
Brief Announcement: Fast Dual Ring Queues∗

Joseph Izraelevitz and Michael L. Scott
Computer Science Department, University of Rochester

Rochester, NY 14627-0226, USA
{jhi1, scott}@cs.rochester.edu

ABSTRACT
In this paper, we introduce two new FIFO dual queues. Like all
dual queues, they arrange for dequeue operations to block when
the queue is empty, and to complete in the original order when data
becomes available. Compared to alternatives in which dequeues on
an empty queue return an error code and force the caller to retry,
dual queues provide a valuable guarantee of fairness.

Our algorithms, based on the LCRQ of Morrison and Afek, out-
perform existing dual queues—notably the one in java.util.concur-
rent—by a factor of four to six. For both of our algorithms, we
present extensions that guarantee lock freedom, albeit at some cost
in performance.

1. INTRODUCTION
A container object (e.g., a queue) that supports insert (enqueue)

and remove (dequeue) methods must address the question: what
happens if the element one wants to remove is not present? The
two obvious answers are to wait or to return an error code (or signal
an exception). The latter option leads to spinning in applications
that really need to wait (repeat until (x = try_dequeue()) != ⊥). The
former option is problematic in nonblocking algorithms: how can
a method be nonblocking if it sometimes blocks?

Dual data structures, introduced by Scherer and Scott [6], ex-
tend the notion of nonblocking progress to partial methods—those
that must wait for a precondition to hold. Informally, a partial
method on a nonblocking dual structure is redefined to be a total
method that either performs the original operation (if the precondi-
tion holds) or else modifies the data structure in a way that makes
the caller’s interest in the precondition (its request) visible to sub-
sequent operations. This convention allows the code of the struc-
ture to control the order in which stalled methods will complete
when preconditions are satisfied. It also makes it easy to ensure
that stalled threads impose no burden on active threads—in partic-
ular, that they induce no memory contention.

The original dual structures [5], used for task dispatch in the Java
standard library, were based on the well-known M&S queue [3] and
Treiber stack [7]. In the intervening years, significantly faster con-

∗This work was supported in part by NSF grants CCF-0963759,
CCF-1116055, CNS-1116109, CNS-1319417, and CCF-1337224,
and by support from the IBM Canada Centres for Advanced Study.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/authors. Copyright is held by the owner/author(s).
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
ACM 978-1-4503-2821-0/14/06.
http://dx.doi.org/10.1145/2612669.2612711.

current queues have been devised—notably the linked concurrent
ring queue (LCRQ) of Morrison and Afek [4]. While the linked-list
backbone of this queue is borrowed from the M&S queue, each list
node is not an individual element but rather a fixed-length buffer
dubbed a concurrent ring queue (CRQ). Most operations on an
LCRQ are satisfied by an individual ring queue, which uses a hard-
ware fetch_and_increment (FAI) instruction to eliminate the con-
tention normally associated with compare_and_swap (CAS).

Unfortunately, like most nonblocking queues, the LCRQ “total-
izes” dequeue by returning an error code when the queue is empty.
Threads that call dequeue in a loop, waiting for it to succeed, rein-
troduce contention, and their requests, once data is available, may
be satisfied in an arbitrary (i.e., unfair) order. In this vein, we in-
troduce two dual versions of the LCRQ (detailed treatment can be
found in a technical report [2]). In one version, all elements in a
given CRQ are guaranteed to have the same “polarity”—they will
all be data or all be requests (“antidata”). In the other version,
a given CRQ may contain elements of both polarities. Within a
single multicore processor, throughput scales with the number of
cores. Once threads are spread across processors, throughput re-
mains 4–6× higher than that of the M&S-based structure.

Notation: “Dual” structures take their name from their ability to
hold either data or antidata. If any datum can be used to satisfy any
request, a quiescent dual structure will always be empty, populated
only with data, or populated only with antidata. Dualism implies
that a thread calling the public enqueue method may either enqueue
data or dequeue antidata “under the hood.” Likewise, a thread call-
ing the public dequeue method may either dequeue data or enqueue
antidata. When discussing dual algorithms, we will thus refer to the
polarity of both threads and the structure, with a positive polarity
referring to data, and a negative polarity referring to antidata.

2. SINGLE POLARITY DUAL RING
QUEUE

In our single polarity dual ring queue (SPDQ), each ring in the
list has a single polarity—it can hold only data or only antidata.
When the history of the queue moves from an excess of enqueues
to an excess of dequeues, or vice versa, a new ring must be inserted
in the list. This strategy has the advantage of requiring only modest
changes to the underlying CRQ algorithm. Its disadvantage is that
performance may be poor when the queue is near empty and “flips”
frequently from one polarity to the other.

When the original LCRQ algorithm detects that a ring may be
full, it closes the ring to prevent further insertions, and appends
a new ring to the list. In the SPDQ, we introduce the notion of
sealing an empty ring, to prevent further insertions, and we main-
tain the invariant that all non-sealed rings have the same polarity.
Specifically, we ensure that the queue as a whole is always in one
of three valid states: uniform—all rings have the same polarity;
twisted—all rings except the head have the same polarity, and the



(a) Uniform, negative polarity (b) Empty, sealed head, nega-
tive polarity

(c) Twisted, negative polarity (d) Uniform, positive polarity

Figure 1: Flipping the polarity of the SPDQ

head is sealed (closed and empty); empty—only one ring exists,
and it is sealed.

