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Abstract
Much of the success of Haskell’s Software Transactional Memory
(STM) can be attributed to the language’s type system and purity,
which together allow transactions to be expressed safely and pre-
cisely. By construction, transactions are free from many of the per-
ils that other systems must work hard to avoid. Users do have to
work in a constrained environment as a result, but the popularity of
Haskell’s STM indicates that this is not a burden too hard to bear.
At the same time, the performance of Haskell’s STM does not reach
the level achieved by recent systems for other languages.

The use of Hardware Transactional Memory (HTM) is just
beginning, with Intel’s release of the first widely available TM-
capable processors. There has been excellent recent work build-
ing hybrid transactional memory systems that combine the perfor-
mance benefits of HTM and the progress guarantees of STM. In
this paper we present our ongoing work to build a hybrid trans-
actional memory system for Haskell. Haskell’s restricted environ-
ment provides an opportunity for us to explore designs that leverage
compile-time information to improve performance while preserv-
ing safety. At the same time, some of the features of Haskell STM
prove to be challenging to support efficiently.

1. Introduction
Since its introduction in 2005 [10], Haskell’s Software Transac-
tional Memory (STM) monad has become the preferred means
of coordinating concurrent threads in Haskell programs, making
Haskell arguably the first successful transactional memory pro-
gramming language outside the research community. Some of this
success is due to an interface that allows a thread to wait for a
precondition within a transaction (via the retry mechanism), or
to choose an alternative implementation of the entire transaction
(via the orElse mechanism) if a precondition does not hold. The
implementation of the Glasgow Haskell Compiler (GHC) run-time
system is not without compromises, however. Transactions incur
significantly more overhead than in recent STM systems for main-
stream imperative languages. Both per-thread latency and scala-
bility are very poor. Fairness in the face of contention is also
poor, and significant amounts of per-transactional location meta-
data lead to high abort rates for large transactions. In consultation
with the core Haskell development team, we are attempting to ad-
dress some of these issues through changes to the run-time system
and—more significantly—by using hardware transactional mem-
ory to run Haskell transactions in whole or in part. The semantics
of retry and orElse pose challenges for this effort, because they
require partial rollbacks: a transaction that aborts explicitly must
“leak” information about the cause of the abort, so the surrounding
code can tell whether (and when!) to retry or to attempt an alter-
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data TVar a = ...

instance Monad STM where ...

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

retry :: STM a
orElse :: STM a -> STM a -> STM a

atomically :: STM a -> IO a

Figure 1. Interface for Haskell’s STM.

native implementation. Hardware transactions do, however, offer
significantly lower overhead in many common cases.

In this paper, we describe ongoing work on a hybrid transac-
tional memory implementation for Haskell. Specifically, we em-
ploy Intel’s Transactional Synchronization Extensions (TSX) [11]
for low overhead hardware transactions within GHC’s STM run-
time. Sections 1.1 and 1.2 provide background on GHC’s current
STM implementation and on Intel’s TSX, respectively. Section 2
describes our preliminary implementation, its limitations, and the
various design choices we see for support retry and orElse. Pre-
liminary results appear in Section 4.

1.1 GHC’s STM
The Haskell programming language as implemented by the Glas-
gow Haskell Compiler has many innovative features, including a
rich run-time system to manage the unique needs of a pure func-
tional language with lazy evaluation. This system has served as a
vibrant research laboratory for over twenty years and remains in ac-
tive development, with over one hundred contributors. GHC’s STM
was introduced by Harris et al. in 2005 [10]. The implementation
in the initial paper predates GHC’s multicore run-time system, in-
troduced by Marlow et al. in 2009 [15]. Some details of the ini-
tial STM implementation, together with motivations for key design
choices, are provided in a companion paper by Harris et al. [9].

The STM API is simple and explicit, as seen in the Haskell code
in figure 1. Each transactional variable (TVar) is a heap object
containing a mutable reference to some other heap object. The
type (a) of the referenced object is a generic parameter of the
TVar constructor. The structure of a TVar is not exposed to the
user but must be accessed through the readTVar and writeTVar

operations. Similarly, new variables are created with newTVar and
not directly with a data constructor. Each of these operations is a
function that returns an “STM action.”

