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Abstract
At TRANSACT 2014 we described plans and a preliminary im-
plementation for a hybrid TM for the Glasgow Haskell Compiler.
Here we give an update on our work and new performance results
on a 72-thread Intel Haswell system showing that hardware transac-
tional memory can improve the performance of Haskell TM at real-
istic scales. We describe our constant space approach to supporting
transaction blocking (retry). We also compare performance with
a common Haskell idiom for concurrent data structures, showing
how TM improves on this as concurrency increases.

1. Introduction
A year ago we introduced our preliminary implementation of a hy-
brid TM for Haskell and outlined some further steps needed to
fully support the blocking (retry) and choice (orElse) features
of Haskell’s STM. We have now implemented full run-time support
for these features and have explored the performance of our hybrid
system on a large Intel machine with Transactional Synchroniza-
tion Extensions (TSX) [10].

Major changes from a year ago include:

1. Where our previous system required per-transaction logging
space linear in the number of accessed transactional variables,
we now use constant space, even when blocking on retry. This
change allows us to accommodate much larger data structures
using hardware transactions.

2. To support waking up blocked transactions we introduce a
global structure containing approximate read sets for blocked
transactions. The semantics of blocked transactions do not de-
mand that wakeup happens atomically with the write that un-
blocks a transaction, but does demand that no wakeup opportu-
nities are missed. We use a combination of acquiring a global
lock for the wakeup structure and lock-elision–based specula-
tion to accommodate both hardware transactions that block by
committing an update to the structure (but no updates to any-
thing else) and concurrent transactions that mutate the structure
to wake up blocked transactions, while avoiding aborts of the
former by the latter in the common case.

3. We compare TM performance to a common alternative Haskell
idiom in which a large pure-functional data structure is accessed
through a single global mutable reference. Updates in this idiom
install a “new” version of the structure that typically shares
much of its state with the old. Our experiments show that
while this idiom yields good performance up to eight cores,
performance quickly degrades as the single reference becomes
a significant bottleneck. Our hybrid TM systems as well as
the original fine-grain STM system outperform this common
technique as the number of cores increases.
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4. Running on a large system has exposed an important corner
case in the GHC run-time system. GHC’s implementation al-
lows STM transactions to continue running after observing in-
consistent state. While this is safe to do in the absence of side
effects, threads can erroneously enter a non-allocating infinite
loop and miss requests to enter stop-the-world garbage collec-
tion, which in the default configuration is tied only to alloca-
tion. Our experiments show that this corner case is encountered
much more often with many threads and when using our hybrid
system. A straightforward fix to this problem adds overhead of
roughly 5%; we are exploring cheaper alternatives.

We give a brief overview of Haskell’s STM implementation in
Section 1.1, including a description of the relevant portions of the
run-time system in Section 1.1.1. In Section 1.1.2 we elaborate on
the limitations this implementation poses—and the challenges it
poses—for an H/STM hybrid. We also briefly discuss Intel’s HTM
support in Section 1.2 and some related work on hybrid TM in
Section 1.3. In Section 2 we describe our hybrid TM variants and in
Section 3 we discuss performance challenges specific to Haskell’s
TM. Finally our current performance results appear in Section 4.

1.1 GHC’s STM
The Haskell programming language, as implemented by the Glas-
gow Haskell Compiler, has many innovative features, including a
rich run-time system to manage the unique needs of a pure func-
tional language with lazy evaluation. Since its introduction by Har-
ris et al. in 2005 [8], GHC’s STM has grown increasingly popular.
Most uses are not performance critical, but rather focus on ensuring
correctness in the face of concurrency from user interaction or sys-
tem events. TM-based concurrent data structures are less common,
and little effort has been invested in the sort of performance tun-
ing that has characterized STM work for imperative languages [9,
chap. 4].

