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Abstract
Speculation is a well-known means of increasing parallelism
among concurrent methods that are usually but not always indepen-
dent. Traditional nonblocking data structures employ a particularly
restrictive form of speculation. Software transactional memory
(STM) systems employ a much more general—though typically
blocking—form, and there is a wealth of options in between.

Using several different concurrent data structures as examples,
we show that manual addition of speculation to traditional lock-
based code can lead to significant performance improvements. Suc-
cessful speculation requires careful consideration of profitability,
and of how and when to validate consistency. Unfortunately, it also
requires substantial modifications to code structure and a deep un-
derstanding of the memory model. These latter requirements make
it difficult to use in its purely manual form, even for expert pro-
grammers. To simplify the process, we present a compiler tool,
CSpec, that automatically generates speculative code from base-
line lock-based code with user annotations. Compiler-aided manual
speculation keeps the original code structure for better readability
and maintenance, while providing the flexibility to chose specu-
lation and validation strategies. Experiments on UltraSPARC and
x86 platforms demonstrate that with a small number annotations
added to lock-based code, CSpec can generate speculative code that
matches the performance of best-effort hand-written versions.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Code generation

General Terms Algorithm, Performance

Keywords Manual Speculation, Design Pattern, Concurrent Data
Structure, Compiler Assistance

1. Introduction
Concurrent data structures play a key role in multithreaded pro-
gramming. Typical implementations use locks to ensure the atomic-
ity of method invocations. Locks are often overly pessimistic: they
prevent threads from executing at the same time even if their op-
erations don’t actually conflict. Finer grain locking can reduce un-
necessary serialization at the expense of additional acquire and re-
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lease operations. For data that are often read but not written, reader-
writer locks allow non-mutating methods to run in parallel. In im-
portant cases, RCU [17] may additionally eliminate all or most of
the overhead of reader synchronization. Even so, the typical con-
current data structure embodies an explicit compromise between,
on the one hand, the overhead of acquiring and releasing extra locks
and, on the other hand, the loss of potential concurrency when log-
ically nonconflicting method calls acquire the same lock.

In a different vein, nonblocking concurrent data structures are
inherently optimistic. Their dynamic method invocations always
include an instruction that constitutes their linearization point. Ev-
erything prior to the linearization point is (speculative) prepara-
tion, and can be repeated without compromising the correctness of
other invocations. Everything subsequent to the linearization point
is “cleanup,” and can typically be performed by any thread.

The usual motivation for nonblocking data structures is to avoid
performance anomalies when a lock-holding thread is preempted
or stalled. For certain important (typically simple) data structures,
average-case performance may also improve: in the absence of
conflicts (and consequent misspeculation), the reduction in serial
work may outweigh the increase in (non-serial) preparation and
cleanup work. Unfortunately, for more complex data structures the
tradeoff tends to go the other way and, in any event, the creation of
efficient nonblocking algorithms is notoriously difficult.

Transactional memory, by contrast, places the emphasis on ease
of programming. Few implementations are nonblocking, but most
are optimistic. With hardware support, TM may provide perfor-
mance as good as—or better than—that of the best-tuned fine-grain
locking. For application code, written by non-experts, even soft-
ware TM (STM) may outperform coarse-grain locking. For concur-
rent data structures in libraries, however, STM seems unlikely ever
to be fast enough to supplant lock-based code written by experts.

But what about speculation? Work by Bronson et al. [3] demon-
strates that hand-written, data structure-specific speculation can
provide a significant performance advantage over traditional pes-
simistic alternatives. Specifically, the authors describe a relaxed-
balance speculative AVL tree that outperforms the java.util.con-
current.ConcurrentSkipListMap by 32–39%. Their code em-
ploys a variety of highly clever optimizations. While fast, it is very
complex, and provides little guidance for the construction of other
hand-written speculative data structures.

Our work attempts to regularize the notion of manual specula-
tion (MSpec). Specifically, we characterize MSpec as a design pat-
tern that transforms traditional, pessimistic code into optimistic,
speculative code by addressing three key questions: (1) Which
work should be moved out of a critical section and executed spec-
ulatively? (2) How does the remaining critical section validate that
the speculative work was correct? (3) How do we avoid erroneous
behavior when speculative code sees inconsistent data?

Using MSpec, we have constructed speculative versions of four
example data structures: equivalence sets, cuckoo hash tables, Blink-
trees, and a linear bitmap allocator. Our implementations outper-
form not only STM, but also pessimistic code with similar or finer



granularity locking. The advantage typically comes both from re-
ducing the overall number of atomic (read-modify-write) instruc-
tions and from moving instructions and cache misses out of critical
sections (i.e., off the critical path) and into speculative computa-
tion. We note that unlike STM, MSpec does not require locking
and validation to be performed at identical granularities.

In developing MSpec, our intent was to provide a useful tool
for the construction (by experts) of concurrent data structures. We
never expected it to be easy to use, but we expected the princi-
pal challenges to revolve around understanding the (data structure-
specific) performance bottlenecks and speculation opportunities.
As it turned out, some of the more tedious, mechanical aspects of
MSpec were equally or more problematic. First, the partitioning of
code into speculative and nonspeculative parts, and the mix of vali-
dation code and normal code in the speculative part, breaks natural
control flows, making the source code difficult to read, understand,
and debug. Second, since the original locking code must gener-
ally be preserved as a fallback when speculation fails, the program-
mer must maintain two versions, applying updates and bug fixes
to both. Third, because naive speculation introduces data races, the
programmer must deeply understand the memory model, and pep-
per the code with atomic annotations and/or memory fences.

To address these “mechanical” challenges, we have developed
a set of program annotations and a source-to-source translator,
CSpec, that generates speculative code automatically from anno-
tated source. CSpec allows the programmer to continue to work on
the (lightly annotated) original code. It eliminates the possibility of
version drift between speculative and nonspeculative versions, and
automates the insertion of fences to eliminate data races.

As a motivating example, we present our hand-constructed
(MSpec) version of equivalence sets in Section 2, with perfor-
mance results and implementation experience. We then turn to the
CSpec language extensions and source-to-source translator in Sec-
tion 3, and to guidelines for using these in Section 4. Additional
case studies appear in Section 5, with performance results for both
MSpec and CSpec versions. Our principal conclusion, discussed
in Section 6, is that compiler-assisted manual speculation can be
highly attractive option. While more difficult to use than STM or
coarse-grain locking, it is substantially easier than either fully man-
ual speculation or the creation of ad-hoc, data structure-specific
nonblocking or fine-grain locking alternatives.

