
Software Partitioning of Hardware Transactions ∗

Lingxiang Xiang Michael L. Scott
Computer Science Department, University of Rochester, USA

{lxiang, scott}@cs.rochester.edu

Abstract
Best-effort hardware transactional memory (HTM) allows complex
operations to execute atomically and in parallel, so long as hard-
ware buffers do not overflow, and conflicts are not encountered
with concurrent operations. We describe a programming technique
and compiler support to reduce both overflow and conflict rates by
partitioning common operations into read-mostly (planning) and
write-mostly (completion) operations, which then execute sepa-
rately. The completion operation remains transactional; planning
can often occur in ordinary code. High-level (semantic) atomic-
ity for the overall operation is ensured by passing an application-
specific validator object between planning and completion.

Transparent composition of partitioned operations is made pos-
sible through fully-automated compiler support, which migrates all
planning operations out of the parent transaction while respecting
all program data flow and dependences. For both micro- and macro-
benchmarks, experiments on IBM z-Series and Intel Haswell ma-
chines demonstrate that partitioning can lead to dramatically lower
abort rates and higher scalability.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Code generation

General Terms Algorithm, Performance

Keywords Hardware Transactional Memory, Partitioned Transac-
tions, Compiler Automation

1. Introduction
Twenty years after the initial proposal [13], hardware transactional
memory is becoming commonplace: early efforts by Azul [6] and
Sun [7] have been joined by Intel [23] and three separate projects
at IBM [5, 14, 19]. All of these—and all that are likely to emerge
in the near future—are best effort implementations: in the general
case, a transaction may abort and retry not only because of an actual
data conflict with some concurrent transaction, but also because of
various hardware limitations—notably, the size or associativity of
the space used to buffer speculative reads and writes.

One of the most appealing aspects of transactional memory—
and a major advantage over locks—is the ability to compose larger

∗ This work was supported in part by grants from the National Science
Foundation (CCF-0963759, CCF-1116055, CNS-1116109, CNS-1319417,
CCF-1337224, and CCF-1422649) and by support from the IBM Canada
Centres for Advanced Studies.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright © 2015 ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/

1 atomic { // users: a shared hashtable; accounts: a shared rb-tree
2 User∗ u = 0;
3 if ((u = htableFind(users, streetAddress) != 0) {
4 for (int i=0; i<u→numAccounts; i++) {
5 Account ∗acct = rbtreeFind(accounts, u→accts[i]);
6 sum += acct→val;
7 acct→lastAccessedTime = timeStamp;
8 }
9 } else {

10 u = (User∗)malloc(sizeof(User));
11 htableInsert(users, streetAddress, u);
12 initUser(u);
13 }
14 }

Figure 1: A big transaction for account maintenance.

transactions out of smaller ones without sacrificing performance
or risking deadlock. As TM becomes more widely used, we can
expect that many transactions will incorporate smaller, pre-existing
operations (typically library calls). Unfortunately, because of their
increased size, composed transactions tend to be precisely the ones
that place the highest pressure on hardware TM limits [23].

Consider the example transaction in Figure 1, which includes
query and update operations on two separate data structures, with
data dependences and nonlinear control flow among these opera-
tions. This code may have difficulty completing as a pure hard-
ware transaction: its spatial footprint may be too large for hardware
buffers, and its temporal duration may increase the likelihood of
conflict aborts, particularly given that conflict in any constituent
operation will abort the entire transaction.

One way to improve the odds of completion for large transac-
tions on best-effort HTM is to pull read-only preliminary (“plan-
ning”) work out of the transaction, thereby reducing both the mem-
ory footprint and the temporal duration of the work that remains.
Afek et al. [1] explored this approach in the context of software
TM; they call it “consistency oblivious programming,” because the
work that is removed from the transaction must be able to toler-
ate an inconsistent view of memory. We pursued a similar par-
titioning of lock-based critical sections, to shorten critical path
length [20, 21]; we subsequently suggested that partitioning might
reduce the abort rates of hardware transactions [22], a suggestion
that was echoed by Avni and Kuszmaul [2]. In all this work, the
key observation is that a transaction (or critical section) can often
check the continued validity of a plan computed in advance more
quickly—and with fewer memory references—than it could regen-
erate the plan from scratch.

Unfortunately, while the partitioning of small transactional op-
erations is often straightforward (at least for the experts who write
libraries), its naive application is incompatible with composabil-
ity. In Figure 1, for example, suppose we have access to a parti-
tioned version of the rbtreeFind operation. We cannot simply take
the planning part of the lookup at line 5 and hoist it out of the par-
ent transaction without knowing what was (will be?) returned by
the hash table lookup at line 3. Avni and Suissa have suggested [3]
that one suspend an active transaction and perform planning in non-

speculative mode, but while this may reduce the transaction’s spa-
tial footprint, it does nothing for temporal duration. The suspension
mechanism, moreover, is supported on only one current hardware
architecture [5], where it is quite expensive.

We assume that the partitioning of operations like rbtreeFind
will continue to be performed by hand. Our contribution is to auto-
mate composition, with no need for special hardware. We call our
approach partitioned transactions (ParT). For purposes of exposi-
tion, we distinguish between operations, which are partitioned by
hand, and transactions, which are partitioned automatically.

Given a library of partitioned operations, each of which follows
a set of well-defined structural and semantic rules, we allow the
programmer to write—and compose—transactions that call these
operations in their original unpartitioned form. Automatic compiler
support then extracts the planning portions of the embedded opera-
tions and hoists them out of the outermost parent transaction, along
with sufficient “glue code” to preserve all inter-operation control
and data dependences.

We call the halves of a partitioned operation its planning op-
eration and its completion operation. The completion operation is
always performed by (or subsumed in) a hardware transaction; the
planning operation may be a hardware transaction, or it may run in
ordinary code. The halves of a partitioned transaction are its plan-
ning phase and its completion phase. The completion phase is al-
ways a hardware transaction; the planning phase runs in ordinary
code, possibly peppered with smaller hardware transactions used
by planning operations. A summary of the plan for each individ-
ual operation (including expected return values and side effects) is
carried through the planning phase and into the completion phase,
automatically, by means of validator objects held in thread-local
storage.

Returning to Figure 1, suppose we have a partitioned implemen-
tation of htableInsert. Planning operation htableInsertP figures
out where to insert a key in the table and saves this position in an
appropriate validator object, hidden in thread-local storage. Com-
pletion operation htableInsertC accesses V and validates its plan.
It then either performs any necessary updates (if the plan is still
valid) or performs the whole operation from the beginning (if the
plan is no longer valid). Given similar partitioned implementations
of rbtreeFind, htableFind, and malloc, our compiler will generate
code along the lines of Figure 2. The planning phase (lines 1–13)
tries to call as many planning operations as possible (note that init-
User has been removed). Unlike regular code, which must run to
completion, the planning phase may safely stop at any time—e.g.,
because it encounters inconsistent data, or because the savings from
further planning is unlikely to be worth the cost.

The completion phase (lines 15–28) is almost identical to the
original transaction, except that completion operations are called
instead of the original unpartitioned versions. So where is the
magic? Inside the partitioned operations and in the validator ob-
jects that carry information from each planning operation to the
corresponding completion operation (and to any subsequent plan-
ning operations that may need to see its side effects).

Assuming our code is for an outermost transaction, the comple-
tion phase may abort for any of the usual reasons, at which point
there are several options. If we choose to repeat the completion
phase, we can shortcut any completion operations whose previous
plans still validate successfully. As a last resort, a transaction that
aborts repeatedly can—as in current run-time systems for HTM—
retry with a global lock.