Because Haskell is a pure functional language, it has no side
effects. STM actions are not statements in the sense of C or Java,
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deposit :: TVar Int -> Int -> STM ()
deposit account value = do

balance <- readTVar account
writeTVar account (balance + value)

deposit’ :: TVar Int -> Int -> STM ()
deposit’ account value =

readTVar account >>= \balance ->
writeTVar account (balance + value)

Figure 2. A simple Haskell transaction written with do-notation
and the same transaction with an explicit bind operator (>>=).

but rather actions of the STM monad, which provides syntactic
sugar for “threaded” tail-recursive functions. Semantically, each
STM action takes the entire transactional heap (the contents of all
TVars) as an implicit hidden argument. In addition to its visible
return value, it then returns the (hidden) contents of (a new version
of) the transactional heap, which can then be passed to further STM
actions.

Haskell input and output are mediated by the IO monad, which
provides the illusion of threading the state of the outside world
through tail-recursive functions. Values can be moved from pure
functional code into the STM monad by passing them as arguments
to writeTVar. STM actions can in turn be promoted to IO actions
by using the atomically primitive to identify them as a transac-
tion. Rules on the use of monads ensure that side-effect-like state
transformations associated with I/O and concurrency are never vis-
ible to purely functional code. But just as GHC doesn’t really pass
the state of the entire outside world from one IO action to another,
neither does it copy the entire transactional heap from one STM
action to another. In practice, it mutates values in place, much as
STM systems for conventional imperative languages do. The lan-
guage retains the benefits of purely functional semantics, while the
executing program uses impure effects for efficiency.

There are important differences, however. The static separation
between transactional and nontransactional values eliminates the
concept of privatization and its implementation challenges [14].
More significantly, GHC’s strict controls on runtime-level side ef-
fects should make it easier to construct a sandboxed TM run-
time [1], in which “doomed” transactions can safely be permitted
to execute beyond the point at which they first read inconsistent
values from memory (we return to this subject in Section 2.3).

STM actions are the building blocks for transactions and can be
composed together with the monadic bind operator (>>=), which
carries the (conceptually) mutated heap from one action to the next.
Haskell simplifies the syntax even further with its do-notation, giv-
ing binding a fully imperative appearance. Figure 2 shows a simple
transaction written using do-notation. The function deposit takes
two parameters, an account represented by a TVar holding an Int

and a value to be added. The result of the deposit function is an
STM action that produces a “unit” value (similar to the void type
in C). The body of the action follows the do keyword and is built
out of two smaller STM actions resulting from applying values to
readTVar and writeTVar. We compose these actions by bind-
ing the name balance to the result of running readTVar and then
providing a second STM action that has that name in scope. For
comparison, deposit’ is the desugared version of the same trans-
action using the bind operator and a lambda function binding the
name balance and resulting in the writeTVar action.

As previously noted, the atomically function identifies an
STM action as a transaction and promotes it into an IO action. The
entry point to a Haskell program is the IO action named main.
An IO action is not restricted in the effects it may have when

withdraw :: TVar Int -> Int -> STM ()
withdraw account value = do

balance <- readTVar account
writeTVar account (balance - value)

transfer :: TVar Int -> TVar Int -> Int -> STM ()
transfer a b value = do

withdraw a value
deposit b value

main = do
a <- atomically (newTVar 100)
b <- atomically (newTVar 100)
c <- atomically (newTVar 0)
forkIO (atomically (transfer a b 100))
forkIO (atomically (transfer b c 100))

Figure 3. Running a transaction atomically. Three accounts are
initialized then two threads run transactions concurrently. The end
result must always be a = 0, b = 100, and c = 100

run. Having STM as a separate type from IO statically prevents
non-transactional effects inside transactions. Only STM primitive
operations and the evaluation of pure functional code are executed
when an STM action is run.

1.1.1 Run-time Support
GHC serializes transactions using either a coarse-grain lock or per-
TVar fine-grain locks. We focus on the coarse-grain version as it
is more easily converted to a hybrid system. In both versions, each
transaction is represented by a record called a TRec, with an entry
for every transactional variable touched during the execution of the
transaction. The entries in the TRec store the value seen when the
variable was first encountered and any new value written during the
transaction. Values are always pointers to immutable heap objects.
A read of a TVar first searches the TRec for a previous entry and
uses its value. If no entry exists it reads the value from the TVar

itself and adds an appropriate entry to the TRec. Similarly writes
look for a previously read entry, adding a new one if the variable
has not been seen, and in either case writing the new value into
the entry. In the coarse-grain implementation, the global lock is
acquired when the transaction attempts to commit. While holding
the lock, the transaction validates its state by ensuring that all
accessed TVars still hold the expected value recorded in the TRec.
If they do, the transaction can commit by writing all the changed
values into their respective TVars and releasing the global lock.