2. Motivating Example: Equivalence Sets
An instance of the data structure for equivalence sets partitions
some universe of elements into a collection of disjoint sets, where
the elements of a given set have some property in common. For
illustrative purposes, the code of Figure 1 envisions sets of integers,
each represented by a sorted doubly-linked list. Two methods are
shown. The Sum method iterates over a specified set and returns
some aggregate result. The Move method moves an integer from
one set to another. We have included a set field in each element to
support a constant-time MemberOf method (not shown).

2.1 Implementation Possibilities
A conventional lock-based implementation of equivalence sets is
intuitive and straightforward: each method comprises a single crit-
ical section. Code with a single lock per set (lines 1–43 in Fig-
ure 1) provides a good balance between coding efficiency and per-
formance. It is only slightly more complicated than a scheme in
which all sets share a single global lock—the critical section in
Move must acquire two locks (in canonical order, to avoid dead-
lock at line 25)—but scalability and throughput are significantly
better. Given the use of doubly-linked lists, we do not see any hope
for an efficient nonblocking implementation on machines with only
single-word (CAS or LL/SC) atomic primitives.

STM can of course be used to create an optimistic version of
the code, simply by replacing critical sections with transactions.
The resulting performance (with the GCC default STM system—
see Figures 2 and 3) is sometimes better than with a global lock,
but not dramatically or uniformly so. Even a specialized STM with
“elastic transactions” [7], which provide optimization for the search
phase in Move, still lags behind per-set locking. STM incurs non-
trivial overhead to initialize a transaction and to inspect and mod-
ify metadata on each shared memory access. Additional overheads
stem from two major lost opportunities to exploit application se-
mantics. First, to avoid proceeding on the basis on an inconsistent
view of memory, STM systems typically validate that view on ev-
ery shared memory read, even when the programmer may know
that inconsistency is harmless. And while heuristics may reduce the
cost of validation in many cases, the fallback typically takes time
proportional to the number of locations read. Second, STM systems
for unmanaged languages typically perform locking based on hash-
based “slices” of memory [6], which almost never coincide with
program-level objects. In our equivalence set example, the commit
code for GCC STM must validate all head and next pointers read
in the loop in Sum, and acquires 6 locks (one per pointer) for write
back in Move. Hand-written code can do much better.

2.2 A Manual Speculative Implementation
Our MSpec version of Sum exploits the fact that the method is read
only, that it traverses only one set, and that nodes encountered in
that traversal will never have garbage next pointers, even if moved
to another set. These observations allow us to write an obstruction-
free [10] MSpecSum that validates using a single version number in
each set. Because locking and validation are performed at the same
granularity, we combine the lock and version number into a single
sequence lock field (lck.v) [14]. If we iterate over the entire set
without observing a change in this field, we know that we have seen
a consistent snapshot. As in most STM systems, failed validation
aborts the loop and starts over (line 67).

The baseline critical section in Move begins by finding an ap-
propriate (sorted) position in the target list s (lines 27–32). The
element e is then removed from its original list (lines 34–35) and
inserted into s at the chosen position (lines 37–41). The position-
finding part of Move is read only, so it can be performed specula-
tively in MSpecMove—that is, before entering the critical section.
The validation at line 83 ensures that the pnext element remains
in the same set and no new element has been inserted between
pprev and pnext since line 81, so that it is correct to insert e be-
fore pnext. The other validation, at line 79, ensures that the while
loop continues to traverse the same set, and will therefore termi-
nate. A set’s version number is increased both before and after a
modification. The low bit functions as a lock: an odd version num-
ber indicates that an update is in process, preventing other threads
from starting new speculations. Version number increments occur
implicitly in lock acquisition and release.

Under the C++11 memory model, any class field that is read
during speculation and written in a critical section (in our case,
three fields of Element) must be declared as an atomic variable
to avoid data races. For reads and writes to atomics inside the crit-
ical section, since locks already guarantee exclusive modification,
we can specify relaxed memory order for best performance. For
sequence-lock based speculative reads, depending on the hardware,
different methods for tagging memory orders add different over-
head [2]. Since our experiments employ total store order (TSO) ma-
chines like the x86 and SPARC, in which loads are not reordered by
the processor, atomic loads incur no extra costs under the sequential
consistency memory order. So we simply skip tagging speculative
reads and let them use memory order seq cst by default.



1 struct Element {
2 int key;
3 Element *next, *prev;
4 Set *set;
5 };
6 struct Set {
7 Element head;
8 Lock lck;
9 };

11 int ESets::Sum(Set *s) {
12 int sum = 0;
13 s→lck.lock();
14 Element *pnext = s→head→next;
15 while (pnext != s→head) {
16 sum += pnext→key;
17 pnext = pnext→next;
18 }
19 s→lck.unlock();
20 return sum;
21 }

23 void ESets::Move(Element *e, Set *s) {
24 Set *oset = e→set;
25 grab unordered locks(oset→lck, s→lck);
26 // find e’s next element in s
27 Element *pprev = s→head;
28 Element *pnext = pprev→next;
29 while (pnext→key < e→key) {
30 pprev = pnext;
31 pnext = pprev→next;
32 }

33 // remove e from its original set
34 e→prev→next = e→next;
35 e→next→prev = e→prev;
36 // insert e before pnext
37 e→next = pnext;
38 e→prev = pprev;
39 e→set = s;
40 pprev→next = e;
41 pnext→prev = e;
42 release locks(oset→lck, s→lck);
43 }

45 // manual speculative implementation
46 // for TSO machines
47 struct Element {
48 int key;
49 atomic<Element*> next, prev;
50 atomic<Set*> set;
51 };
52 struct Set {
53 Element head;
54 SeqLock lck;
55 };

57 int ESets::MSpecSum(Set *s) {
58 again:
59 int sum = 0;
60 int v = s→lck.v;
61 if (v & 1) goto again;
62 Element *pnext = s→head→next;
63 while (pnext!=s→head && v == s→lck.v) {
64 sum += pnext→value;
65 pnext = pnext→next;