In comparison to most of those imperative implementations,
GHC’s TM is unusual in its use of explicit transactional variables
called TVars. Haskell has a static separation of effects that prevents
inspecting or manipulating these variables outside of the context
of a transaction. In fact, there is no special compiler support for
STM beyond the existing type system. STM is supported instead
by the run-time system. Inside transactions, execution is restricted
to operations on TVars and the usual pure functional computations.
TVar operations consist of creation (with an initial value), reading,
and writing.

The static separation between transactional and nontransac-
tional values eliminates the concept of privatization and its imple-
mentation challenges [14]. More significantly, GHC’s strict con-
trols on runtime-level side effects facilitate the construction of a
sandboxed TM runtime [1], in which “doomed” transactions can
safely execute beyond the point at which they first read inconsistent
values from memory (we return to this subject in Section 2.4).

Haskell transactions also support a retry operation. Concep-
tually, the compiler and runtime ensure that each transaction exe-
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cutes only when it can do so without encountering retry. Prag-
matically, the implementation aborts (the current execution of) the
transaction when retry is encountered, and arranges to try again
as soon as any TVar that was read during the aborted run is up-
dated by some other (subsequent) transaction (suggesting the pos-
sibility that a new run might take a different code path). The retry
operation serves to implement condition synchronization. It can be
used, for example, to build a blocking queue: the dequeue operation
reads the queue’s head variable and, if the queue is empty, executes
retry rather then returning no results. The transaction’s thread is
then blocked (atomically with respect to its discovery of emptiness)
until another transaction performs an enqueue operation.

1.1.1 Run-time Support
GHC serializes transactions using either a coarse-grain lock or per-
TVar fine-grain locks. In both versions, each transaction is repre-
sented by a record called a TRec, with an entry for every transac-
tional variable touched during the execution of the transaction. The
entries in the TRec store the value seen when the variable was first
encountered and an updated value if one was written during the
transaction. Values are always pointers to immutable heap objects.
A read of a TVar first searches the TRec for a previous entry and
uses its value. If no entry exists it reads the value from the TVar

itself and adds an appropriate entry to the TRec. Similarly, writes
look for a previously read entry, adding a new one if the variable
has not been seen, and in either case writing the new value into
the entry. In the coarse-grain implementation, the global lock is ac-
quired when the transaction attempts to commit. While holding the
lock, the transaction validates its state by ensuring that all accessed
TVars still hold the expected value recorded in the TRec. If they
do, the transaction commits by writing all the changed values into
their respective TVars and releasing the global lock.

The fine-grain implementation is similar, but at commit time it
acquires a lock for each TVar. The value of the TVar—the refer-
ence it contains—does double duty as the lock. Initial reads spin on
locked values. At commit time, validation is done by first check-
ing for consistent values and acquiring locks for any writes, then
checking for consistent values again (as in the coarse-grain ver-
sion) now that the locks are held. Reads from other transactions
will be blocked, and other attempts to commit will fail when see-
ing a lock as a TVar’s value. Read-only transactions need not ac-
quire any locks: they commit after the second validation. Writer
transactions unlock TVars by overwriting their locks with the cor-
responding new values. This implementation draws heavily on the
OSTM system of Fraser and Harris [6], but without its nonblocking
progress guarantees.

1.1.2 Limitations
An important design decision in Haskell’s STM is the choice to de-
clare separate transactional variables, and to separate STM effects
from the IO monad (the portion of the language that interacts with
the outside world and with non-transactional mutable state). Sep-
aration facilitates programmer reasoning by statically disallowing
effects that cannot be rolled back inside transactions. The run-time
system strongly mirrors the separation of transactional variables
by representing a TVar with a heap object containing a pointer to
the actual data value. Unfortunately, this indirection significantly
increases the memory footprint of each transaction. Harris et al.
justify the design [7] by noting that the usual style of transac-
tional programming in Haskell entails a relatively small number
of transactional variables. Indeed, Haskell programmers get along
well without mutation for the majority of each program. This justi-
fication impacts another choice in the STM as well: Each TRec is
an unordered list of accessed variables, which must be searched on
each transactional read, leading to O(n2) time for a transaction that

reads n variables. The cost is reasonable for operations on queues
or other simple containers, where only a handful of variables needs
to be touched. For larger structures it could quickly become prob-
lematic.