The fine-grain implementation is similar, but at commit time it
acquires a lock for each TVar. The value of the TVar—the refer-
ence it contains—does double duty as the lock. Initial reads spin on
locked values. At commit time, validation is done by first check-
ing for consistent values and acquiring locks for any writes, then
checking for consistent values again (as in the coarse-grain ver-
sion) now that the locks are held. Reads from other transactions
will be blocked, and other attempts to commit will fail when see-
ing a lock as a TVar’s value. Read-only transactions need not ac-
quire any locks: they commit after the second validation. Writer
transactions unlock TVars by overwriting their locks with the cor-
responding new values. Each TVar also has a version number that
is incremented when a new value is written. This version number is
what is checked in the second validation. It allows a transaction—
call it T—to notice if two other transactions have altered and then
restored the value of a TVar while T was acquiring its locks. This
implementation draws heavily on the OSTM system of Fraser and
Harris [7], but without its nonblocking progress guarantees.
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The majority of the STM implementation is written in C, with
additional portions in Haskell and in Cmm, GHC’s flavor of the C--
intermediate language. The Cmm code provides shims to call into the
C library and is exposed to Haskell code as primitive operations.
Our work mainly comprises changes to the run-time system. It also
incorporates changes to the code generator, to allow a critical path
in hardware transactions to avoid calling out to C code.

1.1.2 Limitations
An important design decision in Haskell’s STM is the choice to de-
clare separate transactional variables, and to separate STM effects
from the IO monad. These separations facilitate programmer rea-
soning by statically disallowing effects that cannot be rolled back
inside transactions. The run-time system strongly mirrors the sep-
aration of transactional variables by representing a TVar with a
heap object containing a pointer to the actual data value. Unfortu-
nately, this indirection significantly increases the memory footprint
of each transaction. Harris et al. justify the design [9] by noting
that the usual style of transactional programming in Haskell en-
tails a relatively small number of transactional variables. Indeed,
Haskell programmers get along well without mutation for the ma-
jority of each program. This justification impacts another choice in
the STM as well: Each TRec is an unordered list of accessed vari-
ables, which must be searched on each transactional read, leading
to O(n2) time for a transaction that reads n variables. The cost
is reasonable for operations on queues or other simple containers,
where only a handful of variables needs to be touched. For larger
structures it could quickly become problematic.

To minimize the number of TVars accessed in a transaction,
Haskell programmers commonly rely on the language’s lazy eval-
uation and devote a single TVar to each large (pure, functional)
data structure. A pure map structure with thousands of nodes, for
instance, can be the value held by a single TVar. Inserting a value
into the map can be achieved by pointing the TVar at a thunk (an
unevaluated function) that represents the computation of the inser-
tion. A later (post-transactional) lookup to the map would then have
the effect of forcing the thunk to evaluate. There is no reason this
lookup needs to be done inside a transaction—just the mutation at
the TVar that moves the pointer to the new computation.

Building up delayed computations is not without its downsides,
however. The collection of unevaluated computations can some-
times use much more space than the final evaluated structure would
occupy. To minimize this sort of “space leak,” programmers com-
monly employ pure data structures that are “spine strict,” where
pointers to children are always evaluated when the parent is eval-
uated. Map data structures are usually also “key strict,” where the
keys are fully evaluated and often unboxed if the representation of
the value allows.

1.2 Intel TSX
Intel’s recent release of their 4th generation core architecture in-
troduces support for best-effort hardware transactional memory,
called the Transactional Synchronization Extensions (TSX) [11].
This support comes in two forms: a backward-compatible hardware
lock elision (HLE) mechanism, and a more flexible restricted trans-
actional memory (RTM) mechanism. HLE is invoked by adding
XACQUIRE and XRELEASE prefixes to the instructions used to ac-
quire and release a lock, respectively. (The lock must be written in
such a way that the second instruction restores the value overwrit-
ten by the first.) With the prefixes in place, the hardware elides the
initial write to the lock, and instead begins a transaction. Operations
performed inside the transaction remain local until the transaction
commits. If another thread performs a conflicting operation on any
accessed location, the transaction aborts, rolls back, and starts over,
this time actually acquiring the lock and ensuring forward progress.