66 }
67 if (v != s→lck.v) goto again;
68 return sum;
69 }

71 void ESets::MSpecMove(Element *e, Set *s) {
72 Set *oset = e→set;
73 again:
74 Element *pprev = s→head;
75 Element *pnext = pprev→next;
76 while (pnext→value < e→value) {
77 pprev = next;
78 pnext = pprev→next;
79 if (pnext→set != s)
80 goto again;
81 }
82 grab unordered locks(oset→lck, s→lck);
83 if (AL(pnext→set, MO relaxed) != s || AL(

pnext→prev, MO relaxed) != pprev) {
84 release locks(oset→lck, s→lck);
85 goto again;
86 }
87 AS(AL(e→prev, MO relaxed)→next, AL(e→

next, MO relaxed), MO relaxed);
88 AS(AL(e→next, MO relaxed)→prev, AL(e→

prev, MO relaxed), MO relaxed);
89 AS(e→next, pnext, MO relaxed);
90 AS(e→prev, pprev, MO relaxed);
91 AS(e→set, s, MO relaxed);
92 AS(pprev→next, e, MO relaxed);
93 AS(pnext→prev, e, MO relaxed);
94 release locks(oset→lck, s→lck);
95 }

Figure 1. Per-set lock implementation of concurrent equivalence sets. The key field of each set’s head is initialized to +∞ to avoid loop
bound checks in lines 16. For code simplicity, it’s assumed that for any element, there is at most one thread calling Move on it at any time.
AL=atomic load, AS=atomic store, MO *=memory order *.

2.3 Performance Results
We tested our code on an Oracle (Sun) Niagara 2 and an Intel Xeon
E5649. The Niagara machine has two UltraSPARC T2+ chips, each
with 8 in-order, 1.2 GHz, dual-issue cores, and 8 hardware threads
per core (4 threads per pipeline). The Xeon machine also has two
chips, each with 6 out-of-order, 2.53 GHz, hyper-threaded cores,
for a total of 24 hardware thread contexts. Code was compiled with
gcc 4.7.1 (-O3).

To measure throughput, we arrange for worker threads to re-
peatedly call randomly chosen methods for a fixed period of time.
We bind each thread to a logical core to eliminate thread migration,
and fill all thread contexts on a given chip before employing mul-
tiple chips. Our mutex locks, where not otherwise specified, use
test-and-test and set with exponential back-off, tuned individu-
ally for the two machines.

2.3.1 Test Configurations
We compare six different implementations of equivalence sets.
FGL and SpecFGL are the versions of Figure 1, with set-granularity
locking. (Code for the Move operation includes an extra check to
make sure that e is still in the same set after line 25.) CGL and
SpecCGL are analogous versions that use a single global lock.
Gnu-STM uses the default STM system that ships with GCC 4.7.1;
ε-STM employs elastic transactions [7], which are optimized for
search structures. Loads and stores of shared locations were hand-
annotated in ε-STM.

2.3.2 Performance and Scalability
Performance results appear in Figures 2 and 3. We use 50 equiv-
alence sets in all cases, with either 500 or 5000 elements in the
universe (10 or 100 per set, on average). We use 100% Move oper-
ations to simulate a write-dominant workload, and a 50/50 mix of
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Figure 2. Throughput of concurrent equivalence sets on Niagara
2. The X axis is the number of concurrent threads; the Y axis is
method invocations per second.

Move and Sum operations to simulate a mixed but higher-contention
workload. The number of elements per set determines the amount
of work that can be moved out of the critical section in SpecMove.

Figure 2 illustrates scalability on Niagara 2. As expected, FGL
outperforms CGL in all tests, and SpecFGL outperforms SpecCGL.
Since an invocation of the Move method holds 2 locks simultane-
ously, FGL reaches its peak throughput when the thread count is
around 32. The sharper performance drop after 64 threads is due to
cross-chip communication costs.
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Figure 3. Throughput (invocations/s) of concurrent equivalence
sets on Intel Xeon E5649.

Manual speculation improves scalability and throughput for
both CGL and FGL. In the 5000-element, 50/50 sum/move case,
SpecCGL even outperforms FGL, out to 80 threads. This suggests
that simple coarse-grained locking with speculation could be an
attractive alternative to fine-grained locking for workloads with
significant work amenable to speculation. The baseline overhead
of SpecFGL, measured by comparing to FGL on a single thread, is
less than 10%. Therefore, even without contention, SpecFGL can
deliver competitive performance. By contrast, both gnu-STM and
ε-STM have significant baseline overhead (2–4× slower than CGL
on a single thread), and can outperform only CGL.

Results on the Xeon machine resemble those on Niagara 2,
with the interesting exception that single-thread performance is
significantly higher in the 500-element case, where the data set can
almost fit in the 32KB L1 data cache.

2.4 Limitations of Manual Speculation
The above results show that hand-written speculation can limit the
cost of validation and yield significant performance and scalability
improvements not only over STM, but also over lock-based alter-
natives. Other examples, summaries of which appear in Section 5,
confirm that these results are not limited to a single data structure.
The presence of general principles suggests, in fact, that manual
speculation be thought of as a first-class design pattern for concur-
rent data structures. At the same time, our experience suggests that
this pattern is not very easy to use.

Some of the challenges are expected, and are discussed in more
detail in Section 4. To extract concurrency, one must understand the
workload characteristics and concurrency bottlenecks that suggest
an opportunity for speculation. To control the cost of validation,
one must identify any data-structure-specific indications of consis-
tency. To maintain correctness, one must insert validation before
any operation that might produce anomalous results in the wake of
mutually inconsistent reads.

Several challenges, however, are more “mechanical,” and sug-
gest the need for automation. First, the changed code layout and
the mix of validation code and normal code break natural control
flows, making the source code difficult to read, understand and de-
bug. Second, if the original locking code co-exists with its specu-
lative version (either as a backup when speculation fails or as an
alternative when speculation is unprofitable), the programmer will
have to maintain two separate versions of the code, and make sure
that they track each other in the face of updates and bug fixes. Third,

manual speculation requires a deep understanding of the underlying
memory model. Speculative loads, almost by definition, constitute
data races with stores in the critical sections of other threads. In
C++ 11, where data races are illegal, the programmer must identify
and annotate all places where naive speculation would otherwise
introduce a race. As discussed by Boehm [2], even the choice of
annotation is nontrivial, and potentially architecture-dependent. In
the equivalence sets example, the default sequentially consistent
ordering is zero-cost for TSO machines, but has unacceptable over-
head on PowerPC machines.

3. Compiler Aided Manual Speculation
We propose to overcome the difficulties in applying manual spec-
ulation with the aid of compiler. The key idea is to automati-
cally generate speculative code from an annotated version of the
lock-based code, allowing the programmer to focus on higher-level
issues of what to do speculatively, and how and when to vali-
date. This semi-automatic approach to speculation, which we call
CSpec (compiler aided manual speculation), consists of (1) a sim-
ple but flexible set of annotations to specify the speculation method,
and (2) a source-to-source compiler that transforms the annotated
source into an explicitly speculative version.