ParT provides several simultaneous benefits to hardware trans-
actions. By shrinking memory footprint, partitioning reduces the
likelihood that hardware buffering limits will be exceeded. By
shrinking both footprint and duration, it reduces the likelihood of
conflicts with concurrent transactions. By re-executing only those

1 { // non-atomic planning phase, invisible to other threads
2 User∗ u = 0;
3 if ((u = htableFindP(users, streetAddress) != 0) {
4 for (int i=0; i<u→numAccounts; i++) {
5 Account ∗acct = rbtreeFindP(accounts, u→accts[i]);
6 sum += acct→val;
7 acct→lastAccessedTime = timeStamp;
8 }
9 } else {

10 u = (User∗)mallocP(sizeof(User));
11 htableInsertP(users, streetAddress, u);
12 }
13 } // keep only validator-related modifications hereafter
14

15 atomic { // completion phase as a hardware transaction
16 User∗ u = 0;
17 if ((u = htableFindC(users, streetAddress) != 0) {
18 for (int i=0; i<u→numAccounts; i++) {
19 Account ∗acct = rbtreeFindC(accounts, u→accts[i]);
20 sum += acct→val;
21 acct→lastAccessedTime = timeStamp;
22 }
23 } else {
24 u = (User∗)mallocC(sizeof(User));
25 htableInsertC(users, streetAddress, u);
26 initUser(u);
27 }
28 }

Figure 2: A conceptual partitioning for the transaction of Figure 1.

planning operations whose plans are no longer valid, it achieves
the effect of partial rollback when the completion phase aborts. Fi-
nally, to the extent that the planning and completion phases access
common locations, the former serves to warm up the cache for the
latter, further reducing the duration of the completion transaction.
For locations that are to be modified, the planning phase may even
choose to prefetch in exclusive mode.

2. ParT Execution Model
Given the non-atomicity of planning, a partitioned transaction
needs to satisfy two basic requirements to be equivalent to the
original transaction: (1) the planning phase should be logically
side-effect free: its execution should be invisible to other threads, it
should impact the completion phase only through the precomputa-
tion of useful hints, and it should never exhibit erroneous or unde-
fined behavior; (2) the completion phase, given a correct planning
phase, should produce the same results as the original transaction.
This section formalizes these requirements, and presents the rules
that must be followed when writing partitioned operations. Note
that programmers who simply use partitioned operations do not
have to learn these rules.

2.1 Histories
Following standard practice, we model a computation as a history
of events, including reads, writes, and transaction begin (tbegin)
and end (tend). We assume that histories are well formed and that
the TM implementation is correct—in particular, that tbegin and
tend events are paired and properly nested in each thread subhis-
tory, and all the events of any outermost transaction are contigu-
ous in the overall history (that is, reflecting atomicity, the events
of a transaction do not interleave with events in other threads). For
simplicity, we assume a static partition between thread-local and
shared data (the model could easily be extended to accommodate
privatization and publication if desired). We ignore events within
aborted transactions, since they have no visible effect. We also ig-
nore reads and writes of transaction-local state, since these have no
impact outside the transaction.

For the sake of the formalism, we assume the availability of per-
thread checkpoint and restore primitives, to modify the behavior
of both shared and thread-local memory. (In our compiler, these are
implemented using a cache of recent changes, which is consulted
before each access in the planning phase, and discarded at the
end.) In a well-formed history, checkpoint and restore occur in
un-nested pairs, outside of any transaction. Their purpose is to
change the mapping from reads to writes. Specifically, if a read of
location l in thread t occurs within a checkpoint-restore pair in t’s
subhistory, the read will return the most recent write to l by t within
the checkpoint-restore pair; if there is no such write, the read will
return the most recent write to l in the overall history. Finally, we
assume the availability of per-thread scratchpad memory, which is
not affected by checkpoint and restore.

2.2 Partitioned Operations
A contiguous subsequence of the events within a transaction may
correspond to an operation (the invocation of a method) on some
abstract object O. As suggested informally in Section 1, we allow
the library programmer to rewrite a method m of O as a planning
method mp and a completion method mc. We impose a variety of
restrictions on this rewriting.

1. Interface. Methods mp and mc must take the same arguments,
and produce the same type of result(s), as the original (“ordi-
nary”) method m. All three must be written in a strict object-
oriented style: they must touch no memory other than their
own parameters and the state of their common object. Methods
mp and mc may, however, read and write scratchpad memory,
which is not accessed outside of operations.

2. Behavior. Method mc, when invoked on a given abstract state
of O, must produce the same return value(s), and must make
the same abstract changes to O’s state, as m would have made.
Hopefully, mc will execute more quickly than m, utilizing
information gathered by a previous execution of mp.

We assume, in any well-formed history, that m is called only
inside of transactions. Our compiler will ensure this for mc as
well; thus, both m and mc can comprise straightforward sequential
code. By contrast, we expect calls to mp to occur outside of any
program-level transaction; therefore we have extra restrictions on
its behavior:

3. Safety. Method mp must:

(a) make no change to the abstract state of O.

(b) be written in such a way that its execution will linearize with
arbitrary concurrent executions of original, completion, and
planning methods of the same object. The simplest way to
ensure this linearizability is to place mp within its own
small hardware transaction; alternatively, the code may be
written in a nonblocking or hybrid style.

(c) “see” the object state corresponding to recent planning op-
erations in the same thread. More precisely, an execution of
mp, performed by thread t, must produce the same return
value(s) that m would have produced, if every planning op-
eration performed by t since the last ordinary or completion
operation had been replaced with the corresponding ordi-
nary operation. In practice, this implies that mp must mem-
oize (in scratchpad memory) the changes to O’s abstract
state that would have been performed by m.

(d) export, to the surrounding planning phase, sufficient infor-
mation to determine whether the value returned by mp is
still valid. This information can be conservative: “no” is al-
ways an acceptable answer.

1 setA = {}
2 atomic {
3 setA.insert(5)
4 if !setA.contains(5)
5 ... // an infinite loop
6 }

(a) original transaction

7 setA = {}
8 { // planning phase
9 setA.insert P(5)

10 if !setA.contains P(5)
11 ... // an infinite loop
12 }

(b) planning phase

Figure 3: The need for rule 3c in partitioned transactions.

2.3 Partitioned Transactions
Consider a history H containing a transaction T. Suppose that for
every operation oi in some prefix of T, we have available partitioned
implementations opi and oci . Suppose further that we are able to
replace the sequence

tbegin s0 o1 s1 o2 s2 . . . ok sk . . .

where the si are sequences of non-method-call events, with

checkpoint s0 op1 s1 op2 s2 . . . opk sk restore

tbegin s0 oc1 s1 oc2 s2 . . . ock sk . . .

The first line of this new sequence is the planning phase; the second
is (a prefix of) the completion phase. If the two sequences remain
jointly contiguous in H , we claim they will have the same behav-
ior as the sequence they replaced. The proof is straightforward: the
opi operations have no impact on the abstract states of their ob-
jects; the oci operations have the same impact as the oi operations
they replace; and any impacts of the opi operations or si sequences
on thread-local or (other) shared state except those saved in the
scratchpad memory are invisible to other threads, and will be re-
versed by the restore operation.

Consistency In practice, of course, the new planning phase has no
guarantee of contiguity: it no longer lies within a hardware trans-
action. Unlike conventional transactions, which require full data
consistency, the planning phase of a partitioned transaction needs
only partial consistency: only the locations exported under rule 3d
(together with locations read by the si) must remain consistent be-
tween checkpoint and restore. Planning phases also differ from
conventional transactions in the way they handle conflicts: a trans-
action will retry until it commits, but a planning phase can simply
stop, by calling restore and moving immediately to the completion
phase. If a conflicting operation in another thread has intervened—
say after opj (j < k) in our example—we can safely truncate the
planning phase as of the end of the consistent prefix:

checkpoint s0 op1 s1 op2 s2 . . . opj restore

Assuming there was no earlier conflict, this truncated phase is
perfectly legal. As we shall see in Section 4, our compiler algorithm
arranges for appropriate truncation by generating code (assisted by
planning methods and their validators) to double-check consistency
after every shared-memory read or planning operation.

Dependences Rule 3c specifies that if a transaction includes mul-
tiple operations on the same shared object, each successive opera-
tion must see the changes envisioned by its predecessors. The need
for this rule can be seen in the transaction of Figure 3a. Line 5
should never be executed, because line 4 always returns false. In
the planning phase of the ParT transaction (Figure 3b), if the de-
pendence were not respected (i.e., if setA.contains P were unable
to see the results of setA.insert P), line 10 would return true and
behave incorrectly.

3. Toward A Library of Partitioned Operations
Building on the framework of Section 2, we now turn to the practi-
cal details of writing partitioned operations. These will in turn sup-

port the compiler framework of Section 4. As noted in Section 1,
previous projects have explored how to create partitioned opera-
tions [1, 2, 20–22]. We review the idea here, casting it in a form
amenable to our composition efforts.