To minimize the number of TVars accessed in a transaction,
Haskell programmers commonly rely on the language’s lazy eval-
uation and devote a single TVar to each large (pure, functional)
data structure. A pure map structure with thousands of nodes, for
instance, can be the value held by a single TVar. Inserting a value
into the map can be achieved by pointing the TVar at a thunk (an
unevaluated function) that represents the computation of the inser-
tion. A later (post-transactional) lookup to the map would then have
the effect of forcing the thunk to evaluate. There is no reason this
lookup needs to be done inside a transaction—just the mutation at
the TVar that moves the pointer to the new computation.

Building up delayed computations is not without its downsides,
however. The collection of unevaluated computations can some-
times use much more space than the final evaluated structure would
occupy. To minimize this overhead, programmers commonly em-
ploy pure data structures that are “spine strict,” where pointers to
children are always evaluated when the parent is evaluated. Map
data structures are usually also “key strict,” where the keys are fully
evaluated and often unboxed (represented in place, rather than via
indirection) if the type of the value allows.

1.2 Intel TSX
In our work we use Intel’s Transactional Synchronization Ex-
tensions (TSX) [10]1 for hardware transactions. We use only the
Restricted Transactional Memory (RTM) form, with XBEGIN and
XEND instructions to mark the beginning and end of transactions,
XTEST to determine at run time if execution is transactional, and
XABORT to abandon a transaction and return an eight bit reason
code. While some of our uses of TSX resemble Hardware Lock
Elision (HLE), we do not use the direct support for HLE as we
gain flexibility in handling aborts directly with RTM and we have
no need for the backward compatibility of HLE. Our work could
in principle be ported to IBM’s Power or z architectures, which
provide HTM capabilities similar to TSX, but GHC support is not
as solid on these platforms as it is on x86.

1.3 Related Work
Early work on hybrid TM includes the systems of Damron et al. [4]
and Kumar et al. [12], both of which add instrumentation to hard-
ware transactions to enable them to interoperate correctly with soft-
ware transactions. In an attempt to avoid this instrumentation, Lev
et al. [13] arrange for the TM system to switch between hardware
and software phases, with all transactions executing in the same
mode within a given phase; the resulting performance is often su-
perior, but brittle.

Subsequent recent work builds on the NOrec system of Da-
lessandro et al. [2], which uses value-based validation, and serial-
izes transaction write-back with a global lock. Hybrid NOrec [3]
leverages this design to allow uninstrumented hardware transac-
tions to run concurrently with everything except the commit phase
of software transactions. Performance in this system is best when
hardware transactions are able to perform non-transactional reads
of the software commit-phase lock. Felber et al. [5] and Riegel et
al. [20] present variants of this scheme with similar performance.

More recent work by Matveev and Shavit [17, 18] builds on both
NOrec and time-based STM, with two levels of fallback from pure

1 Unfortunately, Errata HSD136 and HSE44 led Intel to disable TSX for all
uses except software development [11]. Future versions will not be affected
by the issue. Our results are from a machine that has TSX enabled according
to instructions given by Intel.
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HTM. The first level of fallback uses hardware transactions for part
of the work—specifically to validate and write back atomically—
allowing it to coexist with mostly uninstrumented hardware trans-
actions. The second level of fallback requires that hardware trans-
actions maintain the metadata used by STM.

2. Hybrid Haskell TM
Our hybrid TM for GHC uses TSX in several ways. In Section 2.1
we look at the simple scheme of eliding the coarse-grain lock dur-
ing the STM commit phase. This scheme has some benefits over
the fine-grain implementation and serves, in Section 2.2, as the fall-
back mechanism for a second scheme, in which we attempt to run
Haskell transactions entirely in hardware. Section 2.3 discusses a
preliminary implementation in which we use hardware transactions
in the commit phase of the fine-grain locking STM. Trade-offs and
interactions among these schemes are discussed in Section 2.4.