RTM uses special XBEGIN and XEND instructions to mark the
beginnings and ends of transactions. Additional instructions allow
a thread to test if it is currently executing a transaction (XTEST)
or to cause that transaction to abort (XABORT). XBEGIN takes as
argument the address of a handler, to which execution will jump if
the transaction aborts. Hardware transactions can be nested, but an
abort will undo all levels. There is no support for nontransactional
reads or writes within transactions, and the only information to
escape an aborted transaction comes in the form of an 8-bit code.

Certain instructions (e.g., a system call or x87 floating point in-
struction) will immediately cause a transaction to abort. Even if
these instructions are avoided, there is no guarantee of success.
TSX in its initial implementation uses the L1 data cache to buffer
a transaction’s speculative writes. Conflicts are detected at cache
line granularity, and the number of written lines is limited by L1D
capacity and associativity. Speculative reads may safely overflow
the L1, but the summary structure that tracks them when they do
may sometimes announce a false conflict. For all these reasons,
programs that use hardware transactions must provide a software
fallback to ensure progress. At the same time, cache misses are
typically a significant part of the cost of a transaction, so a transac-
tion that retries (still in hardware) after a conflict-induced abort can
benefit from cache warmup, and may be more likely to succeed the
second time around. For this reason, a high abort rate for hardware
transactions is not always a clear indicator of poor performance.

1.3 Related Work
Early work on hybrid TM includes the systems of Damron et al. [4]
and Kumar et al. [12], both of which add instrumentation to hard-
ware transactions to enable them to interoperate correctly with soft-
ware transactions. In an attempt to avoid this instrumentation, Lev
et al. [13] arrange for the TM system to switch between hardware
and software phases, with all transactions executing in the same
mode within a given phase; the resulting performance is often su-
perior, but brittle.

More recent work builds on the NOrec system of Dalessandro et
al. [2], which uses value-based validation, and serializes transaction
write-back with a global lock. The subsequent Hybrid NOrec [3]
leverages this design to allow uninstrumented hardware transac-
tions to run concurrently with everything except the commit phase
of software transactions. Performance in this system is best when
hardware transactions are able to perform non-transactional reads
of the software commit-phase lock. Felber et al. [6] and Riegel et
al. [? ] present variants of this scheme with similar performance.

Recent work by Matveev and Shavit [16] also builds on Hybrid
NOrec, but employs two levels of fallback. The first uses hardware
transactions for part of the work, allowing it to coexist with com-
mits of hardware transactions. With the second level of fallback,
hardware transactions are at risk of observing inconsistent partial
writes—a problem we address in Section 2.3.

Throughout the current paper, we emphasize issues unique to
Haskell’s STM. In particular, we leverage the benefits of pureness
(side effect freedom) and of strict separation between transactional
and nontransactional code and data. At the same time, we must
address the challenges of retry and orElse. In all cases, we
restrict ourselves to the hardware support available with TSX.

2. Hybrid TM
We have a preliminary implementation of a hybrid transactional
memory for GHC that uses Intel’s TSX in several forms. In Sec-
tion 2.1 we look at the simple scheme of eliding the coarse-grain
lock during the STM commit phase. This simple scheme has some
benefits over the fine-grain implementation and serves, in Sec-
tion 2.2, as the fallback mechanism for a second scheme, in which
we attempt to run Haskell transactions entirely in hardware. Trade-
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offs and interactions among these schemes are discussed in Sec-
tion 2.3. Possible mechanisms to support retry and orElse are
discussed in Sections 2.4 and 2.5, respectively.

2.1 Eliding the Coarse-grain Lock
There is a simple way to apply TSX in GHC’s STM implementa-
tion, without any significant changes to the run-time system. The
coarse-grain version of the system has a global lock protecting the
commit phase. We can apply hardware lock elision to the global
lock and, in the best case, this will allow independent software
transactions to perform their commits concurrently. In comparison
to the fine-grain version of the system, this strategy avoids both the
overhead of acquiring and releasing multiple locks and the over-
head incurred on the first read of any TVar to check that the variable
is unlocked. It does not, however, address the overhead of maintain-
ing the transactional record: to allow transactions to read their own
writes and to avoid interfering with peers, instrumentation is still
required on transactional loads and stores.

