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Abstract
A data race detector aids in the debugging of parallel pro-
grams, and may help to ensure determinism in a language
that also excludes synchronization races. Most existing race
detectors use shadow memory to track references to shared
data on the fly. An attractive alternative, particularly in lan-
guages with constrained, split-merge parallelism, is to record
access sets in each concurrent task, and intersect these sets at
merge points. In comparison to shadow-memory based race
detectors, access-set based detection has the potential to sig-
nificantly improve locality and reduce per-access overhead.

We have implemented an access-set based data race de-
tector, TARDIS, in the context of a deterministic parallel
Ruby extension. TARDIS runs in parallel. For our determin-
istic language, it is also precise: it finds all data races for
a given program on a given input. On a set of six paral-
lel benchmarks, TARDIS is slightly slower than the state-
of-the-art SPD3 shadow-memory based race detector in two
cases, but faster in the other four—by as much as 3.75×.
Its memory consumption is also comparable to—and often
better than—that of SPD3. Given these encouraging results,
we suggest directions for future development of access-set
based data race detectors.

1. Introduction
Data races are increasingly seen as bugs in parallel pro-
grams, especially among authors who favor determinis-
tic parallel programming. Data race detectors are thus in-
creasingly popular tools. Many existing detectors track the
happens-before relationship, looking for unordered con-
flicting accesses [6, 7, 9, 14, 15]. Some track lock sets,
looking for conflicting accesses not covered by a common
lock [21, 25]. Still others take a hybrid approach [16, 23, 24].

Most existing detectors assume a set of threads that re-
mains largely static over the history of the program. Such
detectors can be used for fine-grain task-based programs, but
only at the risk of possible false negatives: data races may be
missed if they occur between tasks that happen, in a given
execution, to be performed by the same “worker” thread.
Conversely, lock-set–based detectors may suffer from false
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positives: they may announce a potential data race when
conflicting accesses share no common lock, even if pro-
gram logic ensures through other means that the accesses
can never occur in parallel.

Both false negatives and false positives may be acceptable
in a detector intended for debugging of complex programs.
Our interest in data race detection, however, is rooted in dy-
namic (scripting) languages, where ease of programming is
a central goal. We believe determinism to be particularly ap-
pealing in such languages. Toward that end, we are explor-
ing “split-merge” extensions to Ruby (cobegin, parallel it-
erators) that facilitate the creation of numerous concurrent
tasks. We insist that these tasks be independent of one an-
other. In principle, independence can be guaranteed by the
type system [4] or by explicit assignment of “ownership”
[10], but we believe the resulting complexity to be inappro-
priate for scripting—hence the desire for dynamic data race
detection.

To ensure program correctness with minimal burden on
the programmer, a data race detector must be precise: it
should identify all (and only) those conflicting accesses that
are logically concurrent (unordered by happens-before) in a
given program execution—even if those accesses occur in
the same worker thread. The Nondeterminator detector for
Cilk (without locks) meets this requirement [8], but runs se-
quentially (an extension to accommodate locks is also se-
quential [5]). Mellor-Crummey’s offset-span labeling pro-
vides a space-efficient alternative to vector clocks for fine-
grain split-merge programs, but was also implemented se-
quentially [13]. The state of the art would appear to be the
Habanero Java SPD3 detector [18], which runs in parallel
and provides precise data race detection for arbitrary split-
merge (async-finish) programs.

Existing race detectors typically use shadow memory to
store metadata. On each data access, the detector consults
the associated shadow memory to reason about concurrency
between conflicting operations. Unfortunately, metadata ac-
cesses must generally be synchronized to protect against
concurrent access and dynamic resizing of objects. Even
when tasks access disjoint sets of fields, this synchroniza-
tion tends to induce cache misses, and may limit scalability.

In this paper, we propose a new race detector, TARDIS,
that can outperform shadow-memory–based detectors on
programs with split-merge task graphs. As each task exe-
cutes, TARDIS records its reads and writes in a local ac-
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cess set. At a task merge point, access sets from concurrent
tasks are intersected to find conflicting operations, and then
merged (union-ed) and retained for subsequent comparison
to other tasks from the same or surrounding concurrent con-
structs. Given that tasks are properly nested, the total num-
ber of intersection and merge operations is guaranteed to be
linear (rather than quadratic) in the number of tasks in the
program.

Ronsse et al. [19, 20] propose a trace/replay-based race
detector for general, fork-join programs. It reasons about
concurrency among thread traces by tracking happens-
before order. In TARDIS, we observe that split-merge style
parallelism makes trace (access-set)–based race detection
significantly more attractive than it is in the general case,
raising the possibility of sound, complete, and (relatively)
inexpensive race detection in support of guaranteed deter-
minism.