Unless an operation discovers otherwise, it assumes the queue is
in the uniform state. Upon beginning an operation, a thread will
check the polarity of the head ring, and from there extrapolate the
polarity of the queue. If it subsequently discovers that the queue is
twisted, it attempts to remove the head and retries. If it discovers
that the queue is empty, it creates a new ring, enqueues itself in that
ring, and appends it to the list, twisting the queue.

Public enqueue (positive) operations inherit lock-free progress
from the LCRQ algorithm [4]. In the worst case, a FAI-ing enqueuer
may chase an unbounded series of FAI-ing dequeuers around a ring,
arriving at each slot too late to deposit its datum. Eventually, how-
ever, it “loses patience,” creates a new ring buffer containing its
datum, closes the current ring, and appends the new ring to the list.
As in the M&S queue [3], the append can fail only if some other
thread has appended a ring of its own, and the system will have
made progress.

Because they may wait for data, public dequeue (negative) op-
erations are more subtle. Scherer and Scott [6] model a partial op-
eration on a dual structure in terms of a potentially unbounded se-
quence of nonblocking operations. The first operation linearizes
the request for data of the calling thread, T . The last operation (the
“successful follow-up”) linearizes T ’s receipt of that data. In be-
tween, unsuccessful follow-up operations perform only local mem-
ory accesses, inducing no load on other threads. Finally, the total
method (in our case, an enqueue) that satisfies T ’s pending request
must ensure that no successful follow-up operation by another wait-
ing thread can linearize in-between it (the satisfying operation) and
an unsuccessful follow-up by T .

This final requirement is where the SPDQ as presented so far
runs into trouble. A positive thread that encounters a negative
queue must perform two key operations: remove the antidata from
the queue and alert the waiting thread. Without additional care, an
antidata slot will be removed from consideration by other threads
the moment the corresponding enqueuer performs its FAI. Mixing
will happen afterward, leaving a “preemption window” in which
the enqueuer, if it stalls, can leave the dequeuer waiting indefinitely.
In practice, such occurrences can be expected to be extremely rare,
and indeed the SPDQ performs quite well, achieving roughly 85%
of the throughput of the original LCRQ while guaranteeing FIFO
service to pending requests (Sec. 5). In Section 4 we will describe a
modification to the SPDQ that closes the preemption window, pro-
viding fully lock-free behavior (in the dual data structure sense) at

essentially no additional performance cost.

3. MULTI POLARITY DUAL RING QUEUE
In contrast to the SPDQ, the multi polarity dual ring queue

(MPDQ) incorporates the flipping functionality at the ring buffer
level, and leaves the linked list structure of the LCRQ mostly un-
changed.

In their original presentation of the CRQ [4], Morrison and Afek
began by describing a hypothetical queue based on an infinite ar-
ray. Similar intuition applies to the MPDQ. Since we are matching
positive with negative operations, each thread, on arriving at a slot,
must check if its partner has already arrived. If so, it mixes its data
(antidata) with the antidata (data) of the corresponding operation.
If not, it leaves its information in the slot (a negative thread also
waits). As the program progresses, the data and antidata indices
may repeatedly pass each other, flipping the polarity of the queue.

(a) Initial state

(b) After several
negative denqueues

(c) After several
positive denqueues

Figure 2: Flipping the polarity of the MPDQ

Like the SPDQ, the MPDQ as presented suffers from a preemp-
tion window in which a positive thread obtains an index, identifies
its corresponding negative thread, but then stalls (e.g., due to pre-
emption), leaving the negative thread inappropriately blocked and
in a situation where no other thread can help it. The following sec-
tion addresses this concern.

4. LOCK FREEDOM
The SPDQ and MPDQ, as presented so far, are eminently us-

able: they are significantly faster than the M&S-based dual queue
of Scherer and Scott (rivaling the speed of the LCRQ), and pro-
vide fair, FIFO service to waiting threads. To make them fully
nonblocking, however, we must ensure that once a positive thread
has reserved its matching operation, the negative thread is able to
continue after a bounded number of steps by non-blocked threads.

For both algorithms we can close the preemption window by
treating FAI as a mere suggestion to positive threads. Before they
enqueue, they must verify that all smaller indices have already
been satisfied by searching backwards around the ring buffer. The
changes are smaller in the SPDQ case and (as we shall see in Sec. 5)
have almost no impact on performance. The changes are larger in
the MPDQ case, with a larger performance impact.

As established in the original CRQ algorithm, only dequeue op-
erations can change the index of a given ring slot, allowing it to be
reused for a later element in the logical sequence of data flowing



Figure 3: Performance on hot potato benchmark (second processor
engaged at 13 cores)

through the queue. Thus, a discontinuity in indices (noticeable in
Figure 2), indicates that a slot is ready and can be used to strictly
order operations. In the SPDQ, since the preemption window only
occurs when a positive thread dequeues from a negative ring, we
can limit code changes to this single case. For the MPDQ, how-
ever, we must strictly order all positive operations. Since, at any
point, the number of active threads is equal to the distance from the
discontinuity to the head index, all threads will eventually succeed.