2.1 Eliding the Coarse-grain Lock
The simplest way to employ TSX in GHC’s STM implementation
requires no significant changes to the run-time system. The coarse-
grain version of the system has a global lock protecting the commit
phase. We can apply hardware lock elision to the global lock and,
in the best case, this will allow independent software transactions
to perform their commits concurrently. In comparison to the fine-
grain version of the system, this strategy avoids both the overhead
of acquiring and releasing multiple locks and the overhead incurred
on the first read of any TVar to check that the variable is unlocked.
It does not, however, address the overhead of maintaining the trans-
actional record: to allow transactions to read their own writes and
to avoid interfering with peers, instrumentation is still required on
transactional loads and stores.

While this simple approach will work, we make a few changes
that improve performance significantly. If a transaction has writ-
ten any TVars, it must on commit wake up any blocked transaction
with a read set that overlaps the committing write set. We move
these wakeups outside the global commit lock and protect a global
wakeup structure holding the read sets of blocked transactions with
a separate wakeup lock. Details of the wakeup structure appear in
Section 2.5. For the results discussed here, our implementation rep-
resents read sets with small, 64–bit Bloom filters, and our programs
seldom employ retry. Future work will explore the impact of such
parameters as Bloom filter size, hash function choice, and wakeup
structure design.

Another change we make is to elide the usual garbage collection
(GC) write barriers within a hardware transaction. When a TVar
is mutated the GC needs to know to follow the value pointer if
that pointer points into a younger generation. Each mutated TVar
that is not in the youngest generation is put on a mutated list for
GC to follow. We can safely move this list maintenance out of the
critical section, by ensuring that GC cannot happen between when
the hardware transaction commits and when the TVars are added to
the mutated list. We discuss this optimization further in Section 3.

Finally, we can avoid a double traversal of the TRec when
executing in a hardware transaction. The TRec stores its read and
write sets together in one table. Software transactions traverse the
table once to validate that the TVars hold the values seen when the
variables were first encountered, and again to perform the updates
from the write set. In a hardware transaction we can perform both
tasks in a single pass, and use XABORT with a reason code indicating
a validation failure when any TVar holds a different value.

2.2 Executing Haskell Transactions in Hardware
Transactions

The goal of executing an entire Haskell transaction within a hard-
ware transaction is to avoid the overhead of STM TRec mainte-

nance, relying instead on hardware conflict detection. In the coarse-
grain implementation, when running in a hardware transaction, we
simply read and write directly to the referenced TVars. Imple-
mented naively, we avoid the need for a TRec, but our transaction
could start and commit in the middle of a software transaction’s
write phase, seeing inconsistent state. Since our fallback is the
coarse-grain lock, we can fix this problem in a manner analogous
to that of Dalessandro et al. [3] and Felber et al. [5], by including
the global lock in our hardware transaction’s read set and checking
that it is unlocked. Our hardware transactions will be aborted by
any committing software transaction, as every software transaction
acquires the lock at commit time, but we can make the window of
vulnerability quite small by reading the lock only at the end of the
hardware transaction. (As discussed in Section 1.1, and examined
more closely in Section 2.4, this optimization is safe in Haskell but
not in most other languages.)

In the other direction, transactions used for the commit phase
of fallback software transactions will be aborted whenever they
conflict with an all-hardware transaction, in a manner analogous
to the reduced hardware transactions of Matveev and Shavit [17].
If we elide the global lock as described in Section 2.1, aborts will
not be caused by conflicts on the coarse-grain lock itself: in the
absence of (true data) conflicts, software transactions can commit
concurrently with a running hardware transaction,

2.3 Fine-grain Locking with Hardware Transaction Commit
A third hybrid strategy starts with the fine-grain locking STM and
attempts to perform its commit phase using a hardware transaction.
Because the fine-grain STM uses the TVar’s value field as a lock,
this third strategy ends up being very similar to elision of the global
lock in the coarse-grain STM, as described in Section 2.1. We do
not need to include a global lock variable in our read set, however,
as each TVar value read in the hardware transaction is a fine-grain
lock.

