
Brief Announcement: A Generic Construction for
Nonblocking Dual Containers∗

Joseph Izraelevitz and Michael L. Scott
Computer Science Department, University of Rochester

Rochester, NY 14627-0226, USA
{jhi1, scott}@cs.rochester.edu

ABSTRACT
A dual container has the property that when it is empty, the remove
method will insert an explicit reservation (“antidata”) into the con-
tainer, rather than returning an error flag. This convention gives the
container explicit control over the order in which pending requests
will be satisfied once data becomes available. The dual pattern also
allows the method’s caller to spin on a thread-local flag, avoiding
memory contention. In this paper we introduce a new nonblock-
ing construction that allows any nonblocking container for data to
be paired with almost any nonblocking container for antidata. This
construction provides a composite ordering discipline—e.g., it can
satisfy pending pops from a stack in FIFO order, or satisfy pending
dequeues in order of thread priority.

1. INTRODUCTION
Dual data structures [10] extend the definition of nonblocking

progress to partial methods—those that must wait for a precondi-
tion to hold. Informally, a partial method is replaced with a total
request method that either performs the original operation (if the
precondition holds) or else modifies the data structure in a way that
makes the caller’s interest in the precondition (its reservation) vis-
ible to subsequent operations. The data structure can then assume
full control over the order in which reservations should be satisfied
when data becomes available, and each waiting thread can spin on
a separate local flag, avoiding memory contention.

Scherer et al. [9] report that dual versions of the java.util.con-
current.SynchronousQueue improved the performance of task dis-
patch by as much as an order of magnitude. The Java library also in-
cludes a dual Exchanger class, in which operations of a single type
“match up.” Other synchronous queues include the flat combining
version of Hendler et al. [3] and the elimination-diffraction trees
of Afek et al. [1]. Recently [4], we have developed two fast dual
queues based on the LCRQ algorithm of Morrison and Afek [8].

To the best of our knowledge, all published nonblocking dual
containers have shared a common design pattern: at any given time,
the structure holds either data or reservations (“antidata”), depend-

∗This work was supported in part by NSF grants CCF-0963759,
CCF-1116055, CNS-1116109, CNS-1319417, and CCF-1337224,
and by support from the IBM Canada Centres for Advanced Study.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
PODC’14, July 15–18, 2014, Paris, France.
ACM 978-1-4503-2944-6/14/07
http://dx.doi.org/10.1145/2611462.2611510 .

ing on whether there have been more inserts or remove_requests
in the set of operations completed to date (in some cases the struc-
ture may also contain already-satisfied reservations, whose space
has yet to be reclaimed). As the balance of completed operations
changes over time, the structure “flips” back and forth between the
two kinds of contents.

This design strategy has two significant drawbacks. First, adapt-
ing an existing container to make it a dual structure is generally
nontrivial: not only must an operation that flips the structure lin-
earize with respect to all other operations; if it satisfies a reservation
it must both remove the reservation and unblock the waiting thread,
all atomically. Second, since the same structure is used to hold ei-
ther data or reservations, straightforward adaptations will apply the
same ordering discipline to each.

We introduce a new construction that eliminates these drawbacks
by joining a pair of subcontainers—one for data and one for anti-
data. Any existing concurrent container can be used for the data
side; on the antidata side, we require that the remove method be
partitioned into a peek method and a separate remove_conditional.
Full details can be found in a companion technical report [5].

2. THE GENERIC DUAL CONSTRUCTION
When a thread calls the public insert method of our outer, “joined”

container, we refer to its operation (and sometimes the thread itself)
as having positive polarity. When a thread calls the public remove
method, we refer to its operation (and sometimes the thread itself)
as having negative polarity. Positive and negative operations are
said to correspond when the former provides the datum for the lat-
ter.