5. RESULTS
We evaluated our algorithms on a machine running Fedora Core

19 Linux on two six-core, two-way hyperthreaded Intel Xeon E5-
2430 processors at 2.20GHz (i.e., with up to 24 hardware threads).
Each core has private L1 and L2 caches; the last-level cache (15 MB)
is shared by all cores of a given processor. As we increased the
number of threads, we used all cores on a given processor first, and
then all hyperthreads on that processor, before moving to the sec-
ond processor. Code was written in C++ and compiled using g++
4.8.2 at the -O3 optimization level.

To obtain as random an access pattern as possible without admit-
ting deadlock, we developed a hot potato test in which one thread,
at the start of the test, enqueues a special value, called the hot
potato. For the duration of the test, all threads randomly decide to
enqueue or dequeue. If a thread ever dequeues the hot potato, how-
ever, it waits a small amount of time (1µs) and then re-enqueues
it. During the wait, the queue has an opportunity to flip back and
forth between data and antidata. We run the test for several seconds
and report performance as throughput. For every queue, we ran five
tests and took the maximum run. No large deviations among tests
were noted for any of the queues.

In addition to the SPDQ and MPDQ of Sections 2 and 3, we con-
sider: SPDQ lock-free and MPDQ lock-free—the nonblocking
variants described in Section 4; S&S Dual Queue—the algorithm
of Scherer & Scott [6]; M&S Queue and LCRQ—the non-dual al-
gorithms of Michael & Scott [3] and of Morrison & Afek [4], with
an outer loop in which negative threads retry until they succeed; and
FC Dual—a best-effort implementation of a flat-combining dual
queue, using the methodology of Hendler et al. [1].

To obtain a sense of fundamental hardware limits, we also ran
a test in which all threads contend on a FAI counter, performing
updates as fast as they can.

As shown in Figure 3, our new algorithms have throughput sig-
nificantly higher than any existing dual queue. Qualitatively, their
scalability closely follows that of the LCRQ, across the full range
of thread counts, while additionally providing fairness for dequeu-

ing threads. The SPDQ is perhaps 20% slower than the LCRQ on
average, presumably because of the overhead of “flipping.” The
MPDQ is about 5% faster than the LCRQ on average, presumably
because it avoids the empty check and the contention caused by
retries in dequeuing threads.

All three algorithms (LCRQ, SPDQ, MPDQ) peak at 12 threads,
where there is maximum parallelism without incurring chip-cross-
ing overheads. The raw FAI test similarly scales well within a single
chip. Under some conditions, the new dual queues may even out-
perform the single integer FAI test: depending on the state of the
queue, active threads may spread their FAI operations over as many
as three different integers (head, tail, and the head or tail of the next
ring), distributing the bottleneck.

While the blocking versions of the SPDQ and MPDQ both out-
perform their lock-free variants, the performance hit is asymmetric.
The lock-free SPDQ is almost imperceptibly slower than the block-
ing version. We expect this happens because the window closing
code is only run rarely, when the queue’s polarity is negative and
many threads are waiting. The MPDQ takes a drastic hit in order
to close the window: every positive thread must verify its order
with respect to any other concurrent positive threads, adding sev-
eral cache misses to the critical path of the hot potato test.

Overall, our algorithms outperform existing dual queues by a
factor of 4–6× and scale much more aggressively. We encourage
their consideration for thread pools and other applications that de-
pend on fast inter-thread communication. We believe the basic,
“almost nonblocking” versions should suffice in almost any “real
world” application. Based on these tests, we recommend using the
MPDQ in any application in which dequeuing threads need to wait
for actual data. If one is unwilling to accept the possibility that a de-
queuing thread may wait longer than necessary if its corresponding
enqueuer is preempted at just the wrong point in time, the lock-free
version of the SPDQ still provides dramatically better performance
than the S&S dual queue.

6. REFERENCES
[1] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining

and the synchronization-parallelism tradeoff. In Proc. of the
22nd ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), Santorini, Greece, June 2010.

[2] J. Izraelevitz and M. L. Scott. Fast dual ring queues. Technical
Report 990, Computer Science Dept., Univ. of Rochester, Jan.
2014.

[3] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
Proc. of the 15th ACM Symp. on Principles of Distributed
Computing (PODC), Philadelphia, PA, May 1996.

[4] A. Morrison and Y. Afek. Fast concurrent queues for x86
processors. In Proc. of the 18th ACM Symp. on Principles and
Practice of Parallel Programming (PPoPP), Shenzhen, China,
Feb. 2013.

[5] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable
synchronous queues. Communications of the ACM,
52(5):100–108, May 2009.

[6] W. N. Scherer III and M. L. Scott. Nonblocking concurrent
data structures with condition synchronization. In Proc. of the
18th Intl. Symp. on Distributed Computing (DISC),
Amsterdam, The Netherlands, Oct. 2004.

[7] R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, Apr. 1986.


