = pwb and E2 ∈ {pfence, psync};
(b) E1 ∈ {pfence, psync} and E2 ∈ {pwb, st, st rel};
(c) E1, E2 ∈ {st, st rel, pwb}, and E1 and E2 access the same location;
(d) E1 ∈ {ld, ld acq}, E2 = pwb, and E1 and E2 access the same location; or
(e) E1 = ld acq and E2 ∈ {pfence, psync}.

Finally, across threads, E1 ! E2 if

(f) E1 = st rel, E2 = ld acq, and E1 synchronizes with E2.

To identify the values available after a crash, we extend the syntax of concrete
histories to allow store events to be labeled as “persisted,” meaning that they
will be available in subsequent eras if not overwritten. Persisted store labels
introduce additional well-formedness constraints:

Definition 9 (Concrete Well-Formedness [augments Definition 5]). A con-
crete history H is well-formed if and only if it satisfies the properties of Defini-
tion 5 and

4. For each variable x, at most one store of x is labeled as persisted in any given
era. We say the (x, 0)-persisted store is the labeled store of x in E0, if there
is one; otherwise it is the initialization store of x. For i > 0, we say the
(x, i)-persisted store is the labeled store of x in Ei, if there is one; otherwise
it is the (x, i− 1)-persisted store.

5. For any (x, i)-persisted store W , there is no store W ′ of x and psync event P
such that W ! W ′ ! P .

6. For any (x, i)-persisted store W , there is no store W ′ of x and (y, i)-persisted
store S such that W ! W ′ ! S.

These rules ensure that persisted stores compose a !-consistent cut of H. To
allow loads to see persisted values in the wake of a crash, we augment the defin-
ition of happens-before to declare that the (x, i)-persisted store happens before
all events of era Ei+1. Definition 7 then stands as originally written.

3.3 Liveness

With strict linearizability, no operation is left pending in the wake of a crash:
either it has completed when execution resumes, or it never will. With persistent
atomicity and recoverable linearizability, the time it may take to complete a
pending operation m in thread t can be expressed in terms of execution steps
in t’s reincarnation (see Fig. 1). With durable linearizability, which admits no
reincarnated threads, any bound on the time it may take to complete m must
depend on other threads.
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Definition 10 (Bounded Completion). An object O has bounded comple-
tion if, for each concrete history H of O that ends in a crash with an operation
m on O still pending, there exists a positive integer k such that for all realizable
extensions H′ of H in which some era of H′" H contains at least k instructions
issued by an arbitrary thread, either (1) for all realizable extensions H′′ of H′,
H′′ " inv⟨m⟩ is buffered durably linearizable or (2) for all realizable extensions
H′′ of H′, if there exists a completed operation n with inv⟨n⟩ ∈ H′′ " H′, then
there exists a sequential history S equivalent to H′′ with m ≺S n.

Briefly: by k post-crash instructions by any thread, m completes, if it ever will.
It is also desirable to discuss progress towards persistence. Under durable lin-

earizability, every operation persists before it responds, so any liveness property
(e.g. lock freedom) that holds for method invocations also holds for persistence.
Under buffered durable linearizability, the liveness of persist ordering is sub-
sumed in method invocations.

As noted in Sect. 1, data structures for buffered persistence will typically need
to provide a sync method that guarantees, upon its return, that all previously
ordered operations have reached persistent memory. If sync is not rolled into
operations, then buffering (and sync) need to be coordinated across all mutually
consistent objects, for the same reason that buffered durable linearizability is
not a local property (Sect. 2). The existence of sync impacts the definition of
buffered durable linearizability. In Definition 4, all abstract events that precede
a sync instruction in their era must appear in P, the sequence of consistent cuts.
For a set of nonblocking objects, it is desirable that the shared sync method be
wait-free or at least obstruction free—a property we call nonblocking sync. (As
sync is shared, lock freedom doesn’t seem applicable.)

4 Implementations

Given our prior model definitions and correctness conditions, we present an auto-
mated transform that takes as input a concurrent multi-object program written
for release consistency and transient memory, and turns it into an equivalent
program for explicit epoch persistency. Rules (T1) through (T5) of our trans-
form (below) preserve the happens-before ordering of the original concurrent
program: in the event of a crash, the values present in persistent memory are
guaranteed to represent a ≺-consistent cut of the pre-crash history. Additional
rules (T6) through (T8) serve to preserve real-time ordering not captured by
happens-before but required for durable linearizability. The intuition behind our
transform is that, for nonblocking concurrent objects, a cut across the happens-
before ordering represents a valid static state of the object [22]. For blocking
objects, additional recovery mechanisms (not discussed here) may be needed to
move the cut if it interrupts a failure-atomic or critical section [5,7,17,26].