As a general rule, it makes sense to partition an operation if
much of its work can be off-loaded to the planning operation,
and if validation of the plan is comparatively cheap. Perhaps the
most obvious examples fit a search-then-modify pattern, where the
search is time consuming (and may have a large memory foot-
print), but the continued validity of a found location can quickly
be checked via local inspection. Other examples fit a compute-
then-modify pattern: in transactions containing some variant of y
= expensive pure function(x), the expensive function can be pre-
computed in a planning operation; later, if the value of x has not
changed, the completion operation can use the precomputed y. Ad-
ditional examples appear in Section 3.3.

3.1 The Basic Partitioning Template
To partition method foo of a concurrent object, the library designer
creates two new functions foo P and foo C. Both should have the
same argument types and return type as foo. Function foo C will
always be called within an atomic block, and, like foo, may be
written without regard to synchronization. For foo P, which will be
called outside the main transaction, the library designer must devise
a linearizable nonblocking implementation. Transactions can of
course be used to simplify this task. In the limit, the entire planning
operation can be placed in a transaction.

Informally, foo P “figures out what to do” (and what it depends
upon) and embeds this plan in a validator object, which may be
accessed by foo C. As noted in rule 3c of Section 2.2, the validator
also serves to carry dependences from one planning operation (of a
given object O) to the next—it captures the (abstract) changes that
would have been made to O if foo had been called directly.

In previous work, we have explored several specific ways to
build a validator [21]. The details are up to the library designer:
our composition mechanism (Section 4) does not access validators
directly. To assist designers, we provide what amounts to a simple
key-value store in thread-local memory. A planning operation and
its corresponding completion operation need only agree on a key
(often the id of their mutual object) in order to pass information be-
tween them. Multiple operations on the same object will typically
share a validator.

If validation succeeds (and the planning phase was consistent),
foo C can execute “fast path” code that effects the changes to foo’s
object captured by the validator’s plan. Otherwise, it must abandon
the plan and switch to fallback code, which is commonly the origi-
nal operation foo. It is worth emphasizing that planning operations
and validators are simply optimizations: in the degenerate case, we
can always fall back on the original code.

The consistency requirement of rule 3d can be realized by
adding to the read set of the surrounding planning phase enough lo-
cations to guarantee that if the operation’s return value is no longer
valid, at least one of the added locations will have changed. We
provide library designers with a ParT readset put operation that
serves this purpose. Note that successful validation is a weaker
requirement than consistency: in the wake of a consistency viola-
tion that stops a planning phase, a validator may still indicate that
foo P’s plan is still usable. As a simple example, insertion at a
remembered location a sorted linked list may still be appropriate
even if the values of the adjacent elements have changed, so long as
the to-be-inserted element has an intermediate value. In principle,
one could use validators instead of exported read sets to determine
when to stop planning. We decided against this option because it
would increase the cost of run-time instrumentation.

1 ParT plan htm begin():
2 ...
3 rc = htm begin()
4 if rc==SUCC
5 return
6 else if rc==PLAN STOP or

++retries>3
7 ParT plan stop()
8 else
9 retry

11 ParT readset put(addr):
12 readset.insert(addr, ∗addr)

13 ParT readset validate():
14 foreach addr, val in readset
15 if ∗addr != val
16 ParT plan stop()

18 ParT plan stop():
19 if in htm()
20 htm abort(PLAN STOP)
21 readset.reset()
22 writeset.reset()
23 longjmp(ParT jmpbuf,

PLAN STOP)

Figure 4: Pseudocode of auxiliary functions in ParT library.

3.2 Extended Example: Red-black Tree
A red-black balanced tree supports log-time insert, remove, and
find operations with an attractively small constant factor. Each
operation begins with a tree search, which can be moved into
an explicitly speculative planning operation [2, 22]. To make this
planning amenable to composition, we must structure it according
to rules 1–3.

The code skeleton for partitioned insert is shown in Figure 5
(lines 18–44), as it would be written by a library designer. To
ensure correct execution, we use a type-preserving allocator [17]
for nodes, and increment a node’s version number, ver, when the
node is deallocated, reallocated, or modified. Like the structure
described by Avni and Kuszmaul [2], the tree is threaded with
predecessor (pred) and successor (succ) pointers.

The internal lookup operation serves to initialize a validator.
To support arbitrary key types and to avoid the possibility that a
speculative search will find itself on the wrong branch of the tree
due to a rotation, we call lookup within a small transaction, delim-
ited by ParT plan htm begin and ParT plan htm end (Figure 4).
These primitives differ from the usual htm begin and htm end in
that repeated aborts cause fallback not to a software lock, but to
a ParT plan stop routine (corresponding to the restore primitive
of Section 2) that truncates the planning operation and any plan-
ning phase in which it appears, transferring control immediately to
the completion operation or phase. All rb-tree validators are kept
in thread-local storage, indexed by the address of the tree and a
key (line 21). To minimize allocation cost, a fixed number of these
validators are pre-allocated; if the supply is exhausted, newRBVal-
idator will call ParT plan stop internally. If a desired key doesn’t
exist, memory space is reserved for a new node (line 30), which will
be claimed in the completion phase (line 38), again using thread-
local storage.

A version-based implementation of the validator is shown in
lines 1–6. During planning, we initialize it with the last accessed
node (curr), a snapshot of its version number (ver), and an indica-
tion as to whether the desired key was found (exist). In a subsequent
completion operation (e.g., RBTree::insert C, which is called in-
side the completion phase of the parent transaction), the isValid
method will succeed only if (1) the key has been searched for by at
least one planning operation (curr!=0), and (2) curr has not sub-
sequently been modified (curr→ver==version). Note that isValid
will never return a false positive. It may return a false negative, but
this will simply trigger execution of the fallback path (line 43).

It’s easy to see that this partitioning obeys rules 1, 2, and 3a.
Since the lookup is done inside a hardware transaction, the lin-
earization point (rule 3b) is at line 27. Meanwhile, the dependence
chain through insert P, remove P, and find P (rule 3c) is tracked
by the localExist flag of the (key-specific) validator. Assuming
setA in Figure 3b is a red-black tree, setA.insert P(5) will set val-
idator(setA, 5).localExist = true at line 29 of Figure 5. There-

1 struct RBValidator {
2 RBTree::Node ∗curr; // last accessed node
3 int ver; // snapshot of curr’s version
4 bool exist, localExist;
5 bool isValid() {return curr&&curr→ver==ver;}
6 };
7
8 void RBTree::lookup(RBValidator ∗v, KeyT &k) {
9 Node ∗p = root→right; // root is a dummy node

10 v→curr = root; v→ver = root→ver;
11 while (p) {
12 v→curr = p; v→ver = p→ver;
13 if (k == p→key) {v→exist=true; break;}
14 p = k < p→key ? p→left : p→right;
15 }
16 }

17 #pragma plan for RBTree::insert
18 bool RBTree::insert P(KeyT &k) {
19 ParT plan htm begin();
20 ParT readset validate();
21 RBValidator ∗v = getRBValidator(this, k);
22 if (v == 0) { // first access to (this, k)
23 v = newRBValidator(this, k);
24 lookup(v, k);
25 ParT readset put(&v→curr→ver);
26 }
27 ParT plan htm end();
28 bool ret = !v→localExist;
29 v→localExist = true;
30 if (!v→exist) allocNode P();
31 return ret;
32 }

33 #pragma complete for RBTree::insert
34 bool RBTree::insert C(KeyT &k) {
35 RBValidator ∗v = getRBValidator(this, k);
36 if (v && v→isValid()) {
37 if (!v→exist) {
38 Node ∗n = allocNode C();
39 ... // insert n as v→curr’s neighbor and

rebalance the tree
40 }
41 return !v→exist;
42 } else
43 return insert(k); // fallback path
44 }

Figure 5: Partitioned insert method (lines 17–44) and validator (lines 1–6) for partitioned red-black tree.

fore, after checking the same flag, setA.contain P(5) will pretend
key 5 was already in the tree and properly return. Consistency of
the parent transaction’s planning phase (rule 3d and Section 2.3) is
ensured by by adding appropriate version numbers to the read set
used by that transaction (line 25) and by performing explicit calls
to ParT readset validate (e.g., line 20) when consistency is needed
within a planning operation.

