
Sandboxing Transactional Memory ∗

Luke Dalessandro Michael L. Scott
University of Rochester

{luked, scott}@cs.rochester.edu

Abstract
In a transactional memory (TM) system, conflict detection
ensures that transactions never commit unless they can be
serialized. Validation further ensures that a doomed trans-
action (one that has seen an inconsistent view of memory)
discovers its status and aborts before its inconsistency has a
chance to cause erroneous, externally visible behavior.

In an opaque TM system, post-validation of reads ensures
that the view of memory is always consistent. In a sandboxed
TM system, pre-validation of potentially dangerous opera-
tions ensures that inconsistency is harmless. Sandboxing is
straightforward in managed languages, but its feasibility for
unmanaged languages has been questioned and remains an
open problem.

In this paper we show that it is both possible and prac-
tical to implement sandboxing for C and C++ TM systems,
with overheads (including wasted work) no worse than those
of opaque implementations. Specifically, we present a soft-
ware TM infrastructure using LLVM, the Dresden TM Com-
piler, and a novel sandboxing runtime, and describe its per-
formance on a variety of benchmarks. Systems such as ours
will, we believe, enable the development of new and faster
TM algorithms (in both hardware and software) that de-
pend on sandboxing for correctness—e.g. in conjunction
with asynchronous (out-of-band) validation.

1. Introduction
All speculation-based TM systems require a mechanism to
detect and resolve potential conflicts between transactions,
thereby ensuring that transactions commit only as part of a
global serialization order. Additionally, committed transac-
tions must obey the semantics of the source programming
language. A transaction that is going to abort may, in prin-
ciple, do anything at all, provided it has no impact on ob-
servable program behavior. We may regard this observation
as either cause or effect: a transaction may diverge from cor-
rect behavior if we know it is going to abort; alternatively,
a transaction may be forced to abort because it has diverged
from correct behavior.

∗ This work was supported in part by the National Science Foundation under
grants CCR-0963759, CCF-1116055, and CNS-1116109.

In most TMs, inconsistency results from reading a pair of
values that were not simultaneously valid in the execution
history defined by the program’s committed transactions. To
ensure overall program correctness, at least in the general
case, a TM must force transactions to abort if their view
becomes inconsistent. To this end, STM runtimes typically
validate transactions by double-checking their read sets at
regular intervals, and aborting them in the event of inconsis-
tency. At one extreme, validation may be performed conser-
vatively after every transactional read. At the other, it may
be performed immediately before any “dangerous” event—
one whose behavior cannot be guaranteed to be invisible
to other threads. A complete characterization of dangerous
events is tricky (see Section 2.1); at the very least we must
guard against faults, infinite loops, and stores to incorrectly
computed addresses.

Guerraoui and Kapałka hold that aborted transactions are
semantically relevant and should see a consistent view of
memory, a property they term opacity [13, 14], and present
it as essential to correctness. In an alternative view, we have
argued [5, 30] that language semantics should speak only
to committed transactions, and that speculation and aborted
transactions should be a matter of implementation. This view
requires only that a speculative implementation protect the
rest of the system from possible errant behavior in transac-
tions that ultimately abort. We refer to an implementation
that meets this requirement but that is not opaque as sand-
boxed. This definition includes the techniques described by
Spear et al. [32] for optimizing STM barriers, however here
we will be concerned with much more relaxed algorithms.

Sandboxing is common in transactional runtimes for
managed languages, which often execute untrusted code in
the context of some larger system and thus both restrict pro-
grammer access to some problematic operations and nat-
urally provide mechanisms for dealing with others. STMs
for JavaTMand C#, along with those built on top of dynamic
binary instrumentors, have relied on sandboxing to avoid
the need for conservative validation in running transactions
[2, 16, 24].

In contrast, the designers of STMs for unmanaged lan-
guages were slow to appreciate the dangers of inconsis-
tency, and have largely ignored the potentials for sandbox-
ing. Some TM algorithms simply overlook the need for con-

1 2012/2/15

scott
Text Box
TRANSACT 2012

sistent execution altogether [3]. Others depend on explicit
programmer-inserted validation for correct execution [12,
15, 17, 28]. Still others guarantee opacity via repeated, in-
cremental validation [18]. Later work leveraged knowledge
of recent commits by other threads [8, 26, 33] or the pres-
ence of static redundancy [32] in an attempt to minimize
the common-case quadratic overhead inherent in incremen-
tal validation, but remain quadratic in the worst case.