The following rules serve to preserve happens-before ordering into persist-
before ordering. Their key observation is that a thread t which issues a x.st relt(v)
cannot atomically ensure the value’s persistence. Thus, the subsequent thread u
which synchronizes-with x.ld acqu(v) shares responsibility for x’s persistence.
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(T1) Immediately after x.stt(v), write back the value by issuing x.pwbt.
(T2) Immediately before x.st relt(v), issue a pfence; immediately afterward,

write back the value by issuing x.pwbt.
(T3) Immediately after x.ld acqt(v), write back the loaded value by issuing

x.pwbt, then issue a pfence.
(T4) Handle CAS instructions as atomic ⟨x.ld acqt(v), x.st relt(v′)⟩ pairs: imme-

diately before the pair, issue a pfence; immediately afterward, write back
the (potentially modified) value by issuing x.pwbt, then issue a pfence.
(Extensions for other RMW instructions are straightforward.)

(T5) Take no persistence action on loads.

In the wake of a crash, the values present in persistent memory will reflect,
by Definition 9, a consistent cut across the (partial) persist ordering (!) of the
preceding era. We wish to show that in any program created by our transform,
it will also reflect a consistent cut across that era’s happens-before ordering
(≺). Mirroring condition 6 of concrete well-formedness (Definition 9), but with
≺ instead of !, we can prove [18]:

Lemma 1. Consider a concrete history H emerging from our transform. For
any location x and (x, i)-persisted store A ∈ H, there exists no store A′ of x,
location y, and (y, i)-persisted store B ∈ H such that A ≺ A′ ≺ B.

Unfortunately, preservation of happens-before is not enough to give us
durable linearizability: we also need to preserve the “real-time” order of non-
overlapping operations (Definition 2, clause 3) in different threads. (As in con-
ventional linearizability, “real time” serves as a stand-in for forms of causality—
e.g., loads and stores of variables outside of operations—that are not captured
in our histories.)

For objects that are (non-buffered) durably linearizable, we simply need to
ensure that each operation persists before it returns:

(T6) Immediately before O.res⟨m⟩t, issue a psync.

For buffered durably linearizable objects, we leave out the psync and instead
introduce a shared global variable G:

(T7) Immediately before O.res⟨m⟩t, issue a pfence, then issue G.st relt(g), for
some arbitrary fixed value g.

(T8) Immediately after O.inv⟨m⟩t, issue G.ld acqt(g), for the same fixed value
g, then issue a pfence.

To facilitate our proof of correctness [18], we introduce the notion of an
effective history for H. This history leaves out both the crashes of H and, in
each era, the suffix of each thread’s execution that fails to reach persistence
before the crash. We can then prove (Lemma 2) that any effective history of a
program emerging from our transform is itself a valid history of that program
(and could have happened in the absence of crashes), and (Lemma 3) that the
(crash-free) abstract history corresponding to the effective history is identical to
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some concatenation of ≺-consistent cuts of the eras of the (crash-laden) abstract
history corresponding to H. These two lemmas then support our main result
(Theorem 1).

Definition 11. Consider a concrete history H = E0 C1 E1 . . . Ec−1 Cc Ec. For
any thread t and era 0 ≤ i < c, let Et

i be the last store in Ei[t] that either is a
persisted store or happens before some persisted store in Ei. Let Bt

i be the last
non-store instruction that succeeds Et

i in Ei[t], with no stores by t in-between
(or, if there is no such instruction, Et

i itself). Finally, for 0 ≤ j < c, let Pj be
the subhistory of Ej obtained by removing all persistence events and, for each t,
all events that follow Bt

j in Ej [t]. The effective concrete history of H at era i,
denoted effectivei(H), is the history P0 . . . Pi−1Ei.

Lemma 2. Consider a nonblocking, data-race-free program P, and the trans-
formed program P′. For any realizable concrete history H of P′, and any
0 ≤ i ≤ c, effectivei(H) is a realizable concrete history of P.

Lemma 3. Consider a nonblocking, data-race-free program P, and the trans-
formed program P′. For any realizable concrete history H of P′, and any
0 ≤ i ≤ c, the history abstract(effectivei(H)) is precisely Pa

0 . . . Pa
i−1 Ea

i , where
Ea

i is the i-th era of abstract(H), and Pa
i is a ≺-consistent cut of Ea

i .

Theorem 1 (Buffered Durable Linearizability). If a nonblocking, data-
race-free program P is linearizable, the transformed program P′ is buffered durably
linearizable.

In addition to the correctness properties of our automated transform, we can
characterize other properties of the code it generates. For example, the trans-
formed implementation of a nonblocking concurrent object requires no change
to persistent state before relaunching threads—that is, it has a null recovery
procedure. Moreover, any set of transformed objects will share a wait-free sync
method (a single call to psync).