3.3 Additional Examples
As transactional memory becomes more widely adopted, we envi-
sion a library of partitioned operations that can be used, transpar-
ently, to reduce transaction duration, memory footprint, and conse-
quent abort rates. In all cases, manually partitioned operations, con-
structed once by an expert, can be called at arbitrary points within a
larger transaction, using the same syntax that would have been used
for the unpartitioned operation (as explained in detail in Section 4,
the compiler hides all details of separating out the planning phase).

Collections: Ordered and unordered sets, mappings, and buffers
are among the most common shared abstractions. Operations often
start with a search component that is easily moved to a planning
operation, and verified quickly in the completion operation. In
some cases (e.g., the red-black tree of Section 3.2), the planning
phase will use its own hardware transaction to ensure a consistent
view of memory. In other cases (e.g., a sorted linked list), the
planning operation can (with a bit of care) be written to tolerate
inconsistency, and run without HTM protection.

Commutative operations: Operations that commute with one
another need not necessarily execute in the serialization order of the
transactions in which they appear. Operations such as random num-
ber generation, unique id generation, or lookup in a memoization
table can be performed entirely in a planning phase; the validator
simply encapsulates the result.

Memory allocation: Depending on the choice of allocator, calls
to malloc and its relatives may be a significant component of trans-
action run time and a major source of conflicts. A custom mal-
loc P can allocate space for operations during the planning phase.
The corresponding malloc C confirms that the space was indeed
pre-allocated, and simply uses it. An additional “clean up” hook
(not described in detail here) may be used at the end of the trans-
action to reverse any allocations that were mis-speculated, and not
actually needed in the completion phase. As we can see, malloc C
breaks rule 3a, but it’s safe in this case, because malloc can be
seen as a special commutative operation whose object has no ab-
stract state. In contrast to naive, manual pre-allocation, which allo-
cates the maximum amount of space that might be needed in any
execution of the transaction, our compiler-supported partitioning

mechanism will reflect conditional branches within the transaction,
avoiding unnecessary memory churn.

Object initialization: Object constructors (initializers) are of-
ten called immediately after allocation. A constructor is easily par-
titioned if—as required by rule 1—it modifies only the state of the
object. The planning phase performs all the writes; the completion
phase confirms that the constructor arguments have not changed
since the planning phase. Writes in a mis-speculated plan are un-
necessary, but semantically harmless.

4. Automatic Composition
Transactions in real applications often comprise multiple simpler
operations. Given a library of partitioned operations written by ex-
perts, a programmer could manually transform a simple compo-
sition of these operations, like the one in Figure 1, into its ParT
equivalent for improved performance. Unfortunately, manual com-
position hurts the readability of source code, and dramatically in-
creases programming complexity. Transactions in real applications
may have complex control flow, making the construction of “glue
code” (the si sequences of Section 2.3, which must log their writes
and consult the log on reads) tedious and error-prone. Moreover,
when partitioned operations are reached via long chains of func-
tion calls, each intermediate call must be cloned for use in plan-
ning, completion, and (potentially) nontransactional contexts. Man-
ual management of such cloning would be a code maintenance
nightmare. In contrast, our compiler support allows automatic com-
position: the programmer writes transactions in the conventional
way, as in Figure 1, and the compiler turns these transactions into
partitioned versions like the one we will see in Figure 6.

4.1 Language Interface
To enable automatic composition, we provide the following com-
piler directives:

#pragma part is placed before the code of an atomic block to in-
struct the compiler to transform the transaction to its ParT form. In
Figure 1, the directive would be inserted before line 1, prompting
the compiler to automatically create the desired composed parti-
tion. Given a ParT library that covers many operations, a TM pro-
grammer can easily request partitioning with minimal changes to
the source code.

#pragma plan for func and #pragma complete for func al-
low a ParT library designer (expert) to link planning and comple-
tion methods to an original method with name func, so the compiler
knows how to partition it. In Figure 5, these directives have been

Algorithm 1: SynthesizePlan(func, fTable)
Input: a function func, a function information table fTable

1 if func is marked as a partitionable operation then
2 fTable[func].stopBefore← false;
3 fTable[func].plan← GetPragmaPlanFor (func);
4 else if func is unsafe then
5 fTable[func].stopBefore← true;
6 fTable[func].plan← null;
7 else
8 planFunc← CloneFunction (func);
9 foreach #pragma stop in planFunc do

10 replace #pragma stop with function call to ParT plan stop
11 foreach function call C in planFunc do
12 ... // code for checking recursion of func is omitted;
13 f ← C.calledFunction;
14 if f not in fTable then
15 SynthesizePlan(f, fTable);
16 if not fTable[f].stopBefore then
17 replace C with function call to fTable[f].plan;
18 else
19 insert function call to ParT plan stop before C;
20 PrunePlan (planFunc);
21 InstrumentPlan (planFunc);
22 fTable[func].stopBefore← false;
23 fTable[func].plan← planFunc;

used at lines 17 and 33. As required by rule 1, planning and com-
pletion methods take the same parameters as the original method.

#pragma stop tells the compiler that planning should stop at this
point. This directive allows the programmer to fine-tune perfor-
mance by precomputing only the initial portion of a transaction.

4.2 Automatic Partitioning
Starting with annotated source code, our compiler synthesizes a
planning method for each identified top-level atomic block. The
algorithm is recursive, so atomic blocks can be nested: every func-
tion and atomic block that calls a partitionable operation (and that
may itself be called, directly or indirectly, from a to-be-partitioned
transaction) is partitioned into planning and completion phases;
these can then be called by higher-level functions. The compiler
rewrites the original atomic block as the code of the completion
phase.

4.2.1 Synthesizing Planning Code
The goal of synthesis is to generate a minimal and safe planning
phase that covers as many planning operations as possible. The
synthesis algorithm begins by cloning and extracting the code of
a ParT transaction as a separate function. It then passes this func-
tion to SynthesizePlan (Algorithm 1) to generate the composed
planning function.

All functions called directly or indirectly from a ParT transac-
tion are categorized as one of the following:

Partitionable: These have pre-defined planning functions (identi-
fied by #pragma plan for), so there is no need to synthesize them.

Unsafe: These include functions with no source code available, li-
brary functions (unless specified as partitionable operations), OS
APIs, I/O operations, and various other special cases. They pre-
clude the use of planning for the remainder of the transaction.

Others: These may require (recursive) synthesis to generate their
planning functions. They include the function created for the outer-
most ParT transaction. An “Other” function will typically comprise
two kinds of code: calls to other functions and the skeleton or glue
code that connects these function calls.

1 void atomic1 P(User∗ user, const char∗ strAddress, HashTable∗ users,
RBTree∗ accounts) {

2 User ∗u = 0;
3 if ((u = htableFind P(users, strAddress) != 0) {
4 int tmp0 = ParT read 32(&u→accountNum);
5 for (int i=0; i< tmp0; i++) {
6 int tmp1 = ParT read 32(&u→accts[i]);
7 Account ∗acct = rbtreeFind P(accounts, tmp1);
8 ParT write 32(&acct→lastAccessedTime, timeStamp);
9 }

10 } else {
11 u = (User∗)malloc P(sizeof(User));
12 htableInsert P(users, strAddress, u);
13 }
14 }

16 // ParT transaction
17 if (setjmp(ParT jmpbuf)==0) // planning phase
18 atomic1 P(user, strAddress, users, accounts);
19 ParT plan stop();
20 htm begin(); // completion phase
21 User ∗u = 0;
22 if ((u = htableFind C(users, strAddress) != 0) {
23 for (int i=0; i<u→accountNum; i++) {
24 Account ∗acct = rbtreeFind C(accounts, u→accts[i]);
25 sum += acct→val;
26 acct→lastAccessedTime = timeStamp;
27 }
28 } else {
29 u = (User∗)malloc C(sizeof(User));
30 htableInsert C(users, strAddress, u);
31 initUser(u, strAddress);
32 }
33 htm end();

Figure 6: Compiler-generated ParT code (source-level equivalent)
for the transaction of Figure 1.