To the best of our knowledge, no previous project has
carefully explored the feasibility of transaction sandboxing
in unmanaged languages. (Some authors have even implied
that it might not be possible [22].) There are compelling
reasons to do so.

First, given that dangerous events (i.e., those that may re-
sult in errant behavior when executed inconsistently) tend to
be much less common than transactional loads, sandboxing
could substantially reduce the overhead of validation in run-
ning transactions. This may, in some cases, lead to wasted
execution in doomed (“zombie”) transactions, but we expect
the impact of such delays to be modest, particularly given
the assumption that abort rates will be low in scalable appli-
cations.

Second, and arguably more important, sandboxing makes
it possible to perform validation in parallel with execution
of the main program, thereby removing the overhead of val-
idation from the application’s critical path. Kestor et al. [20]
consider this approach for multithreaded processors and ob-
tain significant improvements. (Significantly, while they rec-
ognize the need for sandboxing, they do not actually imple-
ment it in their prototype; instead they limit their experi-
ments to applications where nothing goes wrong.) Casper
et al. [3] consider a similar mechanism, with dedicated hard-
ware support, but without addressing the correctness issues
it introduces. The appeal of sandboxing for HTM systems is
that it may allow a looser coupling between conflict detec-
tion in the memory hierarchy and execution in the processor
core: precise, immediate notification of transaction conflicts
would not be needed if the compiler always generated a “TM
fence” before each dangerous instruction [4].

In Section 2 we characterize potentially dangerous events
for zombie transactions in C and C++. We also explore the
interaction of sandboxing and several common STM algo-
rithms. In Section 3 we describe our sandboxing implemen-
tation, including the algorithms used to instrument danger-
ous instructions and the algorithm-independent machinery
used to address infinite loops and faults. Given this basic
infrastructure, in Section 4 we develop a proof-of-concept,
sandboxed STM using the open-source RSTM package [25].
We evaluate our sandboxing infrastructure and our novel
STM on an assortment of benchmarks in Section 5, and con-
clude in Section 6. The principal conclusion is quite pos-
itive: sandboxing of unmanaged transactions is both feasi-
ble and efficient. In comparison to opacity, sandboxing leads
to reductions in instrumentation overhead for a wide range

of transactional benchmarks, and the measured increases in
wasted work are comparatively modest. This in turn suggests
that out-of-band validation is a viable strategy for both hard-
ware and software TM systems, and that sandboxing should
be a standard feature in future TM compilers.

2. Sandboxing Pragmatics
We assume a semantics in which transactions are strictly se-
rializable (SS): they appear to execute atomically in some
global total order that is consistent with program order in
every thread; further, each transaction is globally ordered
with respect to preceding and following nontransactional ac-
cesses of its own thread. Given an SS implementation, one
can prove that every data-race-free program is transaction-
ally sequentially consistent (TSC) [5, 30]: its memory ac-
cesses will always appear to occur in some global total order
that is consistent with program order and that keeps the ac-
cesses of any given transaction contiguous. These semantics
are an idealized form of those of the draft transactional stan-
dard for C++ [1].

If aborted transactions play no role in language seman-
tics, then we are free to consider an aggressively optimistic
implementation that does not guarantee opacity, but simply
SS for committed transactions. In such an implementation,
sandboxing must ensure the isolation of even those “zombie”
transactions that have diverged from correct execution due to
an inconsistent view of memory (i.e., a read that cannot be
explained by any serial execution of transactions [17]), but
it need not restrict the internal behavior of such transactions
beyond this constraint.

2.1 Dangerous Events
We say that an event is dangerous if its execution in a zombie
transaction may allow the user to observe an execution that is
not SS. Here we enumerate what we believe to be a complete
list of dangerous events (a formal proof of completeness is
deferred to future work).