If we consider the average time to access and update
shadow memory to be Csm, a program with N accesses will
incur detector overhead of NCsm. An access-set–based de-
tector performs a smaller amount of (entirely local) work
on each access, and postpones the detection of conflicts to
the end of the current task. It merges accesses to the same
location within each access set, so the end-of-task work is
proportional to the memory footprint of the task, rather than
the number of its dynamic accesses. If a task accesses K lo-
cations (object fields), there will be K entries in its access
set. Suppose the average time to insert an item in an access
set is Cas, and the time to check a location for conflicts is
Cck. Then the total access-set–based detector overhead will
be NCas + KCck. In general, it seems reasonable to ex-
pect N >> K and Cas < Csm, which suggests that access-
set–based detection may be significantly faster than shadow-
memory–based detection. Worst case, if there are T tasks, M
memory locations in the program and K ≈ M , total space
for access-set–based data race detection will be O(TM),
versus O(M) for shadow-memory–based detection. In prac-
tice, however, it again seems reasonable to expect that a set
of concurrent tasks will, among them, touch much less than
all of memory, so TK < M —maybe even TK << M —in
which case access-set–based detection may be more space
efficient than shadow memory.

2. Parallel Extensions for Ruby
We have prototyped TARDIS as part of a parallel exten-
sion of Ruby, implemented in the JRuby [1] virtual machine.
JRuby in turn is written in Java, and has scalable multithread
performance. Our extension provides a built-in thread pool
and a Cilk [3]-style work-stealing scheduler. Tasks are cre-
ated using constructs such as co-begin (co) and parallel iter-
ators (.all), examples of which can be seen in Figure 1. The
co construct accepts an arbitrary list of lambda expressions.
The .all method is reminiscent of the built-in .each, but
does not imply any order of execution. We provide a built-

1 a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

2 b = Array.new (10)

3 c = Array.new (10)

4

5 co → { a.all { |i| b[i] = f(a[i]) } },

6 → { a.all { |i| c[i] = g(a[i]) } }

Figure 1. Example code segment for the two parallel con-
structs

in implementation of .all for ranges and arrays; additional
implementations can be defined for other collection types.

Both co and .all can be nested. Tasks from the same
construct are semantically concurrent, and may run in any
order or in parallel, depending on the workload and the un-
derlying system. When all tasks of a given construct have
completed, execution will continue in the surrounding con-
text. The result is a properly nested, split-merge tree of tasks.

Because our constructs are free by design of synchroniza-
tion races, we know that if all concurrent tasks are indepen-
dent (i.e., free of data races), programs will satisfy the strong
“Singleton” definition of deterministic execution [12].

Figure 1 shows an example code segment for both par-
allel constructs. If f() and g() are pure functions, we can
safely assert that all tasks in this example will be mutually
independent. In the co construct at Line 5, two concurrent
tasks are started. Each task then uses a call to .all to ini-
tialize an array in parallel. Execution of the original task (the
main program) waits for the two branches of the co to com-
plete before continuing. The thread in each branch in turn
waits for all instances of .all.

3. TARDIS Design
3.1 Data Structure for Access Sets
Because objects in Ruby may move due to dynamic resiz-
ing or compacting garbage collection, conflicting language-
level references cannot reasonably be detected by address.
Each object, however, has a unique, unchanging id, assigned
when the object is created. We use 〈id, field no〉 pairs to
identify accessed locations.

Because the number of memory operations issued by
tasks varies dramatically, we use an adaptive, hybrid imple-
mentation of access sets to balance performance and mem-
ory consumption. As illustrated in Figure 2, when a task
starts, two fix-sized lists are allocated for it, one to store
reads, the other writes. Accesses are recorded sequentially
into the two lists. If a task executes “too many” accesses,
however, the lists may overflow, at which point we convert
them to hash tables. Each hash table implements a mapping
from object ids to bitmaps containing a read bit and a write
bit for each field. Generally speaking, sequential lists require
less work on each access—a simple list append. Once we
switch to the hash table, each access requires us to compute
the hash function, search for the matching bucket, and index
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<id1, 1> 
<id1, 2> 
<id1, 1> 
<id2, 10> 
…

<id1, 1> 
<id1, 2> 
<id3, 4> 
<id2, 8> 
…

id1 

id2 

id3 Keys 

 

Hash 

function 

 

Buckets 

 

 

Bitmap C0000000   C0000000   00000000   00000000 … 

Read list Write list 

Hexadecimal 

Rd-bit:0-31 Wrt-bit:0-31 Rd-bit:32-63 Wrt-bit:32-63 

List representation Hash table and bitmap representation 

Figure 2. TARDIS’s hybrid representation of access sets.
An access set is started with list representation (left) and may
convert to hash table representation (right). The lower part
of the figure shows an example of the bitmap that represents
object fields.

into the bitmap. Hash tables are more space efficient, how-
ever, because they eliminate duplicate entries.