If an HLE-enabled commit aborts for any reason, it will retry
after acquiring the global lock “for real.” This acquisition will cause
any concurrent hardware transactions to abort. Elision will resume
once the system passes through even a brief period of quiescence,
with no transaction actively committing.

2.2 Executing Haskell Transactions in Hardware
Transactions

The goal of executing an entire Haskell transaction within a hard-
ware transaction is to avoid the overhead of STM TRec mainte-
nance, relying instead on hardware conflict detection. In the coarse-
grain implementation, when running in a hardware transaction, we
simply read and write directly to the referenced TVars. Imple-
mented naively, we avoid the need for a TRec, but our transac-
tion could start and commit in the middle of a software transac-
tion’s write phase, seeing inconsistent state. Since our fallback is
the coarse-grain lock, we can fix this problem in a manner anal-
ogous to that of Dalessandro et al. [3] and Felber et al. [6], by
including the global lock in our hardware transaction’s read set
and checking that it is unlocked. Our hardware transactions will be
aborted by any committing software transaction, as every software
transaction acquires the lock at commit time. When we elide the
lock as described above, the speculative commit of the fallback can
be rolled back when the hardware detects conflicts with commit-
ting hardware transactions. In the absence of such (true data) con-
flicts, software transactions can commit concurrently with a run-
ning hardware transaction—aborts will not be caused by conflicts
on the coarse-grain lock itself.

2.3 Interaction Between Transactions
Now consider more closely how our layers of fallback interact.
When the fallback is speculating on its commit (via HLE), no
other transaction can see a partial commit. If, however, the fallback
is fully in software, a concurrent transaction can see a partial
commit. Reading the global lock and using XABORT if it is held
fixes this issue as mentioned above. The question is when to do
this read. If we read the lock at the beginning of an all-hardware
transaction, then we will abort if we overlap with any part of
a software transaction’s commit phase—even when the software
transaction touches a disjoint set of data locations. If we read the
lock late—at the end of the transaction, just before committing—an
overlapping software commit may be able to complete and release
the lock before our read. The hardware transaction will still see any
true conflicts, but the window of false conflicts is greatly narrowed.

There is a serious problem, however, with reading the lock late.
The hardware transaction executes based on the data it reads, and
this data may be inconsistent. Application-level invariants, which

the user is explicitly using transactional memory to protect, are not
guaranteed to hold. Assumptions based on those invariants could
lead the code to jump to some harmful instruction. In a hardware
transaction, perhaps the most harmful situation would be to jump to
an XEND instruction, committing the transaction before it has read
the lock and realized it needs to abort.

Consider, for example, a program that maintains the application-
level invariant that TVars a and b hold arrays that are always the
same length. Consider then a transaction that reads the length of
the array in a and uses that length to calculate an index at which to
access the array. Knowing that the arrays are of equal length, the
programmer might be tempted to use the built-in unsafeAt opera-
tion to read the array in b at the same index. If the application-level
invariant does not hold because of concurrent activity in another
transaction, we can imagine a scenario in which an invalid read off
the end of b causes the transaction to jump to an XEND.

Fortunately, so far as we have been able to determine, every
possible scenario in which a “doomed” transaction does some-
thing that might be visible to the rest of the program requires that
the programmer have employed (directly or indirectly) a function
explicitly marked as unsafe. Correctness can be maintained, we
believe—even for an implementation that delays reading the global
lock until the end of all-hardware transactions—by prohibiting the
use within transactions of unsafe operations that read from more
than one TVar.

It is important to note that similar problems already exist in
GHC STM today. Validation occurs only at commit time; in both
the fine and coarse-grain systems, a transaction may read—and
compute on—inconsistent state. Jumping to an XEND is clearly
not an issue, but segmentation faults can arise in the presence of
unsafe operations. (It is also possible, in the current implementa-
tion, to fall into an infinite loop, even without the use of unsafe.
If the loop contains memory allocation, the garbage collector will
eventually force a validation and terminate the loop. Non-allocating
loops need to force a similar validation; the fact that they do not is
a known bug, which will eventually be fixed.) In other words, re-
strictions that are already required for correctness in STM Haskell
suffice to enable late reading of the global lock in hardware transac-
tions. Removing the restrictions would require that both the coarse-
and fine-grain STM systems employ incremental validation.