SynthesizePlan inspects the source code of each “Other” func-
tion. It inserts ParT plan stop before any call to an unsafe oper-
ation (line 19) and replaces calls to “Partitionable” and “Other”
functions with calls to their planning functions (line 17).

PrunePlan (line 20) reduces the size of the generated plan-
ning function. First, any code strictly dominated by a call to
ParT plan stop is removed. Second, if planFunc is a top-level
transaction, we perform backward slicing on each call to a parti-
tioned operation. Instructions that do not belong to any of these
slices are removed, leaving only the “glue” instructions necessary
to invoke the subsidiary planning functions.

InstrumentPlan (line 21) deals with data consistency in the glue
code. Load and Store instructions are instrumented if they may
read or write shared memory. The instrumentation redirects them
to the read and write logs of the planning phase, and validates all
previous reads when a new location is read. More details about data
consistency are given in Section 4.2.2.

Function atomic1 P in Figure 6 is the compiler-synthesized
planning function for the transaction of Figure 1, assuming no
partitioned operation inside initUser. Lines 6 and 12 of Figure 1
have been removed by PrunePlan, since they do not belong to any
backward slicing of partitionable operation calls. More advanced
alias analysis (e.g., data structure analysis[15]) could further re-
move line 7 of Figure 1 (line 8 of Figure 6).

Figure 7 contains the skeleton of a more extensive compiler par-
titioning, as required for a transaction with a nested partitioned op-
eration (op) and an unsafe call (unsafe call). This example illus-
trates how difficult it would be to manually partition transactions
with nested calls, which are not uncommon in real applications.

4.2.2 Ensuring Consistency
As noted in Section 2.3, the planning phase of a partitioned opera-
tion, which is not automatically atomic, must be designed to ensure
its own internal consistency, much like the implementation of an

1 void foo() {
2 op(); // a ParT op
3 }
4 void bar() {
5 foo();
6 unsafe call();
7 ...
8 }
9 void fun() {

10 #pragma part
11 atomic {
12 bar();
13 }
14 }

(a) original code

1 void foo P() {
2 op P();
3 }
4 void foo C() {
5 op C();
6 }
7 void bar P() {
8 foo P();
9 ParTplan stop();

10 }
11 void bar C() {
12 foo C();
13 unsafe call();
14 ...
15 }

(b) ParT code

16 void fun10 P() {
17 bar P();
18 }
19 void fun10 C() {
20 bar C();
21 }
22 void fun() {
23 ...
24 fun10 P();
25 ...
26 htm begin();
27 fun10 C();
28 htm end();
29 }

Figure 7: Automatic partitioning of a transaction with nested calls.

atomic block in a software TM system. Outside planning opera-
tions, which are responsible for their own consistency, function In-
strumentPlan in Algorithm 1 employs STM-like instrumentation
to buffer reads and writes in thread-private logs. The read log allows
us to validate, in the wake of each new read, that all previously read
locations still hold their original values. Planning operations, when
necessary, can also insert some subset of their reads into the read
log, to ensure that their return values remain consistent (an exam-
ple appears in Figure 5, line 25). The write log allows glue code to
“see its own writes.” In contrast to STM, the write log is discarded
by ParT plan stop when the planning phase naturally ends or an
inconsistency occurs; all we need going forward are the validators
created by the constituent planning operations.

4.2.3 Synthesizing Completion Code
The composed completion phase is comparatively easy to con-
struct: it is almost the same as the code of the original transac-
tion/function, except that each function call that was replaced by
Algorithm 1 in the planning phase will be replaced by its com-
pletion function in the corresponding position in the completion
phase. The generated ParT equivalent of the transaction in Figure 1
appears in Figure 6 (lines 17–33), where the the use of setjmp al-
lows ParT plan stop to escape any nested context (line 18–23 of
Figure 4).

When validation of the plan for operation O fails within the
completion phase of composed transaction T, fallback code will
re-execute only operation O, automatically salvaging everything
else in the transaction and continuing the completion phase. If the
outer, hardware transaction of the completion phase aborts and
retries, the fact that plans are constructed outside the transaction
means that we will similarly salvage every plan whose validator
still returns true. These properties essentially constitute a partial
rollback mechanism, likely resulting in shorter turn-around time
and higher throughput than would be available without partitioning.

A simple example can be seen in transactions that end with a
reduction (e.g., the update of a global sum). Unlike a monolithic
composed transaction, a ParT completion phase that aborts due to
conflict on a reduction variable can generally salvage the planning
phases of all constituent partitioned operations.

4.3 Run-time Support and Optimizations
The ParT run-time system manages the execution of composed
planning. As described in previous sections, we maintain data con-
sistency by keeping read and write logs for each planning phase,
and performing incremental validation each time a new address is
read and each time a planning operation requires consistency. The
validation is value-based and employs a small hardware transac-
tion, so no ownership records or locks are needed.

As in an STM system, read/write logging and validation impose
nontrivial overheads. Read and write logs tend to be considerably
smaller than in STM, however. Moreover, as discussed in Section 4,
the planning phase, unlike a software transaction, does not have to
execute to its end. These observations enable several optimizations:

Limiting the size of read/write logs. The cost of consistency check-
ing and instrumentation goes up with the size of the read/write
logs. Assuming most shared reads/writes happen inside (uninstru-
mented) partitioned operations, the read/write set of the planning
phase is likely to be small. To guard against pathological cases, we
stop planning if a predefined limit is exceeded. Small size allows
us to employ a fast and simple structure for the logs.

Merging partitioned operations. The more partitioned opera-
tions a planning phase contains, the more instrumentation and
consistency checking is required in the intervening glue code. We
provide an interface for advanced programmers to reduce these
overheads by merging the execution of several planning operations
into one hardware transaction.

Switching between ParT and non-ParT transactions. Some
transactions are not worth partitioning. A transaction with low con-
tention and a small footprint, for example, is likely to succeed in
HTM with few retries. At the opposite extreme, a transaction whose
planning never works should always execute the monolithic alter-
native, even if HTM will fail and must fall back to a global lock.
Deciding which version is better—ParT or non-ParT—is difficult
at coding time, as the answer may depend on the input, and may
vary across execution phases. A dynamic switching strategy may
make a better choice at run time. One possible strategy is to use a
short period of time to profile non-ParT transaction abort rates, and
then chose the atomic blocks for which to employ the partitioned
code over some longer span of time. As ParT and non-ParT code
can safely run together, the switching policy has little overhead. We
implemented this adaptive policy in our compiler, but did not em-
ploy it in the experiments of Section 5. Further experiments with
adaptation are a subject for future work.

4.4 Limitations
While we are able to automate the composition of partitioned op-
erations (and transactions that contain them), we require that the
partitioned operations themselves already exist. The most signifi-
cant limitation of our work is therefore the effort involved in con-
structing such operations. In future work we hope to develop tools
to assist the library designer.

Because we end a planning phase when we encounter an un-
safe function (Section 4.2), ParT will have little or no benefit when
a call to such a function appears early in a transaction. Given the
overhead of instrumentation on planning reads and writes, it is also
possible for the cost of partitioning to outweigh the concurrency
benefits, especially when contention is low. Likewise, if the work
that remains in the completion phase still takes too long, or con-
sumes too much memory, to fit in a hardware transaction, it is still
possible that threads will serialize. (Even then, planning may help,
if it is able to move work off of the serial path.) Despite these limi-
tations, we have found ParT to be an effective means of enhancing
HTM, as described in the following section.

5. Experimental Evaluation
Our experiments were conducted on two different HTM-capable
machines—an IBM zEnterprise EC12 mainframe server (in a vir-
tual machine with 64 dedicated cores) and a 4-core Intel Haswell
Core i7-4470 machine. Both machines implement best-effect HTM
and provide a similar ISA interface to the software. (The zEC12
also supports special “constrained” transactions that are guaran-

teed to complete successfully in hardware; these are not used in
our experiments.) The transactional region is marked by a pair of
begin/end instructions. The hardware guarantees strong isolation
of the transactional execution. A transaction may abort for vari-
ous reasons, including interrupts, restricted instructions, excessive
nesting depth, capacity overflow, and conflicting accesses.