Per-object bitmaps provide a compact representation of
field access information, and facilitate fast intersection and
union operations. For simple objects, a single 64-bit word
can cover reads and writes for 32 fields. Arrays use expand-
able bitmaps with an optional non-zero base offset. Tasks
that access a dense subset of an array will capture their ac-
cesses succinctly.

Some systems (e.g. SigRace [14]) have used Bloom filter
“signatures” to capture access sets, but these sacrifice preci-
sion. We considered using them as an initial heuristic, allow-
ing us to avoid intersecting actual access sets when their sig-
natures intersected without conflict. Experiments indicated,
however, that the heuristic was almost never useful: sig-
nature creation increases per-access instrumentation costs,
since full access sets are needed as a backup (to rule out
false positives). Moreover, signature intersections are sig-
nificantly cheaper than full set intersections only when the
access sets are large. But large access sets are precisely the
case in which signatures saturate, and require the backup in-
tersection anyway.

3.2 Race Detection Algorithm
In TARDIS, each task T maintains the following fields for
race detection:

• local set: an access set containing the union of the access
sets of completed child tasks of T
• current set: an access set containing all the accesses

performed so far by T itself
• parent: a reference to T’s parent task

As shown in algorithm 1, when n child tasks are spawned
by Tp at a splitting point, two new access sets (Tci.current set
and Tci.local set) are created and assigned to each child task

Tci. At the same time, Tci.parent is set to Tp so that Tci can
find its merge-back point at the end of its execution.

Algorithm 1 On Task Split
Require: parent task Tp, number of child tasks n

1: for i = 1→ n do
2: Tci ← new task
3: Tci.current set← ∅
4: Tci.local set← ∅
5: Tci.parent← Tp

6: end for

After the split operation, the parent task Tp waits for all
child tasks to terminate. Algorithm 2 shows the algorithm
performed by TARDIS when each child task Tc runs to its
merge point. Since children may run in parallel, the algo-
rithm must synchronize on Tp (Line 2). As an optimization,
tasks executed by a single worker thread may first be merged
locally, without synchronization, and then synchronously
merged into Tp.

In Algorithm 2, we use Tp.local set to store all the mem-
ory locations accessed by all the concurrent siblings that
joined back before the current task Tc. Consequently, in-
tersection is only performed between Tc.current set and
Tp.local set. After that, Tc.current set is merged into
Tp.local set so that following tasks can be processed in a
similar fashion. At the end of Algorithm 2, Tp.local set is
merged into Tp.current set if Tc is the last child task merg-
ing back. Tp.local set is also cleared so that it can be reused
at the next merge point.

Algorithm 2 On Task Merge
Require: child task Tc

1: Tp ← Tc.parent
2: sync on Tp

3: if Tp.local set ∩ Tc.current set 6= ∅ then
4: Report a data race
5: end if
6: Tp.local set = Tp.local set ∪ Tc.current set
7: if Tc is the last task to join then
8: Tp.current set = Tp.current set ∪ Tp.local set
9: Tp.local set← ∅

10: end if
11: end sync

The local set for each task is always allocated as a hash
set. As a result, each intersection / merge in the algorithm
is performed either over a hash set and a list set, or over
two hash sets. In either case, each entry in the set has a read
bit and a write bit. The intersection operation attempts to
confirm that whenever an 〈id, field no〉 pair is found in both
sets, only the read bits are set.

Whenever task T reads or writes a memory location, we
insert a new 〈id, field no〉 pair into (the current implementa-
tion of) its access set, as shown in Algorithm 3.
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Algorithm 3 On Read/Write
Require: Object id, field field no, operation type t (read-

/write), task T
1: T.current set.add(〈id, field no〉, t)

Table 1. Benchmarks used for evaluation
Benchmark Source Input

Blackscholes PARSEC simlarge
Swaptions PARSEC simsmall

Series Java Grande A (small)
Crypt Java Grande A (small)

SparseMatMult Java Grande A (small)
SOR Java Grande A (small)

4. Performance Evaluation
As there are no parallel and computing intensive benchmarks
available for Ruby at present, we manually translated 6 ap-
plications from standard parallel benchmark suites (see Ta-
ble 1). The Blackscholes and Swaptions programs are orig-
inally from the PRASEC suite [2], where they were written
in C. The Series, Crypt, SparseMatMult, and SOR programs
are originally from the Java Grande Forum (JGF) suite [22].
All six Ruby versions were parallelized using the constructs
introduced in section 2.