Interestingly, our preliminary results do not show a performance
difference between early and late reading of the global lock in
hardware transactions. We expect the issue to become important
as we implement further optimizations.

2.4 Supporting Blocking
STM Haskell’s retry operation poses a challenge for all-hardware
transactions. In our preliminary implementation, when we en-
counter a retry, we simply abort and have the fallback handler
try again immediately or switch to the STM code path. A more dif-
ficult issue arises when we have a transaction that executed retry
under the STM. In this situation, the transaction’s Haskell thread
is suspended and placed on a watch list for every TVar in its read
set. When another STM transaction commits it will wake up every
thread in the watch lists of all the TVars in its write set. A hardware
transaction must somehow provide analogous functionality.

In our preliminary implementation, we arrange for hardware
transactions to record the address of each write in a transactional
record. This proves to be too costly to be effective in practice,
largely because the write set implementation performs dynamic
memory allocation. In ongoing work, we are exploring solutions
that require constant space. It is safe, but less efficient, for a trans-
action to be woken when it still cannot make progress: it will simply
block again. Given this fact, the simplest option is to wake up all
blocked transactions when a hardware transaction commits. Given
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one bit of space we can distinguish read-only transactions, which
need not perform any wakeups. With more bits we can create a
summary structure that conservatively approximates the write set,
with no false negatives. We have room then to tune the accuracy
of wakeup by adjusting the amount of space we reserve for each
write set. For the benchmark results in Section 4, which do not re-
quire retry, we approximate the performance of a constant-space
write set by eliding the wakeup code in writer transactions: any
transaction that encounters a retry in our current system restarts
immediately, as if it had suffered a conflict abort.

The constant-space approximation of write sets suggests a sim-
ilar mechanism to support retry in hardware transactions. The
difficulty here is that we need to discard the effects of an abort-
ing transaction while recording the locations that it read—and that
if written should cause it to retry. Using XABORT to discard the
effects also discards any record of the read set. If nontransac-
tional stores were available in TSX they would allow us to “leak”
a representation of the read set. In their absence, TSX does al-
low a small amount of information to leave an explicitly aborted
transaction—namely the 8-bit abort code. If we reserve one bit to
indicate whether a transaction aborted due to retry, the other 7
could be used to encode the read set as a miniature Bloom filter.
An additional improvement would be to detect read-only transac-
tions, which could record a more precise read set, commit instead of
aborting, and then wait for the usual wakeup. Compiler passes sim-
ilar to those discussed in Section 2.5 could move or buffer writes
to just beyond the decision that leads to a retry; this would make
a transaction read-only up to the retry. Unfortunately, all these
mechanisms require instrumentation on reads as well as writes.

It seems feasible to support different granularity in what the
STM and HTM can track. The two would perform wakeups at
whatever precision was available. Even false negatives (such as
those induced by an inappropriately empty read set) might be tol-
erable if we provided a mechanism to periodically wake all sus-
pended transactions. Certain programming idioms, however, might
lead to unreasonable delays. Some Haskell programs, for example,
use retry as a barrier, to signal the next phase of a computation;
these might experience a significant pause between phases. Other
programs, including those based on the popular async library, cre-
ate suspended transactions to represent a large number of very rare
conditions. Waking all of these periodically might lead to unaccept-
able amounts of wasted work.

Any design that employs a summary structure based on hashed
TVar addresses will also need to consider the impact of relocating
garbage collection. The simple option is to wake all waiting trans-
actions after a GC pass, letting them either make progress or wait
on a newly computed read set. Another option would be to include
in each TVar a stable identifier not affected by GC. This could even
be a hash of the address at the time of allocation; the uniqueness of
the identifier is not important for correctness.