3.1 Interface
The language interface is designed to be as simple as possible. It
comprises the following directives:

• #pragma spec: tells the compiler to generate a speculative
version for the following critical section. This directive should
appear immediately before a lock acquisition statement, which
must be the single entry point of its critical section.

• #pragma spec consume lock(lock0, lock1, ...): instructs the
compiler to “consume” one or more locks (these should be a
subset of the critical section’s lock set) at a particular place in
the code. Here, “consume” means that the lock is truly needed
(to protect writes or to achieve a linearization point), and that
speculation on data protected by the lock must end. Statements
that cannot be reached from any consume lock form the spec-
ulative part of a critical section. Multiple consume lock direc-
tives are allowed in a critical section. It is also legal to consume
a same lock more than once on a given code path: the compiler
is responsible for acquiring each lock at the first consume lock
that names it.

• #pragma spec set checkpoint(id): marks a checkpoint with a
specific integer id (id> 0). A checkpoint is a place to which ex-
ecution can roll back after a failed validation. During rollback,
all local variables modified beyond the checkpoint will be re-
set to their snapshots at the checkpoint. The default checkpoint
(id=0) is located at the critical section’s entry point.

• #pragma spec validate ver(ver0, ver1, ...[, cp id]): does a
version number-based validation. If any version number has
changed since checkpoint cp id, roll back to that checkpoint.

• #pragma spec validate val(val0, val1, ...[, cp id]): is similar
to validate ver, but does value-based validation.

• #pragma spec validate cond(cond expr[, cp id]): evaluates
the expression cond expr and rolls back to checkpoint cp id
if it is false.

• #pragma spec waive rollback(cp id, var0, var1, ...): waives
value rollback for specified variables at checkpoint cp id.

Figure 4 presents a re-implementation of the equivalence set
data structure using CSpec annotations. This new version is almost
identical to the original lock-based code, except for seven embed-



1 int ESets::Sum(Set *s) {
2 int sum = 0;
3 #pragma spec
4 s→lck.lock();
5 Element *pnext = s→head→next;
6 while (pnext != s→head) {
7 sum += pnext→key;
8 pnext = pnext→next;
9 #pragma spec validate ver(s→lck.v)

10 }
11 #pragma spec validate ver(s→lck.v)
12 s→lck.unlock();
13 return sum;
14 }

16 void ESets::Move(Element *e, Set *s) {
17 Set *oset = e→set;
18 #pragma spec
19 grab unordered locks(oset→lck, s→lck);
20 Element *pprev = s→head;
21 Element *pnext = pprev→next;
22 while (pnext→key < e→key) {
23 pprev = pnext;
24 pnext = pprev→next;
25 #pragma spec validate cond(pnext→set==s)
26 }
27 #pragma spec consume lock(oset→lck, s→lck)
28 #pragma spec validate cond(pnext→set==s && pnext→prev==pprev)
29 e→prev→next = e→next;
30 ...... // same as L35−41 of Figure 1
31 release locks(oset→lck, s→lck);
32 }

Figure 4. Concurrent equivalence sets using CSpec.

1 int ESets::Sum(Set *s) {
2 ...... // same as L12−20 of Figure 1
3 }

5 int ESets::SpecSum(Set *s) {
6 int sum = 0;
7 int SPEC tmp var 0 = sum;
8 SPEC label 1:
9 sum = SPEC tmp var 0;

10 int SPEC ver 0 = spec::wait ver(s→lck.v);
11 Element *pnext = AL(s→head→next, MO seq cst);
12 while (pnext != s→head) {
13 sum += pnext→key;
14 pnext = AL(pnext→next, MO seq cst);
15 if (AL(s→lck.v, MO seq cst) != SPEC ver 0)
16 goto SPEC label 1;
17 }
18 if (AL(s→lck.v, MO seq cst) != SPEC ver 0)
19 goto SPEC label 1;
20 return sum;
21 }

Figure 5. Automatically generated code for the Sum method.
Memory ordering is optimized for TSO machines.

ded directives. Compiler output for the Sum operation appears in
Figure 5. It includes both the original locking version and a specu-
lative version. The speculative version includes appropriate tags on
all atomic accesses, optimized for the target machine.

Compared with the pure manual speculation code in Figure 1,
the CSpec implementation has the following advantages: (1) The
language interface is concise. Usually, only a small number of di-
rectives is needed to describe the speculation mechanism; often,
the original control flow can be retained, with no code motion re-
quired. The resulting code remains clear and readable. (2) Code
maintenance is straightforward: there is no need to manage sep-
arate speculative and nonspeculative versions of the source. Any
updates will propagate to both versions in the compiler’s output.
(3) The programmer is no longer exposed to low-level details of
the memory model, as the compiler will handle them properly.

3.2 Implementation
Our compiler support is implemented as a clang [1] front-end
plugin. The plugin takes user-annotated source code as input and
does source-to-source transformation to create a speculative ver-
sion. A nonspeculative version is also generated, simply by dis-
carding all embedded directives. Alternative implementations, such
as IR-based transformation or static and run-time hybrid support
would also be possible; we leave these for future exploration.

We define a lock’s live range as the set of all statements that are
reachable from its acquisition statement but not reachable from its
release statement. A speculative code region is defined as the union
of all live ranges of the locks that appear in a critical section’s entry
point—the lock acquisition call immediately following #pragma
spec.

Lockset Inference. A key part of the CSpec transformation al-
gorithm is to identify the lock set that each consume lock should
actually acquire. The intuition behind the analysis is straightfor-
ward: we want every critical section, at run time, to acquire locks
exactly once (this marks the end of speculation), and to acquire all
locks named in any consume lock directive that may subsequently
be encountered on any path to the end of the critical section. Con-
servatively, we could always acquire the entire lockset at the first
dynamically encountered consume lock directive. To the extent
possible with static analysis, we wish to reduce this set when possi-
ble, so that locks that are never consumed are also never acquired.
Pseudocode of the algorithm we use to accomplish this goal ap-
pears in Algorithm 1.