The IBM zEnterprise EC12 [14] is a multi-socket machine.
Each processor chip contains six single-threaded, out-of-order su-
perscalar cores with a clock speed of 5.5 GHz. Each core has a
private 96 KB 6-way associative L1 data cache and a private 1 MB
8-way associative L2 data cache, with 256 B cache lines. Cores on
the same chip share a 48 MB L3 cache. The tag of each L1 line
includes a bit to indicate membership in the read set of a transac-
tion. When a line that was read in a transaction is evicted from the
L1 cache, it is tracked by an LRU-extension vector instead. Since
the L1 and L2 are both write through, proper handling of trans-
actional writes requires changes to the store cache, a queue of 64
half-lines, which buffers and merges stores before sending them on
to the L3 cache. To maintain isolation, hardware stalls departures
from the store cache during transactional execution. Write set size
is thus limited by the store cache size and the L2 cache size and
associativity.

Our Intel Core i7-4470 machine has a single processor with 4
SMT cores (8 hardware threads). Each core has a private 32 KB,
8-way associative L1 data cache and a private 256 KB, 8-way
associative L2 cache, with 64 B cache lines. The 4 cores share an
8 MB L3 cache. The HTM system is implemented on top of an
existing cache design [23]. Transactional data are tracked in the L1
data cache, at cache-line granularity. If a written line is evicted from
the cache, the transaction will abort. Evicted reads are tracked in a
secondary structure that supports a larger read set, at the risk of a
higher rate of false conflicts.

5.1 TM Compiler and Runtime
On Haswell, we implemented ParT as an LLVM 3.3 optimization
pass, taking the bitcode of the entire program as its input. On the
zEC12, where we did not have access to production-quality LLVM
support, benchmarks were hand-modified to mimic the LLVM out-
put. (With a bit more effort, we could have engineered support into
one of the z compilers: there is nothing inherently LLVM-specific
about the partitioning algorithm.)

For software fallback, the TM run-time library uses a global
test-and-test and set lock with exponential backoff. If a comple-
tion phase aborts for a non-persistent reason, we retry the transac-
tion up to MAX RETRIES times before switching to the lock. Oth-
erwise, we retry up to MAX PERS RETRIES times, rather than
immediately reverting to the lock, because the “persistent” diag-
nostic flag is only a hint, and a retry may succeed despite it. To
avoid repeated aborts on the same conflict, we delay briefly before
restarting a transaction. Hardware transactions in planning opera-
tions are handled in the same way, except that the whole parent
planning phase will stop after a fixed number of retries.

We set MAX RETRIES and MAX PERS RETRIES to 8 and 5,
respectively, on the zEC12, and to 10 and 3 on Haswell: these val-
ues delivered the best overall performance for the HTM baseline.
Read and write logs were sized at 32 and 16 entries, respectively.

5.2 Benchmark Suite
We use three microbenchmarks and five larger applications to eval-
uate ParT, and to compare it to other techniques. Table 1 lists these
benchmarks, including their provenance, a description of their ma-
jor behaviors, and the number of ParT transactions in the source.

The microbenchmarks in the top half of the table all contain
operations with a nontrivial search phase. In our tests, operations
on the data structure are invoked as often as possible for a period

Table 1: Summary of benchmarks. The “#” column is the static
number of ParT transactions, “Comp.” indicates if transactions
comprise multiple partitioned operations.

Benchmark Source Description # Comp.
rb-tree [8] insert/delete elements 3 N
equiv. sets [21] move elements between sets 1 N
account Fig 1 account management 2 Y
genome STAMP gene sequencing 2 Y
intruder STAMP network intrusion detector 1 Y
vacation STAMP online travel reservation system 3 Y
UtilityMine RMS-TM utilization-based item sets mining 1 N
memcached ver1.4.9 in-memory key value store 4 Y

of 1 second; our performance graphs plot throughput in operations
per microsecond. In all microbenchmarks, we pre-populate thread-
local free lists with enough data nodes to eliminate the impact of
memory allocation.

The macrobenchmarks in the bottom half of Table 1, from the
STAMP and RMS-TM benchmark suites, were chosen because
their transactions are complex and good candidates for ParT opti-
mization. All four were run with the recommended non-simulation
inputs. The memcached macrobenchmark is a slightly modified
version of memcached 1.4.9. Critical sections protected by three
major locks (cache lock, slabs lock, and stat lock) were replaced
with hardware transactions. Several global data structures were
padded to avoid false sharing in cache lines. To stress the server, we
bypass networking and inject input (dumped by memslap) directly
into relevant functions. For each application, we report speedup
over the sequential code. The STAMP benchmarks, as distributed,
use malloc/free for the sequential version but a customized thread-
local allocator for the TM version. We found the thread-local ver-
sion to be significantly faster; for the sake of fair comparisons, we
re-configured the sequential code to use this version instead.

Source code on the zEC12 was compiled with IBM’s XL C/C++
compiler with --O3 --qstrict flags; on Haswell, we used LLVM 3.3
with --O3. Reported results are the average of 5 runs each, though
no significant performance variation was observed.

5.3 Microbenchmark Results
Red-black tree The partition is described in Section 3.2. Two
different data set sizes are used in the tests: in the smaller, keys are
randomly selected from [0, 1K); in the larger, keys are randomly
selected from [0, 1M). Throughput results appear in Figures 9a
and 8a. In the smaller tree, HTM can finish most transactions
without aborting, so the overhead of planning and validation is
essentially wasted in ParT. In the larger tree, relative performance
is reversed: pure HTM experiences many aborts, while partitioning
shrinks the footprint of completion transactions enough for them to
succeed much more often.

Equivalence Sets The equivalence set data structure comprises
a collection of sorted linked lists, which partition a universe of
elements; each operation moves a specified element from its current
set to a given, specified set. Insertion in the new set requires a
search of the list, which is done in the list’s insert P method in
the ParT implementation.

Throughput for multiple implementations is shown in Fig-
ures 9b and 8b. The “Lock” curve uses per-set fine-grained locking.
“ParLock” is a variant of ParT that uses similar locking (instead of
a transaction) to protect the completion phase. All five curves dip
at 2 cores, due to the cost of coherence misses. ParT scales better
than fine-grained locking, which in turn outperforms the baseline
HTM in this experiment: in the absence of partitioning, we have a
“stress-test” workload, where speculation is rarely successful.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 2 4 6 8 12 16

th
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

threads

1K elems,50% ins/rem

HTM
ParT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 6 8 12 16
threads

1M elems, 50% ins/rem

(a) red-black tree

 0

 5

 10

 15

 20

 25

 1 2 4 6 8 12 16
th

ro
u
g
h
p
u
t
(o

p
s
/µ

s
)

threads

20 sets, 200 elements

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 4 6 8 12 16
threads

20 sets, 1000 elements

Lock
ParLock
HTM
ParT

(b) equivalence sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 4 6 8 12 16

th
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

threads

small (range=1K)

HTM
ParT

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 6 8 12 16
threads

large (range=1M)

(c) account

Figure 8: Microbenchmark performance on the zEC12. The Y axis
indicates throughput.

Account Management This synthetic benchmark updates ac-
count information stored in two shared data structures. The trans-
action for account insertion and update appears in Figure 1, where
user information is indexed by addresses. The transaction for ac-
count deletion (not shown) removes a user and all linked accounts.

In our tests, address strings are 35 characters long and each
user has 4 accounts on average. Figures 9c and 8c plot throughput
for two data sets: the smaller one (more conflicts) contains 1K
unique addresses; the larger one (more overflows) contains 1M
unique addresses. In both cases, ParT significantly reduces both
conflicts and overflows (by more than 50% in every workload) and
thus results in better scalability, though pure HTM provides higher
throughput when transactions are small and contention is low.

5.4 Macrobenchmark Results
Three of the standard STAMP benchmarks make heavy use of
shared container objects. We built a ParT library containing par-
titioned versions of sorted linked list, hashtable, red-black tree, and
memory allocation methods to enable automatic partitioning. Other
than the addition of pragmas, no modifications were made to the
source code of transactions.

Genome The first phase of the application removes duplicate
gene segments. Segments are divided into chunks, and every chunk
is transactionally inserted into a hash set. The hash set is non-
resizable, so some buckets may contain hundreds of segments. In
the original transaction, insertion of a segment could involve a long
search phase to find the proper position in a sorted linked list. A
data conflict in the insertion would invalidate all active insertions in
the same transaction. ParT optimizes the transaction by moving all
planning operations to a compound planning phase. By eliminating
almost all load/store overflows and reducing load/store conflicts
(Figures 11a and 13a), ParT leads to significantly better scalability
on both machines (Figures 10a and 12a).