2.5 Supporting Choice
A transaction can be built out of a choice between two transactions
by using the orElse function. It takes two transactions as argu-
ments, running the first one and, if it blocks, discarding the writes
and then running the second transaction. This composed transac-
tion’s read set always includes the read set of the first transaction.
That is, if the second branch of the orElse commits, it must do
so in a state where the first branch could not do so. This means
we cannot abort the first branch before we try the second, because
global state could change in-between. If the first branch is to exe-
cute within a hardware transaction, it must buffer its writes so they
can be rolled back (without aborting the hardware transaction) in
the event of a retry, before attempting the second half.

tA = do
a <- t1 -- t1 may write.
if p a -- p is some predicate.
then retry
else t2 a

tB = tA ‘orElse‘ tC

----------

tB’ = do
(a, t1w) <- t1 -- t1 is now read only and

-- produces an action t1w
-- to perform its writes.

if p a
then tC -- Directly jump to the

-- alternate transaction.
else do

t1w -- Perform the writes of t1.
t2 a

Figure 4. Transactions such as tB can be converted into transac-
tions such as tB’, by having t1 delay writes into an STM action
t1w that will perform the writes after the choice leading to a retry
is resolved.

The overhead of buffering leads us toward using GHC’s Rule
system [17] and compiler passes [5] to improve the performance of
common scenarios. A tree of nested orElses, for example, can be
refactored so all left branches are leaves. This leads to only a single
level of write buffering, rather than an arbitrary number. Other code
could be rewritten to explicitly delay writes until after the blocking
choice, avoiding buffering in the run-time system by making it ex-
plicit in the transaction’s (intermediate-level) code. For an example,
see Figure 4. This sort of transformation would work well when the
choice of a retry can be resolved with only reads and when anal-
ysis can fully identify reads after writes. It also avoids the overhead
of checking at each read to see if the read should come from a
buffered write. Several common scenarios should be able to benefit
from such analysis. One particularly important instance appears in
the TChan structure of the stm package, which attempts to dequeue
an item from any of several queues.

Given the potential of this approach and the overhead of buffer-
ing, it makes sense to make hardware transactions execute the first
branch of an orElse and fall back to STM when a retry is exe-
cuted and that branch has performed a write. Repeatedly trying the
first branch could result in too much bias towards that branch and
should be avoided. This means we should indicate in the abort that
the fallback path is required due to an orElse.

3. Performance Challenges
Several aspects of the standard STM Haskell runtime pose signif-
icant barriers to low per-thread latency and reasonable scalability.
We have addressed the first of these (Section 3.1) in our current
implementation; the others are work in progress.

In all our efforts, we have benefited from the richness of appli-
cations that already use the STM monad (a richness not yet found
in any other language). We are continuing to import and develop
further benchmarks to identify the strengths and weaknesses of
alternative hybrid strategies, especially with regard to retry and
orElse. We are also exploring modifications to the STM runtime
to improve the performance of both STM and HTM transactions.

For the record, we do not currently plan to support the data in-
variants described by Harris and Peyton Jones [8]. While these are
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a feature of GHC’s STM, they have, to our knowledge, never been
used. Their implementation has significant performance implica-
tions when any data invariants are active. For instance, when any
affected variables are touched by a transaction, locks must be taken
for the entire read set. In addition, the semantics of data invariants
with regard to retry and orElse remain unclear and the current
implementation can lose invariants at run time. These issues can be
addressed, but as the original intent was simply for debugging, we
see little need to support invariants in our hybrid system.

3.1 The Haskell-to-C Impedance Barrier
In GHC’s current design, each read and each write in a transaction
must perform an external, “foreign” function call to the STM run-
time system, written in C. This call is handled by a Cmm primitive
operation. This mechanism is quite unfortunate for hardware trans-
actions: the difference in calling conventions requires registers to be
stashed and a C stack put in place for the foreign call. The resulting
memory accesses pollute the read and write sets of the transaction,
which logically only needs to read or write directly to the TVar.
The extra overhead quickly leads to transaction capacity aborts on
TSX. We solve the problem by modifying GHC’s code generator
to issue an XTEST instruction and perform the TVar access in-line
in the HTM case.

Initial experiments indicate that a transaction with in-lined ac-
cesses can read thousands of TVars and still commit successfully in
hardware. Without inlining, the largest successful single-threaded
commit is around fifty TVars.

3.2 Transactional Arrays
One aspect of Haskell’s STM to which we are devoting particular
attention is the implementation of transactional arrays. The current
implementation provides an inefficient TArray class, implemented
as an array of TVars. The values held are references to heap objects
rather then direct data values—even when the values are of types
that would normally not be boxed. As an example of the resulting
inefficiency, consider a program in which transactions manipulate
values in a large array of integers. If we implement this manipula-
tion in Haskell using the current TArray, each integer will be rep-
resented by an immutable heap object with a pointer-sized header
and an integer payload. Each TVar array cell will in turn be at least
the size of two pointers and an integer. Every write to a cell is likely
to force the allocation of a new heap object for the value.