In the commit phase of the coarse-grain hybrid, if we observe
that the global lock is held, we use XABORT to roll back the trans-
action, as we cannot commit in the middle of another thread’s soft-
ware commit phase. We use the abort code to indicate that the lock
was held; we then spin until the lock is free before attempting to
execute the hardware transaction again. In the fine-grain version, a
locked TVar indicates a validation failure; no further attempts will
be made at performing the hardware transaction.

2.4 Interaction Between Transactions
In our previous work we noted that Haskell’s STM allows con-
tinued execution of transactions that have observed inconsistent
state. We argued that these “doomed” transactions do not lead
to unsafe executions, so long as the transactions themselves do
not contain explicitly labeled unsafe operations, which circumvent
Haskell’s type system. Our experiments have revealed, however,
that on larger machines and with the faster execution of hardware
transactions, a doomed transaction can easily enter a infinite loop
that contains no memory allocation operations. Since allocations
provide the hook for initiation of stop-the-world garbage collec-
tion, the entire program can hang as a result. The problem is easily
fixed by using the no-omit-yield compiler flag to ensure that all
loops (in Haskell’s case, recursive function calls) contain a GC ini-
tiation check. This flag is reported to incur a cost in binary size of
around 5% while overall performance remains uneffected[21]. We
note that infinite loops are less of an issue in hardware transactions,
which will always abort eventually, due to scheduler interrupts. In
fact, we prefer to avoid GC checks inside of hardware transactions.

While it is easy to turn on the no-omit-yield flag in our re-
search work, it may be a more significant burden for developers
and users as it is unclear which modules will need the extra instru-
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mentation. We would also like to avoid wasting time in doomed
transactions. More lightweight detection (and earlier termination)
of doomed transactions is a subject for future work.

2.5 Supporting Blocking
STM Haskell’s retry operation poses a challenge for all-hardware
transactions. In the original STM, when a transaction executes
retry, its Haskell thread is suspended and placed on a watch list
for every TVar in its read set. When another transaction commits it
must wake up every thread in the watch lists of all the TVars in its
write set. A hardware transaction must somehow provide analogous
functionality.

In our preliminary implementation, we arranged for hardware
transactions to record the address of each write in a transactional
record. This proved to be too costly to be effective in practice,
largely because the write set implementation performs dynamic
memory allocation. It is safe, if inefficient, for a transaction to
be woken when it still cannot make progress: it will simply block
again. Given this fact, the simplest option is to wake up all blocked
transactions when any hardware transaction commits. Given one
bit of space we can distinguish read-only transactions, which need
not perform any wakeups. With more bits we can create a summary
structure that conservatively approximates the write set, with no
false negatives. We employ this latter option in our current imple-
mentation, with constant-space Bloom filters for approximate read
and write sets.

A transaction that encounters a retry while running entirely
in hardware can save its read set and commit the hardware trans-
action so long as it has not yet updated any TVars. Similarly, if
retry is encountered while in the first branch of an orElse, before
any writes, execution can continue directly to the second branch.
If a transaction has written a TVar it must abort. We could po-
tentially employ an abort code that signals the runtime to unblock
the thread whenever a writer transaction commits. In principle we
could even use the abort code itself as a tiny read-set Bloom filter,
but TSX makes only 8 bits available. For now, we simply restart
the transaction in STM mode. The ideal solution, we believe, is to
develop compiler transformations that delay writes, whenever pos-
sible, until after any point at which the transaction might encounter
a retry; we plan to explore this option in future work.