Intruder This application processes network packets in parallel—
in capture, reassembly, and detection phases. Reassembly is the
most complex phase. It uses a red-black tree to map each session
id to a list of unassembled packets belonging to that session. If all
packets from a session are present in the list, the list is removed
from the tree and its packets are assembled as a complete stream
and inserted back to a global queue, which is the principal locus of
conflicts. The entire reassembly phase is enclosed in a transaction,
which we use a #pragma part to optimize.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 6 8

th
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

threads

1K elems,50% ins/rem

HTM
ParT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 6 8
threads

1M elems,50% ins/rem

(a) red-black tree

 0

 5

 10

 15

 20

 25

 1 2 3 4 6 8

th
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

threads

20 sets, 200 elements

Lock
ParLock
HTM
ParT

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 3 4 6 8
threads

20 sets, 1000 elements

(b) equivalence sets

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 6 8

th
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

threads

small (range=1K)

HTM
ParT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 6 8
threads

large (range=1M)

(c) account

Figure 9: Microbenchmark performance on Haswell. The Y axis
indicates throughput.

The planning operations for both tree search and list insertion
have a low failure rate (2.2% and 2.6%, respectively, at 16 threads
on the zEC12), meaning that if a conflict occurs on the global
queue, in the next re-execution, ParT can skip tree and list search.
This dramatically reduces the duration and footprint of re-executed
transactions. ParT almost doubles the throughput of the program
(Figure 10b) on the zEC12, though scalability is still constrained
by the global queues used to connect the three program phases. On
Haswell, ParT starts to outperform the baseline when hyperthread-
ing is used.

Vacation This application manages reservations for cars, flights,
and rooms in a database implemented as a set of red-black trees.
Each transaction creates, cancels, or updates a reservation in the
database. Creation consumes the largest share of execution time.
ParT optimization is straightforward, but the compiler must process
multiple levels of plan functions to reach the tree operations.

On the zEC12 (Figures 10c and 10d), ParT lags slightly behind
the original implementation on 1 or 2 threads. It outperforms the
original on 3 or more threads, however. One improvement comes
from the elimination of overflows, which often happen near the end
of a big transaction and are quite expensive. Interestingly, as shown
in Figures 11c and 11d, ParT increases load conflicts. At the same
time, because the completion transactions are so much shorter than
in the original code, and most of the planning can be preserved on
retry, less work is wasted by each abort, and overall throughput
still improves. On Haswell, ParT eliminates most aborts of the
composed complete phase (Figures 13c and 13d) and therefore
brings significant performance improvement.

UtilityMine This application spends most of its time in a transac-
tion that updates the “utility” of items according to data read from a
database file. The main transaction scans a utility array, whose size
is input dependent, to locate a specific item. If the item is found, its
utility is increased; otherwise, a new item is inserted. We optimize
this transaction by replacing the most common path, in which the
item is found, with a function call, and using #pragma plan for
amd #pragma complete for to build an ad-hoc partitioned oper-
ation. In the planning function, the position of the found item is
saved in a validator, whose is valid method confirms that the ar-
ray has not been deallocated, and the item is still in the same po-
sition. In addition to reducing transaction duration and footprint,
partitioning allows us to issue prefetch instructions on the zEC12;
these avoid a “promote-to-exclusive” (PEX) case in the coherence
protocol, which can sometimes lead to spurious aborts.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 4 8 16 24 32 48 64

HTM

ParT

(a) genome

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 4 8 16 24 32 48 64

(b) intruder

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 4 8 16 24 32 48 64

(c) vacation-low

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 4 8 16 24 32 48 64

(d) vacation-high

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 8

(e) UtilityMine

 0

 0.5

 1

 1.5

 2

 2.5

 1 4 8 16 24 32 48 64

(f) memcached

Figure 10: Macrobenchmark performance on the zEC12. The Y
axis indicates speedup over the sequential version.

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 4 816 1 4 816

ParTHTM

(a) genome

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 4 816 1 4 816

ParTHTM

(b) intruder

 0

 1

 2

 3

 4

 5

 6

1 4 816 1 4 816

ParTHTM

(c) vacation-low

 0

 1

 2

 3

 4

 5

 6

 7

1 4 8 16 1 4 8 16

ParTHTM

(d) vacation-high

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 4 8 1 4 8

PEX

st conf.

ld conf.

st overf.

ld overf.

ParTHTM

(e) UtilityMine

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 81632 1 81632

ParTHTM

(f) memcached

Figure 11: Aborts per transaction for TM macrobenchmarks (com-
pletion transactions only) on the zEC12.

Only 1, 2, 4, and 8-thread configurations are available for this
benchmark. Executing with the standard input sets, transactions
rarely overflow, so the benefit of ParT, as shown in Figure 11e,
comes mainly from a reduction in the low but still significant num-
ber of PEX aborts (note the modest scale of the y axis). Running
with larger input sets, data overflow could emerge as a major is-
sue in the baseline case, while ParT would still be ok. In general,
ParT can reduce the chance of sudden performance anomalies with
changes in program input.

Memcached This widely used server application stores key/value
pairs in a global hash table and in an auxiliary table used for resiz-
ing operations. In the presence of concurrency, the table structure
itself does not incur many conflicts, but transactions also access
the table’s size field and global statistics information, increasing
the chance of contention. We partitioned three major table access
functions (assoc find, assoc insert, and assoc delete) using ver-
sion numbers for validation [21]. Transactions that call these func-
tions, directly or indirectly, are then partitioned by the compiler.

Another second major source of aborts arises in the function
do item alloc, which begins with a relatively long search for a
possibly expired item in a list of slabs, in the hope of perform-
ing fast space reuse instead of slow allocation. As this particular
search is commutative, we do it in the function’s planning opera-
tion, transactionally. As shown in Figure 13f, by pulling table and

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 6 8

TL2

HTM

ParT

(a) genome

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 6 8

(b) intruder

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 6 8

(c) vacation-low

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 6 8

(d) vacation-high

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 8

(e) UtilityMine

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 6 8

(f) memcached

Figure 12: Macrobenchmark performance on Haswell. The Y axis
indicates speedup over the sequential version.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 4 8 1 4 8

conflict

overflow

ParTHTM

(a) genome

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 4 8 1 4 8

ParTHTM

(b) intruder

 0

 0.5

 1

 1.5

 2

 2.5

1 4 8 1 4 8

ParTHTM

(c) vacation-low

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 4 8 1 4 8

ParTHTM

(d) vacation-high

 0

 0.01

 0.02

 0.03

 0.04

 0.05

1 4 8 1 4 8

ParTHTM

(e) UtilityMine

 0

 0.5

 1

 1.5

 2

 2.5

1 4 8 1 4 8

ParTHTM

(f) memcached

Figure 13: Aborts per transaction for TM macrobenchmarks (com-
pletion transactions only) on Haswell.

list searches out of transactions, ParT significantly reduces the in-
cidence of overflow aborts. Also, as transactions become shorter,
the conflict window is narrowed, a phenomenon that is further en-
hanced by ParT’s partial rollback. As a result, ParT improves per-
formance by roughly a third at 8 threads on Haswell (Figure 12f).
On zEC12, although some shared structures are padded, the much
larger size of cache lines still causes false sharing problem, which
restricts the overall scalability.

6. Related Work
ParT draws inspiration from our previous lock-based MSpec/C-
Spec work [21]. There the goal was to reduce the size of crit-
ical sections by removing work that could be executed specula-
tively in advance—ideally with the aid of a compiler that deals
with mechanical issues of code cloning and data race prevention. In
MSpec/CSpec, pre-speculation served to shorten the application’s
critical path; with partitioned transactions it serves to reduce trans-
action conflicts. Both systems share the benefit of cache warmup.
ParT adds the benefits of reduced cache footprint, composability,
and partial rollback.

The manual partitioning of operations in ParT also resembles
the consistency oblivious programming (COP) of Avni et al. [1, 2],
in which a search-then-modify operation is divided into a non-
atomic search followed by atomic validation and modification.