We have implemented our data race detector and paral-
lel library in the JRuby 1.6.7.2 virtual machine, which in
turn runs on a 64-bit OpenJDK with version 1.8. Our exper-
iments were conducted on an Intel Xeon E5649 system with
2 processors, 6 cores per processor, 2 threads per core (i.e.,
12 cores and 24 threads total), and 12 GB of memory, run-
ning Linux 2.6.34. We also constructed best-effort reimple-
mentations of the Cilk Nondeterminator [8] and SPD3 [18]
race detectors, based on the descriptions in the respective
papers. Each object in SPD3 shadow space is protected by
a sequence lock [11] to accommodate concurrent access and
potential resizing.

Figure 3 shows relative speeds for Nondeterminator,
SPD3, and TARDIS. All data were collected with a max-
imum JVM heap size of 4 GB. 1024 slots are allocated for
both reads and writes in the list-based representation of ac-
cess sets. The baseline for speed measurement is the (par-
allelized) Ruby version of each benchmark, running on a
single thread with race detection turned off. Each data point
represents the average of 5 runs. Since Nondeterminator is a
sequential detector, it is reported only at 1 thread.

Overall, TARDIS outperforms SPD3 by substantial mar-
gins in three applications, and by modest amounts in an-
other. It is slightly slower in the other two. The large wins
in Blackscholes, Crypt and SparseMatMult stem from tasks
with relatively small memory footprints, but large numbers
of repeat accesses to the same locations. SPD3 allocates 3
nodes for each task in its Dynamic Program Structure Tree

(DPST), and performs relatively more expensive tree opera-
tions for most of the memory accesses. TARDIS reduces the
instrumentation overhead on each access, and detects con-
flicts using a subsequent per-location pass.

In Series and Swaptions, TARDIS is slightly slower than
SPD3. Profiling reveals a very small number of memory ac-
cesses per task in Series and a very large number of mem-
ory locations per task in Swaptions, neither of which offers
an opportunity to optimize repeated access. In both appli-
cations the time spent initializing and managing access sets
dominates the run time of our algorithm. Nondeterminator
outperforms TARDIS at one thread in SparseMatMult and
Series, but is unable to scale up.

Peak memory consumption of all benchmarks for TARDIS
and SPD3 appears in Figure 4. TARDIS consumes more
memory than SPD3 in Swaptions, but substantially less in
Blackscholes, Crypt, and SparseMatMult. The large size of
shadow memory and the DPST in SPD3 may contribute to
the performance advantage of TARDIS, due to cache pres-
sure and the overhead of garbage collection.

5. Conclusions and Future Work
In this paper, we introduced TARDIS, a task-level access-
set–based data race detector for parallel dynamic languages.
In our experiments, TARDIS generates promising results
relative to comparable state-of-the-art detectors. Relative
to uninstrumented execution, TARDIS introduces a typical
slowdown of approximately 2× and a maximum of less than
5×. While this is probably still too slow to enable in pro-
duction runs, it is eminently reasonable during testing and
debugging.

Topics for future work include:

More generalized structured parallelism. TARDIS cur-
rently works only in programs whose tasks are properly
nested. For more general fork / join programs we may
lose the guarantee of a linear number of set intersections
and unions, but overhead may still be reasonable in prac-
tice.

Support commutative atomic operations. Our current par-
allel JRuby extension lacks constructs that allow explicit
synchronization among tasks. One appealing route that
would still preserve determinism is to allow atomic ex-
ecution, within tasks, of operations that conflict inter-
nally, but commute at the level of program semantics.
Extensions to TARDIS would be required to detect races
among such operations.

Out-of-band (parallel) data race detection. Because it re-
lies on access sets, data race detection in TARDIS can be
performed asynchronously with respect to a program’s
normal execution. In our current implementation, detec-
tion (merging of access sets) is synchronous, and may be
on a program’s critical path. In principle, we could move
set intersection and union operations to a separate thread,
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Figure 3. Relative speed of uninstrumented parallel extension, Nondeterminator, SPD3, and TARDIS. “Benchmark Name–
x” indicates a benchmark run with x threads. All speed results are relative to the 1-thread uninstrumented case, which is
represented by the dashed line in the figure (we omit its bars). Performance information for Nondeterminator is reported only
at 1 thread, since the data race detector is sequential.

Figure 4. Maximum memory usage of TARDIS and SPD3 for all benchmarks. “Benchmark-x” indicates a benchmark run
with x threads.
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potentially shortening the critical path. Such an option is
not available to shadow-memory–based detectors.

More space-efficient access-set representation. Experi-
ments have shown that TARDIS’s performance is sen-
sitive to the memory consumption of access sets. We
plan to explore more space-efficient set representations,
as well as adaptive techniques more sophisticated than
simply switching to a hash table on list overflow.

Possible hardware support. Several groups have investi-
gated hardware support for lock-set [25] and happens-
before [6, 14, 17]–based data race detection. We hope to
explore similar optimizations for access-set–based detec-
tion.
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