By varying the size of Bloom filters, we also plan to explore
the tradeoff between the accuracy of wakeup and the time and
space overhead of instrumentation. It seems feasible to support
different granularity in what the STM and HTM can track. The
two would perform wakeups at whatever precision was available.
Even false negatives (such as those induced by an inappropriately
empty read set) might be tolerable if we provided a mechanism
to periodically wake all suspended transactions. Certain program-
ming idioms, however, might lead to unreasonable delays. Some
Haskell programs, for example, use retry as a barrier, to signal
the next phase of a computation; these might experience a signifi-
cant pause between phases. Other programs, including those based
on the popular async library, create suspended transactions to rep-
resent a large number of very rare conditions. Waking all of these
periodically might lead to unacceptable amounts of wasted work.

Global Wakeup Structure Committing transactions need to be
able to find the read sets of blocked transactions. For this purpose
we use a simple global structure we call the wakeup list, protected
by a global wakeup lock. A committing writer transaction acquires
the global wakeup lock, searches for overlapping read sets, and then
wakes the threads associated with those sets.

We improve on this simple scheme by buffering the wakeups
and performing them after the commit lock is released, and by elid-
ing the global wakeup lock when searching for threads to wake.
Specifically, when an all-hardware transaction executes retry it

top:
retrying = false
XBEGIN // failure path not shown

// (same as in any all-hardware transaction)
...
// retry with no prior TVar writes:
if (wakeup lock == 1)

XABORT(RESTART)
wakeup lock = 1
retrying = true

XEND
if (retrying)

insert(wakeup list, read set)
release(wakeup lock)
wait for wakeup
goto top

Figure 1. Handling of the wakeup lock in a hardware transaction
committing retry.

XBEGIN
... normal transaction execution with writes ...

XEND
for 0..retry count do

XBEGIN(fail)
if (wakeup lock == 1)

XABORT(RESTART)
wakeup(wakeup list, write set)
XEND
return // exit transaction

fail:
end
// fallback:
acquire(wakeup lock)
wakeup(wakeup list, write set)
release(wakeup lock)

Figure 2. Speculative search of wakeup list by a transaction that
writes.

acquires the global wakeup lock before committing the hardware
transaction (Fig. 1). This avoids any window between the end of
the transaction and the insertion into the list, during which a com-
mitting transaction might overlook the retry-er. We also prevent
data conflicts on the wakeup structure itself from needlessly abort-
ing our all-hardware transaction. Speculative elision of the lock is
performed only by threads performing wakeup (Fig. 2), so in the
event of a conflict the more expensive and important retry-ing
transaction wins. Because they acquire the lock for real, no two all-
hardware transactions can commit a retry at the same time. The
overlap here is quite small as long as we optimize the wakeup list
for quick insertion.

Our wakeup list is implemented as a linked list of chunks.
Under protection of the wakeup lock, insertion can be performed by
incrementing the chunk’s next-free-slot index and storing the read
set Bloom filter and thread pointer. If a chunk is full, a new chunk is
inserted to the head of the list. When threads are woken, the Bloom
filter is overwritten as zero (an empty read set). When searching
the list for matches, any chunk found to contain all zero entries is
unlinked. Garbage collection time also provides an opportunity to
compact the list.

3. Performance Challenges
Since we introduced our Hybrid TM we have discovered a new
challenge to performance in the GC write barrier. While we will
only focus on this GC challenge in this section, as discussed in
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our previous work, we still suffer from unnecessary indirection in
TVars; we hope to address this soon with improved transactional
array support.

GHC’s garbage collector separates the heap into generations.
New allocations occur in the youngest generation and as values
live longer they may be promoted to an older generation. As in all
generational collectors, the goal is to allow more frequent, but short
collections of the younger generation. (Concurrent collection could
even be allowed [16], though the current implementation does not
employ it.) As noted in Section 2.1, one challenge of generational
collection is the need to track any reference in an older generation
that is mutated to point to a value in a younger generation. If a
collection of the young generation is not aware of this reference it
could collect the young value and leave the reference in the older
generation dangling.