Table 2: Comparison of HTM programming techniques

ParT CSpec[21] ElasT[9] COP[2] COP-c[3]
support composition? Yes No No No Yes
require special
HTM features? No No early

release No suspend/
resume

be
ne

fit
s smaller footprint Yes Yes Yes Yes Yes

shorter duration Yes Yes No Yes No
partial rollback Yes No No No No

Avni and Suissa have extended COP to accommodate composi-
tion [3], but mainly for software TM. In an HTM system, their
technique would require special instructions to suspend and re-
sume a transaction. This would seem to preclude the use of ad-
ditional transactions during planning—something that ParT uses
freely. Planning during suspension would also do nothing to shorten
the temporal duration of the main transaction.

For search-based operations, partitioned transactions bear a cer-
tain resemblance to early release [12] and elastic transactions [9],
both of which allow a (software) transaction to remove no-longer-
needed locations from its read set. From the perspective of usabil-
ity, however, it seems likely that the writers of partitioned opera-
tions will find it easier to specify what they do need (as a validator)
than what they don’t (as early releases).

In comparison to all these alternatives, ParT has the advantage
of working with existing HTM; early release, elastic transactions,
and composed COP would all require new hardware instructions,
and would introduce thorny issues of false sharing within cache
lines. Finally, only ParT allows partial rollback of an aborted trans-
action: in the present of contention, valid planning work can be
leveraged during retry. Table 2 summarizes these comparisons.

Other connections are more tenuous. Split hardware transac-
tions [16] divide a transaction into two or more segments, to sup-
port true closed and open nesting. Transactional boosting [11] and
transactional predication [4] exploit high-level semantic informa-
tion to reduce the cost of nested operations in a software TM sys-
tem, but we see no way to employ them with HTM. The Foresight
mechanism [10] facilitates composition, but for conservative, lock-
based systems. True closed nesting [18] offers the possibility of
partial rollback, but again it is not supported by current HTM.

7. Conclusions
As hardware transactional memory becomes more widely used,
programmers will need techniques to enhance its performance. We
have presented one such technique: partitioned hardware transac-
tions (ParT). The key idea is to extract the read-mostly planning
portions of common operations and to execute them—either in or-
dinary software or in smaller transactions—before executing the
remaining completion transaction. To ensure atomicity, a valida-
tor object carries information across planning operations and into
the corresponding completion operation, allowing the latter to con-
firm, quickly, that the planning work is still valid. Automatic com-
piler support allows partitioned operations—and transactions that
include them—to compose as easily and safely as traditional mono-
lithic transactions, with no special hardware support.

We tested ParT on both the IBM zEnterprise EC12 (currently
the most scalable HTM-capable architecture) and a smaller Intel
Haswell machine. Using a variety of examples, including three
micro- and five macrobenchmarks, we demonstrated that ParT can
yield dramatic performance improvements—often making the dif-
ference between scalable and nonscalable behavior.

We conclude that ParT is a valuable addition to the “TM pro-
grammer’s toolkit.” Topics for future work include integration with
software and hybrid TM; compiler support for nontransactional
planning phases, in the style of CSpec [21]; and dynamic choice
of fallback strategies based on run-time statistics.

References
[1] Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious programming.

In Proc. of the 15th Intl. Conf. on Principles of Distributed Systems (OPODIS),
Toulouse, France, Dec. 2011.

[2] H. Avni and B. Kuszmaul. Improve HTM scaling with consistency-oblivious pro-
gramming. In 9th SIGPLAN Wkshp. on Transactional Computing (TRANSACT),
Salt Lake City, UT, Mar. 2014.

[3] H. Avni and A. Suissa. TM-pure in GCC compiler allows consistency oblivious
composition. In Joint Euro-TM/MEDIAN Wkshp. on Dependable Multicore and
Transactional Memory Systems (DMTM), Vienna Austria, Jan. 2014.

[4] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Transactional predication:
High-performance concurrent sets and maps for STM. In 29th ACM Symp. on
Principles of Distributed Computing (PODC), Zurich, Switzerland, July 2010.

[5] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le. Robust
architectural support for transactional memory in the Power architecture. In 40th
Intl. Symp. on Computer Architecture (ISCA), Tel Aviv, Israel, June 2013.

[6] C. Click Jr. And now some hardware transactional memory comments. Author’s
Blog, Azul Systems, Feb. 2009. www.azulsystems.com/blog/cliff/2009-
02-25-and-now-some-hardware-transactional-memory-comments.

[7] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial
hardware transactional memory implementation. In 14th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS),
Washington, DC, Mar. 2009.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In 20th Intl. Conf.
on Distributed Computing (DISC), Stockholm, Sweden, Sept. 2006.

[9] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In 23rd Intl. Conf.
on Distributed Computing (DISC), Elche/Elx, Spain, Sept. 2009.

[10] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Concurrent libraries
with Foresight. In 34th SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), Seattle, WA, June 2013.

[11] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-
concurrent transactional objects. In 13th SIGPLAN Symp. on Principles and
Practice of Parallel Programming (PPoPP), Salt Lake City, UT, Feb. 2008.

[12] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transac-
tional memory for dynamic-sized data structures. In 22nd ACM Symp. on Prin-
ciples of Distributed Computing (PODC), Boston, MA, July 2003.

[13] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In 20th Intl. Symp. on Computer Architecture (ISCA),
San Diego, CA, May 1993.

[14] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory architecture and
implementation for IBM System z. In 45th Intl. Symp. on Microarchitecture
(MICRO), Vancouver, BC, Canada, Dec. 2012.

[15] C. Lattner and V. Adve. Automatic pool allocation: Improving performance
by controlling data structure layout in the heap. In 26th SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), Chicago, IL, June
2005.

[16] Y. Lev and J.-W. Maessen. Split hardware transactions: True nesting of transac-
tions using best-effort hardware transactional memory. In 13th SIGPLAN Symp.
on Principles and Practice of Parallel Programming (PPoPP), Salt Lake City,
UT, Feb. 2008.

[17] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In 15th ACM Symp. on Principles of
Distributed Computing (PODC), Philadelphia, PA, May 1996.

[18] J. E. B. Moss and A. L. Hosking. Nested transactional memory: Model and
architecture sketches. Science of Computer Programming, 63(2):186–201, Dec.
2006.

[19] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,
and M. Michael. Evaluation of Blue Gene/Q hardware support for transactional
memories. In 21st Intl. Conf. on Parallel Architectures and Compilation Tech-
niques (PACT), Minneapolis, MN, Sept. 2012.

[20] L. Xiang and M. L. Scott. MSpec: A design pattern for concurrent data struc-
tures. In 7th SIGPLAN Wkshp. on Transactional Computing (TRANSACT), New
Orleans, LA, Feb. 2012.

[21] L. Xiang and M. L. Scott. Compiler aided manual speculation for high perfor-
mance concurrent data structures. In 18th SIGPLAN Symp. on Principles and
Practice of Parallel Programming (PPoPP), Shenzhen, China, Feb. 2013.

[22] L. Xiang and M. L. Scott. Composable partitioned transactions. In 5th Wkshp.
on the Theory of Transactional Memory (WTTM), Jerusalem, Israel, Oct. 2013.

[23] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of Intel
transactional synchronization extensions for high-performance computing. In
Intl. Conf. on High Performance Computing, Networking, Storage and Analysis
(SC13), Denver, CO, Nov. 2013.

www.azulsystems.com/blog/cliff/2009-02-25-and-now-some-hardware-transactional-memory-comments
www.azulsystems.com/blog/cliff/2009-02-25-and-now-some-hardware-transactional-memory-comments

	Introduction
	ParT Execution Model
	Histories
	Partitioned Operations
	Partitioned Transactions

	Toward A Library of Partitioned Operations
	The Basic Partitioning Template
	Extended Example: Red-black Tree
	Additional Examples

	Automatic Composition
	Language Interface
	Automatic Partitioning
	Synthesizing Planning Code
	Ensuring Consistency
	Synthesizing Completion Code

	Run-time Support and Optimizations
	Limitations

	Experimental Evaluation
	TM Compiler and Runtime
	Benchmark Suite
	Microbenchmark Results
	Macrobenchmark Results

	Related Work
	Conclusions