Algorithm 1: Translating consume lock directives
Input: a speculative code region R

1 // GetLiveRange(L, S): get L’s live range assuming S is the
acquisition statement;

2 C ← all consume lock directives in R;
3 foreach consume lock cl in C do
4 foreach Lock l in cl.LockArgList do
5 cl.LiveRange← cl.LiveRange ∪ GetLiveRange(l, cl);
6 foreach Statement s in GetLiveRange(l, cl) do
7 s.LockSet← s.LockSet ∪ cl.LockArgList;
8 foreach consume lock cl in C do
9 foreach Statement s in cl.LiveRange do

10 cl.LockSet← cl.LockSet ∪ s.LockSet;
11 if cl is unreachable from any other consume lock in C then
12 replace cl with LockStmt(R, cl.LockSet);
13 else if cl is not dominated by another consume lock in C then
14 remove cl;
15 foreach BasicBlock b in GetBasicBlock(cl).Parents do
16 if a path from R.entry to cl goes through b and the

path does not contain any other consume lock then
17 emit LockStmt(R, cl.LockSet) at the end of b;
18 else //cl is dominated by other consume lock
19 remove cl;

The algorithm works in two phases. The first phase (lines 3–
7) calculates the LockSet of each statement in code region R.
These are the locks that must be acquired before the statement
executes at run time. The second phase first infers the lock set for
each consume lock (lines 9–10) so that the set will contain all
locks required by the consume lock’s live range. Then for each
consume lock, the algorithm decides how to handle it according to
its reachability (lines 11–19). The generated lock acquisition calls
use the same function name as the original call (the entry point of R)
and the lock parameters appear in the same order as in the original
call’s parameter list. Thus, the output code is deadlock free if the
original code was.



As an alternative to static lockset inference, we could allow
locks to be acquired more than once at run time, and release each
the appropriate number of times at the end of the critical section.
This strategy, however, would be incompatible with source code
using non-reentrant locks.

Checkpoint. A checkpoint serves as a possible rollback position.
There are three kinds of variables a checkpoint may snapshot:
(1) Live-in local variables. For a local variable that is declared
before a checkpoint and may be modified after the point, our source
transformation tool creates a local mirror for that variable and
copies its value back when speculation fails (see sum in Figure 5).
Nonlocal variables are assumed to be shared; if they need to be
restored, the programmer will have to do it manually. (2) Version
numbers. The tool finds validate vers that may roll back to this
checkpoint and, for each, inserts a wait ver call to wait until
the number is unblocked (line 10 in Figure 5). The values read
(e.g., SPEC ver 0) are kept for validation. (3) Validation values.
Validate vals are handled in the same way as validate vers,
except that no wait ver is inserted.

Tagging Atomic Variables. After code transformation, our tool
detects the class fields that are both written in write-back mode
(after consuming a lock) and accessed in speculative mode, and re-
declares them as atomic variables. Accesses to these variables are
grouped into three categories: (1) accesses in write-back mode; (2)
reads in validation; (3) other reads in a speculative phase. The tool
selects an appropriate (target machine-specific) memory ordering
scheme (including a fence if necessary) for each access category.

Switching Between Locking and Speculative Versions. The gen-
eration of two versions of a data structure opens the possibility
of dynamically switching between them for the best performance.
Since speculation doesn’t win in all cases, it might sometimes be
better to revert to the original locking code. The switch could be
driven by user-specified conditions such as workload size or current
number of threads. Switch conditions might also be automatically
produced by the compiler based on profiling results, or on run-time
information like the abort rate of speculation. These possibilities
are all subjects for future work. In the experiments reported here,
we use only the speculative version of the code.

3.3 Limitations
Our source-to-source tool currently faces three limitations, all of
which suggest additional subjects for future work. First, the critical
section must have a single entry point. In source programs with
multiple entry points, it may be possible to merge these entry points
by manually rearranging code structure. Second, we do not support
nested speculation due to the complexity of nested rollbacks; inner
directives will simply be discarded. Third, the analysis of locksets
is static, and can be defeated by complicated data flow and re-
assignment of lock variables. We argue that these are uncommon in
concurrent data structures, and could be addressed through manual
source code changes.

4. Principles of Coding with CSpec
Sections 2 and 3 presented an example of manual speculation and
a compiler-based tool to assist in the process. In the current section
we generalize on the example, focusing on three key questions that
the user of CSpec must consider.

4.1 Where do we place consume lock directives?
This question amounts to “what should be done in speculation?”
because consume locks mark the division between the speculative
and nonspeculative parts of the original critical section. Generally,
consume lock(L) is placed right before the first statement that

modifies the shared data protected by L on a given code path.
Sometimes a modification to shared data A can only be performed
under the guarantee that shared data B won’t be changed; in this
case B’s lock should also be consumed. Since the speculative parts
come from the original critical section, it may be profitable to
rearrange the code to delay the occurrence of consume locks. The
principal caveat is that too large an increase in total work—e.g., due
to misspeculation or extra validation—may change the critical path,
so that the remaining critical section is no longer the application
bottleneck.

In general, a to-be-atomic method may consist of several logical
steps. These steps may have different probabilities of conflicting
with the critical sections of other method invocations. The overall
conflict rate (and hence abort rate) for the speculative phase of a
method is bounded below by the abort rate of the most conflict-
prone step. Steps with a high conflict rate may therefore best be left
after consume lock.

There are several common code patterns in concurrent data
structures. Collection classes, for example, typically provide lookup,
insert, and remove methods. Lookup is typically read-only, so
there’s no need to place any consume lock in it. Insert and re-
move typically start with a search to see whether the desired key
is present; we can make this speculative as well, by inserting
consume locks before the actual insertion/deletion. In resource
managers, an allocate method typically searches for free resources
in a shared pool before actually performing allocation. In other data
structures, time-consuming logical or mathematical computations,
such as compression and encryption, are also good candidates for
speculation.

At least three factors at the hardware level can account for a
reduction in execution time when speculation is successful. First,
speculation may lead to a smaller number of instructions on the
program’s critical path, assuming this consisted largely of critical
sections. Second, since the speculative phase and the following
critical section usually work on similar data sets, speculation can
serve as a data prefetcher, effectively moving cache misses off the
critical path. This can improve performance even when the total
number of cache misses per method invocation stays the same (or
even goes up). Within the limits of cache capacity, the prefetching
effect increases with larger working sets. Third, in algorithms with
fine-grain locks, speculation may reduce the number of locks that
must be acquired, and locks are quite expensive on many machines.
We will return to these issues in more detail in Section 5.