We maintain the invariant that at any given linearization point, at
most one of the underlying subcontainers is nonempty. Thus, in a
positive operation, we may satisfy and remove an element from the
antidata subcontainer, allowing the thread that is waiting on that
element to return. Alternatively, we may verify that the antidata
subcontainer is empty and instead insert into the data subcontainer.
In a negative operation, we either remove and return an element
from the data subcontainer or verify that the data subcontainer is
empty and insert into the antidata subcontainer.

The outer container is said to have positive polarity when its data
subcontainer is nonempty; it has negative polarity when its antidata
subcontainer is nonempty. The only asymmetry—and it is a crucial
one—is that the public insert method is total, while remove is par-
tial: negative threads must wait, spinning on a local variable, until
a datum is available.

We assume a conventional API for the data subcontainer. The
insert method takes a datum (typically a pointer) as argument, and
returns no useful value. The remove method takes no argument; it
returns either a previously inserted datum or an EMPTY flag. We
assume that the data subcontainer maintains a total order <+ on its
elements, and remove returns the smallest.

For the antidata subcontainer, we assume a similar insert method,
which takes an antidatum as argument, and a similar total order<−

on elements. We require, however, that removal be partitioned into
a pair of methods. The peek method takes no argument; it returns
an antidatum and a special key. The key can then be passed to a
subsequent call to remove_conditional. The remove_conditional call
removes the key’s associated antidatum, so long as it its still the
smallest antidatum under <−. Between a peek that returns (v, k)
and the first remove_conditional that takes k as argument, we re-
quire that any intervening peek also return (v, k). At the time of
the original peek, v must be the smallest antidatum present under
<−. As it turns out, many nonblocking container objects can be
converted easily to support peek and remove_conditional.

To verify that one subcontainer is empty and insert into the other,
atomically, we introduce the concept of placeholders. Instead of
actually storing data or antidata in a subcontainer, we instead store
a pointer to a placeholder object. Each placeholder contains a da-
tum or an antidatum, together with a small amount of metadata.
Specifically, a placeholder can be in one of four states: unvalidated,
aborted, validated, and satisfied. An unvalidated placeholder in-
dicates an ongoing operation—the associated thread has begun to
check for emptiness of the opposite subcontainer, but has not yet
finished the check. An aborted placeholder indicates that the asso-
ciated thread took too long in its emptiness check, and any infor-
mation it has regarding the status of the opposite subcontainer may
be out of date. A validated placeholder indicates that the associ-
ated thread has completed its emptiness check successfully and has
inserted into the subcontainer of like polarity. Finally, a satisfied
placeholder indicates that the associated data or antidata has been
“mixed” with antidata or data from its corresponding operation.

On beginning a positive or negative operation on the outer con-
tainer, we first store an unvalidated placeholder in the subcontainer
of like polarity. We then check for emptiness of the opposite sub-
container by repeatedly removing elements. If we find a validated
placeholder, we mix it with our own data or antidata, transition it
from validated to satisfied, and return, leaving our own unvalidated
placeholder behind. If we find an unvalidated placeholder, we abort
it, indicating that it has been removed from its subcontainer and
that any information the owning thread may have had regarding the
polarity of the outer container is now out of date. Finally, if we dis-
cover that the opposite subcontainer is empty, we can go back to our
stored placeholder and attempt to validate it, completing our oper-
ation. If we find, however, that our placeholder has been aborted,
then some thread of opposite polarity has removed us from our sub-
container. If that left our subcontainer empty, the other thread may
have validated its own placeholder and returned successfully. We
must therefore retry our operation from the beginning. The possi-
bility that two threads, running more or less in tandem, may abort
each other’s placeholders—and both then need to retry—implies
that our construction is merely obstruction free.

One detail remains to be addressed. While a partial method of a
dual data structure may block when a precondition is not met, the
definitions of Scherer and Scott place strict limits on this block-
ing [10]. In particular, if a thread inserts a datum into a container,
and another thread is waiting for that datum, the waiting thread
must wake up “right away.” The description of our construction so
far admits the possibility that a positive thread will remove a place-
holder from the negative subcontainer and then wait an unbounded
length of time (e.g., due to preemption by the operating system)
before actually satisfying the placeholder and allowing its owner to
return. In the meantime, an unbounded number of other operations
(of either polarity) may complete.