In GHC 7.8 a new mechanism is used to track the mutations of
TVars in older generations. Every mutation invokes the GC write
barrier, which adds the address of the mutated heap object to a mu-
tation list specific to the execution context and object generation.
When the collection of a young generation happens, objects on the
mutation lists for each generation are followed as roots. Only when
the transitive closure of the object ends up being promoted to the
older generation will the object be removed from the mutation list.
This GC strategy affects the design of our hybrid TM, as we wish
to avoid tracking a precise write set, preferring instead to use con-
stant space. But the list of mutated values is the write set. If we
must keep this set around anyway (in anticipation of performing
the GC barriers after completing the HW transaction), we might
need unbounded space. Fortunately, it is not expensive to identify
the generation of a given heap object, and to remember it only in
the (relatively rare) case that the mutation is in an older generation.

We have not yet determined what role the GC write barrier is
playing in performance, but there are some approaches we could
explore to handle it differently. For instance, we could additionally
check on each TVar write if the value being written is in a younger
generation—not just if the TVar is in the youngest generation.
Another approach would be to have a pre-determined number of
writes that we would support in a fully HTM transaction. These
writes would be recorded in the constant space it takes to hold them.
If more writes are demanded we would either fall back to STM or
execute the GC write barrier in the hardware transaction. If we end
up with precise information on all the writes this could also have
the beneficial side effect of avoiding unnecessary wakeups.

4. Performance Results
We have implemented our hybrid TM system in GHC by augment-
ing the existing STM support in the run-time system. For compari-
son we show results from the existing STM under fine-grain locks
and under coarse-grain locks. We also show the performance of
the coarse-grain version with hardware lock elision applied to the
global lock, and the fine-grain version with a commit that uses a
hardware transaction.

Results were obtained on a 2-socket, 36-core, 72-thread Intel
Xeon E5-2699 v3 system. This system is much larger than in
our previous work, which was limited to four cores and eight
threads. We can clearly observe the costs of communicating across
socket, and even across rings within a chip.2 Hardware transactions
succeed in reducing the amount of communication needed between
cores, allowing for a significant increase in performance simply
by eliding a coarse grain lock. To achieve consistent results we
augmented GHC’s thread pinning mechanism to allow assignment
of Haskell execution contexts to specific cores, and experimented

2 The internal network of the E5-2699 consists of two communication rings,
with 10 cores on one and 8 on the other.
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Figure 3. Operations on a red-black tree of roughly 50,000 nodes,
where 90% of the operations are lookups and the rest are split
between insertions and deletions.

with different assignments as we increased the number of threads
used in our experiments. The best performance was achieved by
first filling all the cores on one chip then moving to the second chip
and finally using the SMT threads. While we didn’t exhaustively
explore all the options, and the results are dependent to a large
degree on the particular workload, we did observe that coarse-
grain techniques sometimes benefited from assigning SMT threads
before cores on the second socket. In these cases better locality for
the global lock was of more benefit than the larger cache space
obtained by distributing across chips.

While we have attempted to benchmark some existing STM-
based Haskell applications, most current Haskell programs use
STM for correctness and expressiveness (via retry and orElse),
not for high performance. So far, our TM enhancements do not
translate into performance improvements for such programs. As
has commonly been the case in imperative languages, high per-
formance Haskell applications tend to use locks (MVars) or CAS
(atomicModifyIORef’). We will be looking to convert some of
these applications into useful benchmarks. In addition to bench-
marks from the Haskell world we are also looking to import stan-
dard TM benchmarks from imperative languages. We hope soon to
have results that include the vacation and kmeans benchmarks
from STAMP [19]. Unfortunately, porting is made difficult by the
significant difference in style between C and Haskell programming.
We expect this effort to be an opportunity to further explore the per-
formance implications of these differences.

4.1 Data Structure Throughput
Our benchmarking work has focused on red-black tree perfor-
mance. Figure 3 shows the throughput of a mix of operations on
a red-black tree which initially has 50,000 nodes—significantly
larger than the very small trees in our previous work. When the
benchmark runs, each thread performs a transaction which will
search for a random key 90% of the time, insert a random key 5%
of the time, and delete a random key the remaining 5% of the time.