4.2 How do we validate?
Validation is the most challenging and flexible part of CSpec pro-
gramming. Most STM systems validate after every shared-memory
load, to guarantee opacity (mutual consistency of everything read
so far) [8]. Heuristics such as a global commit counter [23] or per-
location timestamps [6, 21] may allow many validation operations
to complete in constant time, but the worst-case cost is typically
linear in the number of shared locations read so far. (Also: per-
location timestamps aren’t privatization safe [16].) As an alterna-
tive to opacity, an STM system may sandbox inconsistent trans-
actions by performing validation immediately before any “danger-
ous” instruction, rather than after every load [5], but for safety in
the general case, a very large number of validations may still be
required.

Using the three validate * directives provided by compiler-
aided manual speculation, we can exploit data-structure-specific
programmer knowledge to minimize both the number of validations
and their cost. Determining when a validation is necessary is a
tricky affair; we consider it further in the following subsection. To
minimize the cost of individual validations, we can identify at least
two broadly useful idioms.



Version Numbers (Timestamps): While STM systems typically
associate version numbers with individual objects or ownership
records, designers of concurrent data structures know that they can
be used at various granularities [3, 12]. Regardless of granularity,
the idea is the same: if an update to location l is always preceded
by an update to the associated version number, then a reader who
verifies that a version number has not changed can be sure that all
reads in between were consistent. The validation ver directive
serves this purpose in CSpec.

It is worth emphasizing that while STM systems often conflate
version numbers and locks (to minimize the number of metadata
updates a writer must perform), versioning and locking serve dif-
ferent purposes and may fruitfully be performed at different gran-
ularities. In particular, we have found that the number of locks re-
quired to avoid over-serialization of critical sections is sometimes
smaller than the number of version numbers required to avoid un-
necessary aborts. The SpecCGL code of Section 2, for example,
uses a single global lock, but puts a version number on every set.
With a significant number of long-running readers (the lower-right
graphs in Figures 2 and 3), fine-grain locking provides little addi-
tional throughput at modest thread counts, but a single global ver-
sion number would be disastrous. For read-mostly workloads (not
shown), the effect is even more pronounced: fine-grain locking can
actually hurt performance, but fine-grain validation is essential.

In-place Validation: In methods with a search component, the
“right” spot to look up, insert, or remove an element is self-evident
once discovered: how it was discovered is then immaterial—even
if it involved an inconsistent view of memory. Mechanisms like
“early release” in STM systems exploit this observation [11]. In
manual speculation, we can choose to validate simply by checking
the local context. An example appears at line 28 of Figure 4, where
pnext→set and pnext→prev are checked to ensure that the two
key nodes are still in the same set, and adjacent to one another.
When it can be used, in-place validation has low overhead, a low
chance of aborts, and zero additional space overhead. In CSpec, it
is realized as value-based validation (validate val) or condition-
based validation (validate cond).

4.3 What can go wrong and how do we handle it?
In general, our approach to safety is based on sandboxing rather
than opacity. It requires that we identify “dangerous” operations
and prevent them from doing any harm. Potentially dangerous op-
erations include the use of incorrect data values, incorrect or stale
data pointers, and incorrect indirect branches. Incorrect data can
lead to faults (e.g., divide-by-zero) or to control-flow decisions that
head into an infinite loop or down the wrong code path. Incorrect
data pointers can lead to additional faults or, in the case of stores,
to the accidental update of nonspeculative data. Incorrect indirect
branches (e.g., through a function pointer or the vtable of a dynam-
ically chosen object) may lead to arbitrary (incorrect) code.

An STM compiler, lacking programmer knowledge, must be
prepared to validate before every dangerous instruction—or at least
before those that operate on values “tainted” by speculative access
to shared data [4]. In a few cases (e.g., prior to a division instruction
or an array access) the compiler may be able to perform a value-
based sanity check that delays the need for validation. In CSpec,
by contrast, we can be much more aggressive about reasoning that
the “bad cases” can never arise (e.g., based on understanding of
the possible range of values stored to shared locations by other
threads). We can also employ sanity checks more often, if these are
cheaper than validation. Both optimizations may be facilitated by
using a type-preserving allocator, which ensures that deallocated
memory is never reused for something of a different type [19].

5. Additional Case Studies
This section outlines the use of CSpec in three additional concur-
rent data structures, and summarizes performance results.

5.1 Cuckoo Hash Table
Cuckoo hashing [20] is an open-addressed hashing scheme that
uses multiple hash functions to reduce the frequency of collisions.
With two functions, each key has two hash values and thus two
possible bucket locations. To insert a new element, we examine
both possible slots. If both are already occupied, one of the prior
elements is displaced and then relocated into its alternative slot.
This process repeats until a free slot is found.

Concurrent cuckoo hashing was proposed by Herlihy and
Shavit [9]. It splits the single table in two, with each having its own
hash function. In addition, each table becomes an array of probe
sets instead of elements. A probe set is used to store elements with
the same hash value. To guarantee constant time operation, the
number of elements in a probe set is limited to a small constant
CAPACITY. One variant of the data structure (a striped cuckoo hash
table) uses a constant number of locks, and the number of buckets
covered by a lock increases if the table is resized. In an alterna-
tive variant, (a refinable cuckoo hash table) the number of locks
increases with resizing, so that each probe set retains an exclusive
lock. The refinable variant avoids unnecessary serialization, but its
lock protocol is much more complex.

Since an element E may appear in either of two probe sets—
call them A and B—an atomic operation in the concurrent cuckoo
hash table has to hold two locks simultaneously. Specifically, when
performing a lookup or remove, the locks for both A and B are
acquired before entering the critical section. In the critical sec-
tion of the insert method, if both A and B have already reached
CAPACITY, then a resize operation must be done. Otherwise, E is in-
serted into one probe set. If that set contains more than THRESHOLD
< CAPACITY elements, then after the critical section, elements will
be relocated to their alternative probe sets to keep the set’s size be-
low THRESHOLD.

Speculation: Speculation makes lookup obstruction-free. We
place consume locks only before a modification to a probe set.
This moves the presence/absence check in insert/remove out of the
critical section. We illustrate the CSpec implementation of remove
in Figure 6. If the element to remove is speculatively found in probe
set A, remove needs to consume only A’s lock instead of both A’s
and B’s (case 1©).