We term this issue the preemption window. We close it with the
peek and remove_conditional methods. A positive thread T , instead
of simply removing a placeholder from the negative subcontainer,
first peeks at the head placeholder and satisfies or aborts it. Only
then does it remove that placeholder from the subcontainer. Any
other thread that discovers a satisfied or aborted placeholder can
help T ’s operation by removing the placeholder for it. By updating
placeholders while they are still in the negative subcontainer, we
order all waiting threads, guaranteeing that they are able to return
without any further delay.

3. CORRECTNESS
Detailed proofs of safety and liveness can be found in a compan-

ion technical report [5]. We assume an API, suggested by Scherer
& Scott [10], that divides remove into separate remove_request and
remove_followup methods. The first of these returns a special ticket
value; the latter takes this ticket as argument and succeeds or fails
depending on whether a matching insert has yet occurred in the ob-
ject’s history. We term the sequential object that exports this API a
two-order container (TOC). The key difference between a conven-
tional (total) concurrent container and a dual container is that spins
on remove_followup can be entirely thread-local, with no impact on
the contention observed by other threads.

Using the divided API, we establish the following:

THEOREM 1 (SAFETY). Any realizable history of the generic
dual container that comprises only completed operations is equiv-
alent to a legal history of the TOC.

THEOREM 2 (LIVENESS). If both subcontainers of the generic
dual container are correct and nonblocking, then the generic dual
container itself is obstruction free.

THEOREM 3 (IMMEDIATE WAKEUP). If a threadA performs
an unsuccessful remove_followup operation, uA, and some other
threadB performs a successful remove_followup operation, sB, be-
tween A’s remove_request, rA, and uA, then rB <− rA or iB

linearizes before rA, where iB is the insert operation that matches
rB. In other words, if rA and rB are in the antidata subcontainer
at the same time, and if rA <− rB, then it is not possible for
A to experience an unsuccessful remove_followup after B has ex-
perienced a successful remove_followup. Even more informally, a
waiting thread is guaranteed to wake up immediately after the cor-
responding insert.

THEOREM 4 (CONTENTION FREEDOM). An unsuccessful re-
move_followup() operation performs no remote memory accesses.

4. EXPERIMENTAL RESULTS
We implemented the generic dual, all subcontainers, and com-

parison structures in C++ 11. All code was compiled using gcc
4.8.2 at the -O3 optimization level, and run on Fedora Core 19
Linux. Our hardware was a machine with two six-core, two-way
hyperthreaded Intel Xeon E5-2430 processors at 2.20 GHz, sup-
porting up to 24 hardware threads. The L3 cache (15 MB) is shared
by all cores of a given processor; L1 and L2 caches are per-core pri-
vate. To maximize cache locality, we pinned each thread to its core,
filling a processor first using each core and then each hyperthread
before moving to the second processor.

We measure throughput using a hot potato microbenchmark [4].
This test, based on the children’s game, allows each thread to ac-
cess a dual structure randomly, choosing on each iteration whether
to insert or remove an element. However, at the beginning of the
test, one thread inserts the hot potato, a special data value, into

Figure 1: Performance on hot potato benchmark (second processor engaged at 13 cores)

the container. If any thread removes the hot potato, it waits a set
amount of time (1µs) before reinserting the value then continues
to randomly operate on the container. The reinsertion convention
eliminates the possibility of deadlock. We ran each test for two
seconds, and report the maximum throughput of five runs.