In addition to the coarse- and fine-grain variants of the original
Haskell STM, and our hybrid and hardware commit versions, we
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also show results for a common Haskell idiom in which a set is kept
in an immutable tree, and the atomicModifyIORef’ operation
is used to swing a root pointer to a new tree that shares much
of its structure with the old. This idiom is often offered as an
alternative to concurrency for data structures with internal mutable
variables [15]. When using it, we obtained the best performance
not with a red-black tree, but with the key–value pair interface of
the hash array mapped trie found in the unordered-containers
package. This code is labeled “HashMap” in the figures.

HashMap performs well for small thread counts, but soon suc-
cumbs to the bottleneck of a single mutable reference. Similarly, the
coarse-grain STM keeps pace with the other TM implementations
until around 6 threads. This is most of the cores on a single ring.
Hardware commit nicely extends the coarse-grained STM, contin-
uing to improve throughput across cores on a single chip. The fine-
grain TM with and without the hardware commit performs the best
out of all the variations on two sockets with the hardware commit
version (HTM-Fine) consistently performing slightly better. Our
hybrid slightly edges out the other TM variants on a single chip
without hyperthreads. All options have diminishing returns as both
sockets are filled and hyperthreads are a net loss for both our hybrid
and HTM-Coarse.

4.2 Retry Overhead
Given the heavy use of retry in existing Haskell code, we have
also measured the overhead of thread blocking and wakeup mecha-
nisms. Our focus has been on applications in which retry is rela-
tively rare, and in which transactions remain blocked for relatively
short amounts of time. In future work we hope to support other use
cases efficiently as well. When a blocked thread is woken and, after
running again, still executes retry, we call this a failed wakeup.
The frequency of failed wakeups is application dependent, but we
expect it to increase as a result of our constant-space read sets.

One very common use of TM in Haskell is to multiplex or
manage queues. As a simple benchmark we built a ring of threads
each with a queue. Each thread begins with some initial number of
items in its queue. During execution, each thread repeatedly takes
an item from its first neighbor and gives and item to its second
neighbor in a transaction. When a queue is empty any attempt to
read will execute retry. The average throughput of five runs is
given In Figure 4. When there are only two threads retries are rare
(around 0.05% of transactions) and the blocked thread should wake
up on any progress by the other thread. As we add more threads
there is more room for a delay in the flow of values around the ring,
leading to more blocked threads and, in the case of approximate
read and write sets, failed wakeups. Performance drops for all
variants as blocking becomes more common, but we can see that
our hybrid and the fine-grain version with HTM commit perform
well as we fill one socket without hyperthreads. Both of these
versions use Bloom filters for read and write sets. At the hybrid’s
peak performance at 18 threads, around 9% of the transactions are
failed wakeups. The fine-grain STM gains some performance back
as hyperthreads are added. For this particular benchmark, accurate
tracking of the read and write sets in the two STM variants means
that every wakeup will be successful.

While there is still much to be explored in retry performance,
this benchmark shows that despite failed wakeups, our hybrid sys-
tems continue to provide good performance in at least one common
use case.

5. Conclusion
We remain optimistic that Haskell TM can provide both rich se-
mantics and good performance, and that TM hardware can help.
Our work to date supports this expectation: throughput on data
structure microbenchmarks is now within a modest constant fac-
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Figure 4. Throughput of transfers around a ring of threads with
1000 initial values each.

tor of similar experiments in C, and our Hybrid, HTM-Coarse, and
HTM-Fine implementations all exhibit scenarios in which they out-
perform pure STM implementations.

The next step in our work will be to implement improved
TArray support that allows hardware transactions to take advan-
tage of reduced indirection to fit more reads and writes into the
L1 cache. As it is now, users simply cannot express a TM data
structure in Haskell that has the same overhead as a comparable
TM system in C or C++. Our hybrid’s best performance on the
red-black tree benchmark has a throughput that is around 68% of
the performance of NOrec in C on the same machine. We will not
be able to start closing that gap until we reduce the overhead of the
structures involved.
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