Validation: A version number is added to each probe set to enable
validate ver. In remove (and similarly in lookup and insert), to
validate the presence of an element in a set (cases 1©, 2©), we only
need to validate that set’s version (lines 11, 16) after its lock is con-
sumed. We don’t do any validation in the search method, because
linear search in a limited-sized (< CAPACITY) probe set will termi-
nate in CAPACITY steps regardless of any change in set elements.
To validate the absence of an element (case 3©), both probe sets’
versions should be checked (line 20). Though the two sets may
be checked at different times, their version numbers ensure that
the two histories (in each of which the element is not in the corre-
sponding set) overlap, so there exists a linearization point [13] in
the overlapped region when the element was in neither set. To sup-
port concurrent resize, a resize version number is associated with
the whole data structure. At the checkpoint, that number is vali-
dated (line 7) to detect a resize which breaks the mapping between
key and probe sets (line 5).

Performance: Our experiments (Figures 7 and 8) employ a di-
rect (by-hand) C++ translation of the Java code given by Herlihy
and Shavit[9]. We use a CAPACITY of 8 and a THRESHOLD of 4; this



1 bool CuckooHashMap::Remove(const KeyT& key) {
2 std::pair<Lock*, Lock*> lcks = map locks(key)
3 #pragma spec
4 lock(lcks.first, lcks.second);
5 Bucket &setA = bucket0(key), &setB = bucket1(key)
6 #pragma spec set check point(1)
7 #pragma spec validate ver(this→ver)
8 int idx = search(setA, key);
9 if (idx>=0) { // 1© key is in setA

10 #pragma spec consume lock(lcks.first)
11 #pragma spec validate ver(setA.ver, 1)
12 setA.remove(idx);
13 unlock(lcks.first, lcks.second);
14 } else if ((idx = search(setB, key)) >=0) { // 2© key is in setB
15 #pragma spec consume lock(lcks.first, lcks.second)
16 #pragma spec validate ver(setB.ver, 1)
17 setB.remove(idx);
18 unlock(lcks.first, lcks.second);
19 } else { // 3© key is not found
20 #pragma spec validate ver(setA.ver, setB.ver, 1)
21 #pragma spec validate ver(this→ver)
22 unlock(lcks.first, lcks.second);
23 }
24 return idx>=0;
25 }

Figure 6. CSpec tagged Remove method of cuckoo hash table.
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Figure 7. Throughput of cuckoo hash table on Intel Xeon E5649,
for different data-set sizes and method ratios. The 128-* curves use
striped locking; the 26k-* curves are refinable. *-MSpec are pure
manual speculation implementations.

means a probe set usually holds no more than 4 elements. We ran
our tests with two different data set sizes: the smaller (∼500 ele-
ments) can fit completely in the shared on-chip cache of either ma-
chine; the larger (∼200K elements) is cache averse. For the striped
version of the table, we use 128 locks. For the refinable version,
the number of locks grows to 64K. Before each throughput test, a
warm-up phase inserts an appropriate number of elements into the
table, randomly selected from a double-sized range (e.g., [0, 1000)
for small tables). Keys used in the timing test are randomly selected
from the same range.

For striped tables with 128 locks, CSpec code is 10%–20%
faster than the baseline with 64 threads on the Niagara 2, and
even better with 120 threads. The gap is significantly larger on
the Xeon. Scalability in the baseline suffers from lock conflicts
with increasing numbers of threads. CSpec overcomes this problem
with fine-grain speculation, a shorter critical path, and fewer lock
operations. For the same reason, CSpec is also useful for refinable
tables in all configurations (“*-CSpec” vs “*-base”). For small data
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Figure 8. Throughput of cuckoo hash table on Niagara 2.

sets (upper graphs in Figures 7 and 8), refinable locking offers no
advantage: there are only 128 buckets. For large data sets (lower
graphs), baseline refinable tables (“64k-base”) outperform baseline
striped tables (“128-base”) as expected. Surprisingly, CSpec striped
tables (“128-CSpec”) outperform baseline refinable tables and are
comparable to CSpec refinable tables (“64k-CSpec”), because the
larger lock tables induce additional cache misses.

This example clearly shows that fine-grained locking is not nec-
essarily best. The extra time spent to design, implement and de-
bug a fine-grained locking algorithm does not always yield superior
performance. Sometimes, a simpler coarse-grained algorithm with
CSpec can be a better choice.

A best-effort manual speculation version (MSpec) is also in-
cluded in our experiments. For easy rollback, a critical section in
MSpec is divided as a monotonic speculative phase and a non-
speculative phase by reorganizing the code. Also, when a specu-
lation fails, only one probe set has been changed in most cases,
and we can skip the unchanged set in the next try. MSpec code,
which adds 15% more lines to the baseline code, is considerably
more complex than CSpec code. However, CSpec’s performance
matches MSpec’s on Xeon (“*-CSpec” vs “*-MSpec”), and is even
faster than the latter on Niagara 2, due to its simpler control flow
and fewer instructions.

5.2 Blink-tree
Blink-trees [15, 22] are a concurrent enhancement of B+-trees, an
ordered data structure widely used in database and file systems.
The main difference between a B+-tree and a Blink-tree is the addi-
tion of two fields in each node: a high key representing the largest
key among this node and its descendants, and a right pointer link-
ing the node to its immediate right sibling. A node’s high key is
always smaller than any key of the right sibling or its descendants,
allowing fast determination of a node’s key range. The right pointer
facilitates concurrent operations.

The original disk-based implementation of a Blink-tree uses the
atomicity of file operations to avoid the need for locking. Srinivasan
and Carey describe an in-memory version with a reader-writer lock
in every node [24]. To perform a lookup, a reader descends from
the root to a leaf node, then checks the node’s high key to see if
the desired key is in that node’s key range. If not (in the case that
the node has been split by another writer), the reader follows right
pointers until an appropriate leaf is found. During this process, the
reader holds only one reader lock at a time. When moving to the
next node, it releases the previous node’s lock before acquiring the
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Figure 9. Throughput of Blink-tree methods on Intel Xeon E5649,
for different tree sizes and method ratios.

new one. In an insert/remove operation, a writer acts like a reader to
locate a correct leaf node, then releases that leaf’s reader lock and
acquires the same leaf’s writer lock. Because a node split may occur
during the lock switch, the writer starts another round of search for
the proper leaf using writer locks.

A full node A is split in three steps. First, a new node B is
allocated with its right pointer linking to A’s right sibling, and half
the elements from A are moved to B. Second, A’s right pointer is
redirected to B, and A’s writer lock is released. Third, A’s new high
key is inserted into its parent node. For simplicity, we employ the
remove algorithm of Lehman and Yao [15], which does not merge
underflowed leaf nodes; this means there is no node deallocation in
our code.