We test several combinations of subcontainers for our generic
dual container (GDC), with and without the peek operation to close
the preemption window: LCRQ(+), Treiber stack(), blocking:
the fastest combination; uses Morrison and Afek’s LCRQ [8] for
data and the Treiber stack [11] for antidata. LCRQ(+), Treiber
stack(), nonblocking: A comparison to demonstrate the impact
of closing the preemption window. LCRQ(+), M&S Queue [7](),
blocking: A FIFO dual queue, suitable for direct comparison to the
MPDQ, SPDQ, or S&S dual queue. LCRQ(+), M&S Queue(),
nonblocking: Another comparison to demonstrate the impact of
closing the preemption window, but with a more efficient peek than
in the Treiber stack. M&S Queue(+), M&S Queue(), nonblock-
ing: demonstrates the baseline cost of our construction when com-
pared directly to the S&S dual queue. LCRQ(+), H&M Ordered
List(), blocking: orders waiting threads based on priority, using
the lock-free ordered list of Harris and Michael [2, 6].

For comparison purposes, we also test existing nonblocking dual
containers: MPDQ: a fast but blocking dual queue derived from the
LCRQ [4]. SPDQ lock-free: an alternative, lock-free derivative of
the LCRQ [4]. S&S Dual Queue: the dual queue of Scherer &
Scott [10]. FC Dual Queue: a flat-combining dual queue inspired
by the work of Hendler et al. [3, 4].

With the LCRQ as the data subcontainer, and ignoring the pre-
emption window, our generic dual outperforms traditional dual struc-
tures, including the S&S dual queue and the flat combining queue.
Clearly, a fast base algorithm matters enormously. The antidata
subcontainer also matters: using the Treiber stack over the M&S
queue provides a consistent 25% speedup in the blocking case.

Closing the preemption window incurs a significant performance
cost, especially when crossing the boundary between chips. With
all threads competing to satisfy the same peeked-at placeholder, the
cache line tends to bounce between processors. Additional con-
tention arises when the peek modification requires internal caching
of values (as in the Treiber stack). If all one wants in practice is a
fast shared buffer, the “not quite nonblocking” version of our con-
struction (with the preemption window intact) will deliver superior
performance. Similarly, if mixed ordering disciplines are not re-
quired, the (non-generic) MPDQ and SPDQ will provide very fast
FIFO handling of both data and antidata.

5. REFERENCES
[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable

producer-consumer pools based on elimination-diffraction
trees. In 16th Intl. Euro-Par Conf. on Parallel Processing,
Ischia, Italy, Aug.–Sep. 2010.

[2] T. L. Harris. A pragmatic implementation of non-blocking
linked-lists. In 15th Intl. Symp. on Distributed Computing
(DISC), Lisbon, Portugal, Oct. 2001.

[3] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Scalable
flat-combining based synchronous queues. In 24th Intl. Conf.
on Distributed Computing (DISC), Sept. 2010.

[4] J. Izraelevitz and M. L. Scott. Fast dual ring queues (brief
announcement). In 26th ACM Symp. on Parallel Algorithms
and Architectures (SPAA), Prague, Czech Republic, June
2014. Expanded version available as TR 990, Dept. of
Computer Science, Univ. of Rochester, Jan. 2014.

[5] J. Izraelevitz and M. L. Scott. A generic construction for
nonblocking dual containers. Technical Report TR 992,
Dept. of Computer Science, Univ. of Rochester, May 2014.

[6] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In 14th ACM Symp. on Parallel
Algorithms and Architectures (SPAA), Winnipeg, MB,
Canada, Aug. 2002.

[7] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
15th ACM Symp. on Principles of Distributed Computing
(PODC), Philadelphia, PA, May 1996.

[8] A. Morrison and Y. Afek. Fast concurrent queues for x86
processors. In 18th ACM Symp. on Principles and Practice of
Parallel Programming (PPoPP), Shenzhen, China, Feb.
2013.

[9] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable
synchronous queues. Communications of the ACM,
52(5):100–108, May 2009.

[10] W. N. Scherer III and M. L. Scott. Nonblocking concurrent
data structures with condition synchronization. In 18th Intl.
Symp. on Distributed Computing (DISC), Amsterdam, The
Netherlands, Oct. 2004.

[11] R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, Apr. 1986.