We are in the process of constructing an alternative implemen-
tation in which arrays of unboxed values can be accessed transac-
tionally, giving the benefit of many transactional variables with the
overhead of a single TVar. This implementation will allow hard-
ware transactions to directly read and write to a compact array of
values, leveraging the hardware’s natural fine-grain conflict detec-
tion. The design may sacrifice granularity for the STM—detecting
conflicts at a coarser granularity than hardware transactions, with
the expectation that most transactions will commit in hardware. The
simplest strategy treats the whole array as a single TVar when in
the STM. More complicated strategies “chunk” the array for finer
STM granularity.

3.3 Transactional Structures
A related performance optimization would allow values with a
fixed representation to live directly in a TVar. The implementation
could mirror that of transactional arrays, but need not be exposed to
the user in the same form. We imagine the compiler inferring when
direct representation could be applied: GHC already performs some
“unboxing” analysis. The motivation for this feature is to reduce the
indirection overhead when the transactional variables store values
with fixed representations, with a nicer interface than transactional
arrays.
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Figure 5. Reads from a red-black tree. At each size tree, each of 4
threads performs 5,000 transactions of 40 lookups each.

3.4 Full Inlining
It is not yet clear what the impact will be of widespread use of
XTEST in our code. We plan to explore more complete separation
of the code paths of all-hardware and fallback transactions. This
might be accomplished using GHC’s existing type class dictionary
inlining mechanisms. It would entail a change to the user-facing
API, potentially also allowing users to indicate which transactions
should attempt to execute in hardware and which should always
execute in software.

4. Preliminary Results
We have implemented our hybrid TM system in GHC by augment-
ing the existing STM support in the run-time system. For compari-
son we show results from the existing STM under fine-grain locks
and under coarse-grain locks. In addition we also show the perfor-
mance of the coarse-grain version with hardware lock elision ap-
plied to the global lock. We have not yet implemented full support
for retry and orElse. The benchmarks on which we report do not
directly require these operations; if they did, our code would sim-
ply fall back to STM. Minimal support is in place as the run-time
system internally uses STM for some synchronization.

Results were obtained on a 4-core, 8-thread 4th generation Intel
Core processor (Haswell) system. Each data point is the average
of several runs. Figure 5 shows the performance of non-conflicting
read-only transactions. The benchmark first builds a red-black tree
and then spawns four worker threads. Each thread executes 5,000
transactions, each of which performs 40 lookup operations on the
tree. In Figure 6 we show the performance of a write-heavy work-
load, which replaces all the nodes in a red-black tree, in parallel,
with new nodes, repeating the process 10 times.

In the read-only benchmark our hybrid TM performs better up
to a size where the transactions start to rely on the fallback due
to conflict aborts. We suspect that these conflicts stem from the
metadata writes inherent in executing Haskell code. Performance
of the hybrid system was dramatically worse before we altered the
hardware transaction code path to avoid calling out to a foreign C
function on every load and store.

The write-heavy benchmark shows our hybrid performing
roughly 30% slower than coarse-grain locking or the HLE fallback.
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Figure 6. Writes to a red-black tree. At each size tree, actions of 4
parallel threads serve to replace every node in the tree 10 times, by
atomically deleting one node and inserting another.

The default fine-grain locking performs very poorly; on larger trees
it appears to live-lock, as the commit phases of software transac-
tions cause mutual aborts.

5. Conclusion
Our preliminary implementation of a hybrid TM for GHC Haskell
shows promise and performs better then the existing fine-grain
STM implementation on microbenchmarks that exercise the parts
of our system that we have fully implemented. At the same time,
transaction throughput remains quite low compared to TM systems
for other languages. We hope in future work to achieve significantly
better performance—among other things, by reducing the inherent
overhead of TVars and the indirection to heap objects, and by fully
inlining the hardware transaction code path whenever possible.
With these improvements in place, we can explore using different
TM systems that could offer better performance.

We hope to also improve performance for code that relies heav-
ily on retry and orElse, by using the designs described in this
paper to allow such transactions to execute fully in hardware in
common circumstances.
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