Speculation: The Blink-tree algorithm already uses fine-grained
locking. Its lookup, insert and remove operations contain two kinds
of critical sections: (1) Critical sections protected by reader locks
check a node’s key range for a potential right move, or search for
a key within a node. Not all of them can be transformed using
CSpec, because the movement from one node to its right sibling
or its child needs to hold two reader locks. CSpec cannot trans-
late the overlapped critical section formed by the two locks. So, we
manually convert the move step to speculation. (2) Critical sections
protected by writer locks perform actual insertion and removal. If
a node is full, a split occurs in the critical section. CSpec is able
to handle these critical sections. The result of the transformation
is that lookup becomes entirely speculative, and insert and remove
start with a speculative search to check the presence/absence of the
key to be inserted/removed. By performing searches in specula-
tive mode, speculation eliminates the need for reader-writer locks.
Simpler and cheaper mutex locks suffice for updates, and lookup
operations become nonblocking.

Validation: Validation in a Blink-tree is relatively easy. Every
speculation works on a single node, to which we add a version num-
ber. If (type-preserving) node deallocation were added to remove,
we would use one bit of the version number to indicate whether the
corresponding node is in use. By setting the bit, deallocation would
force any in-progress speculation to fail its validation and go back
to the saved parent (not the beginning of the method) to retry.

Performance: Figure 9 compares the original and CSpec versions
of Blink-tree on the Xeon machine. Results on the Niagara 2 are
qualitatively similar. The locking code uses a simple, fair reader-
writer lock [18]. To avoid experimental bias, the CSpec code uses
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Figure 10. Throughput of linear bitmap allocator. The lock array
uses a single lock in 1-* curves, 32 locks in 32-* curves.

the same lock’s writer side. Each node contains a maximum of
32 keys in both algorithms, and occupies about 4 cache lines. To
avoid a performance bottleneck at the top of the tree, the original
algorithm uses speculation at the root node (only).

We ran the code with two different sizes of trees and two
different mixes of methods. Small trees (10K elements) are more
cache friendly than larger trees (1M elements), but suffer higher
contention. The 90% lookup, 5% insert and 5% remove method mix
simulates read-dominant workloads, and 0%:50%:50% simulates
write-dominant workloads. As in the cuckoo hash experiments, we
warm up all trees before beginning timing.

CSpec provides both greater throughput and greater scalabil-
ity in all experiments, even with speculation at the root node in
baseline locking code. CSpec scales very well even when running
across chips (>12 threads). Comparing the left-hand and right-
hand graphs in Figure 9, we can see that the advantage of spec-
ulation increases with higher contention (smaller trees). In separate
experiments (not shown) we began with originally-empty trees, and
ran until they reached a given size. This, too, increased the advan-
tage of CSpec, as the larger number of node splits led to dispropor-
tionately longer critical sections in the baseline runs.

5.3 Bitmap Allocator
Bitmaps are widely used in memory management [25] and file
systems. They are very space efficient: only one bit is required to
indicate the use of a resource. A bitmap allocator may use a single
flat bitmap or a hierarchical collection of bitmaps of different sizes.
We consider the simplest case, where a next-fit algorithm is used
to search for available slots. In the baseline algorithm, an array of
locks protects the entire structure (one lock protects one segment
of the bitmap). The data structure supports concurrent allocate and
deallocate operations. To find the desired number of adjacent bits,
allocate performs a linear search in its critical section, then sets
all the bits to indicate they are used. Deallocate takes a starting
position and size as parameters, and resets the corresponding bits
in its critical section.

Speculation: Most of execution time is spent searching the
bitmap for free bits. Since only one lock in the lock array is held at
a time, we simply place a consume lock directive before flipping
the free bits.

Validation: After the lock is consumed, a validate cond checks
that the bits found during speculation are still available. No safety
issues arise, as the bitmap always exists.

Performance: Our experiments (Figure 10) employ an array
of 256K bits with a time-limited scenario in which a 70% allo-
cate / 30% deallocate mix consumes the bitmap gradually so it gets
harder and harder to find a free slot. Allocation requests have the
distribution 20% 1 bit, 30% 2 bits, 30% 4 bits, 15% 8 bits, and 5%
16 bits. Two lock array sizes, 1 (global lock) and 32, are used.



Data Structure Locks CSpec Directives Other changes
equivalence sets CG, FG 2 5 No
cuckoo hash CG, FG 3 23 No
Blink-tree FG 3 17 hand-written speculative

functions for moving be-
tween two nodes

bitmap allocator CG 1 3 No

Table 1. A summary of the application of CSpec. CG/FG = coarse-
/fine-grained.

On Niagara 2, CSpec-generated code (“*-CSpec”) is signifi-
cantly faster than the baseline as a result of a much shorter critical
section in Allocate. Again, we see that coarse-grained locking
with speculation (“1-CSpec”) beats nonspeculative finer-grained
locking (“32-base”). However, the benefit of CSpec is more modest
on the Xeon machine. This is because the Xeon CPU can execute
bit operations much faster than the simpler cores of the Niagara 2,
leaving less work available to be moved to speculation. We also
test a manual speculative version (not shown). Surprisingly, it is
slightly slower than the CSpec version because its reorganized code
contains more branch instructions. On both machines, the STM im-
plementation is only faster than the single-lock baseline.

6. Conclusions
While fully automatic speculation, as provided by transactional
memory, has the advantage of simplicity, we believe that manual
speculation has a valuable role to play, particularly in the construc-
tion of concurrent data structure libraries. In support of this con-
tention, we have presented four different structures—equivalence
sets, a Blink-tree, a cuckoo hash table, and a bitmap allocator—
in which speculation yields significant performance improvements.
The principal challenges in their construction, as suggested in Sec-
tion 4, were to identify the work that could profitably be moved to
speculation, and to determine how and when to validate. To elimi-
nate other, more mechanical challenges, we developed a set of com-
piler directives and a translation algorithm that partitions critical
sections; identifies covering lock sets; and automates checkpoint-
ing, rollback, and the access tagging required to avoid data races
and preserve sequential consistency.

Table 1 summarizes our four example data structures, compar-
ing the baseline locking policies, the number of CSpec regions, the
total number of added directives (excluding #pragma spec), and
other changes to the source code. It clearly supports the claim that
speculation can easily be added to existing lock-based code, with a
small number of CSpec directives and few or no additional adjust-
ments.

Our work suggests several avenues for future research, includ-
ing a richer set of annotations, more sophisticated translation mech-
anisms, nested speculation, and dynamic selection among imple-
mentations with differing amounts of speculation.
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