In each operation on a transient linearizable concurrent object, we can iden-
tify some instruction within as the operation’s announce point : once execution
reaches the announce point, the operation may linearize without its thread tak-
ing additional steps. Wait-free linearizable objects sometimes have announce
points that are not atomic with their linearization points. In most nonblock-
ing objects, however, the announce point is the linearization point, a property
we call unannounced. This property results in stronger correctness properties
in the persistent version when the object is transformed. The result of trans-
form when applied to an object whose operations are unannounced is strictly
linearizable. Perhaps surprisingly, our transform does not guarantee bounded
completion, even on wait-free objects. Pending announced operations may be
ignored for an arbitrary interval before eventually being helped to completion [4]
[14, Sect. 4.2.5].
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4.1 Persist Points

Linearizability proofs for transient objects are commonly based on the notion
of a linearization point—an instruction between an operation’s invocation and
response at which the operation appears to “take effect instantaneously” [16]. In
simple objects, linearization points may be statically known. In more complicated
cases, one may need to reason retrospectively over a history in order to identify
the linearization points, and the linearization point of an operation need not
necessarily be an instruction issued by the invoking thread.

The problem for persistent objects is that an operation cannot generally lin-
earize and persist at the same instant. Clearly, it will need to linearize first;
otherwise it will not know what values to persist. Unfortunately, as soon as an
operation (call it m) linearizes, other operations can see its state, and might,
naively, linearize and persist before m had a chance to persist. The key to avoid-
ing this problem is for every operation n to ensure that any predecessor on
which it depends has persisted (in the unbuffered case) or persist-ordered (with
global buffering) before n itself linearizes. To preserve real-time order, n must
also persist (or persist-order) before it returns.

Theorem 2 (Persist Points). Suppose that for each operation m of object O
it is possible to identify not only a linearization point lm between inv⟨m⟩ and
res⟨m⟩ but also a persist point instruction pm between lm and res⟨m⟩ such that
(1) “all stores needed to capture m” are written back to persistent memory,
and a pfence issued, before pm; and (2) whenever operations m and n overlap,
linearization points can be chosen such that either pm ! ln or ln precedes lm.
Then O is (buffered) durably linearizable.

The notion of “all stores needed to capture m” will depend on the details of
O. In simple cases (e.g., those emerging from our automated transform), those
stores might be all of m’s updates to shared memory. In more optimized cases,
they might be a proper subset (as discussed below). Generally, a nonblocking
persistent object will embody helping: if an operation has linearized but not yet
persisted, its successor operation must be prepared to push it to persistence.

4.2 Practical Applications

A variety of standard concurrent data structure techniques can be adapted to
work with both durable and strict linearizability and their buffered variants.
While our automated transform can be used to create correct persistent objects,
judicious use of transient memory can often reduce the overhead of persistence
without compromising correctness. For instance, announcement arrays [13] are
a common idiom for wait-free helping mechanisms. Implementing a transient
announcement array [2] while using our transform on the remainder of the object
state will generally provide a (buffered) strictly linearizable persistent object.

Other data structure components may also be moved into transient memory.
Elimination arrays [12] might be used on top of a durably or strictly lineariz-
able data structure without compromising its correctness. The flat combining



Linearizability of Persistent Memory Objects 325

technique [11] is also amenable to persistence. Combined operations can be built
together and ordered to persistence with a single pfence, then linked into the
main data structure with another, reducing pfence instructions per operation. A
transient combining array will generally result in a strictly linearizable object;
leaving it persistent memory results in a durably linearizable object.

Several library and run-time systems have already been designed to take
advantage of NVM; many of these can be categorized by the presented cor-
rectness conditions. Strictly linearizable examples include trees [25,27], file sys-
tems [8], and hash maps [24]. Buffered strictly linearizable data structures
also exist [21], and some libraries explicitly enable their construction [3,5].
Durably (but not strictly) linearizable data structures are a comparatively recent
innovation [17].

5 Conclusion

This paper has presented a framework for reasoning about the correctness of
persistent data structures, based on two key assumptions: full-system crashes at
the level of abstract histories and explicit write-back and buffering at the level
of concrete histories. For the former, we capture safety as (buffered) durable
linearizability ; for the latter, we capture anticipated real-world hardware with
explicit epoch consistency, and observe that both buffering and persistence intro-
duce new issues of liveness. Finally, we have presented both an automatic mech-
anism to transform a transient concurrent object into a correct equivalent object
for explicit epoch persistency and a notion of persist points to facilitate reasoning
for other, more optimized, persistent objects.
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