In-place stores Stores performed by a transaction to a pub-
lic address, rather than a private log, are the primary concern
for zombie transactions in a sandboxing runtime. In-place
stores may target shared locations, in which case they may
be instrumented (e.g., in an eager, in-place STM) or unin-
strumented (e.g., if the compiler or programmer has con-
cluded that there are no TSC executions where a particular
store can be part of a race). They may also target private lo-
cations in the stack or other thread-local storage, in which
case they may lead to some subsequent violation of sequen-
tial semantics.

In-place stores may be inconsistent because they are con-
trol dependent on an inconsistent value or because their tar-
get address is inconsistent. Such stores may create races, not
be rolled back on abort, or even result in execution of arbi-
trary code. Storing an inconsistent value to a consistent ad-
dress is not fundamentally unsafe, but has implications for

2 2012/2/15

analysis because the value returned from an uninstrumented
read of the stored location must be correctly detected as in-
consistent. Our current analyses cannot track inconsistency
through memory thus we treat this case as dangerous.

In-place stores that cannot be proven consistent must be
handled with a run-time, pre-validation check. The STM
implementations that we develop and test in this work all
have out-of-place write barriers, a fact that we exploit in our
analyses and testing. Sandboxing for in-place STMs requires
that we treat STM write barriers as in-place writes, and is
left as future work.

Pre-validation exposes an additional concern. An incon-
sistent indirect branch may lead to an unprotected in-place
store, or to executable data that looks like one. Such branches
are used by programming languages to implement virtual
function calls, large switch statements, computed gotos,
and returns, and can represent large overheads. Fortu-
nately, existing opaque STM implementations already per-
form the necessary instrumentation for indirect function
calls. Such runtimes must map function pointers to their
transactional clones’ addresses. A successful lookup implies
that the target will have proper sandboxing instrumentation.
If a clone is not found, then the transaction will switch to
serial-irrevocable execution—a transition that includes an
embedded validation.

Faults The sandboxing runtime must disambiguate faults
(hardware exceptions) that occur due to inconsistent execu-
tion from those that would have occurred in some TSC exe-
cution of the program, and prevent their effects from becom-
ing visible to the programmer. In managed languages, where
such events are often exposed to the programmer through
a software exception handling framework, run-time systems
can validate before delivering the exception to the user.

In a POSIX-compliant C and C++ implementation, faults
are encoded as synchronous signals. Olszewski et al. [24]
suggest either suppressing inconsistent signals by modifying
the operating system kernel to make it transaction aware—
which they implement—in order to prevent the signal from
propagating to user space, or rely on user-space signal han-
dling functionality to suppress the signal once received.

Infinite Loops and Recursion A zombie transaction may
enter into an infinite loop or infinite recursion due to incon-
sistent execution which a sandboxing runtime must be able
to detect and recover from. Previous sandboxed STMs have
instrumented loop back edges with a check to force periodic
validation [24, 28]. This approach adds overhead that can be
expensive for tighter loops, and that pollutes hardware re-
sources like branch predictors.

An alternative approach, assuming appropriate OS sup-
port, is to use timers to force the STM to validate periodi-
cally. This avoids common-case overhead, and the timer pe-
riod can be adaptively tuned so that applications that do not
suffer from inconsistent infinite loops pay very little over-
head. If infinite loops are common, however, timer-based

validation may be slow to detect the problem. We could
imagine a hybrid approach in which hot-patch locations are
left on loop back edges so that polling code can be injected
into loops that show a high probability of infinite looping.

TM Commit Many opaque TM algorithms allow read-
only transactions to commit without validating, under the
assumption that they were correct as of their last read bar-
rier. This assumption isn’t valid in a sandboxed TM, which
must ensure that read-only transactions have validated be-
fore committing.

2.2 Impact on existing STM algorithms
The immediate result of sandboxing is that TL2 and its
derivatives no longer require post-read validation [6–8, 21].
This eliminates an ordering constraint in the read barrier in
exchange for the possibility of wasted work. Sandboxing
also allows these systems to tolerate privatization violations
without necessitating additional barriers [31]. Unfortunately,
sandboxing reduces the value of TinySTM-style timestamp
extension [27], as a zombie transaction will probably have
already used an inconsistent value by the time it tries to
validate. We address this issue more thoroughly in Section 4
as we develop our example, sandboxed STM.

3. Sandboxing Infrastructure
Our sandboxing infrastructure consists of the three main
components: LLVM-based instrumentation, Posix signal
chaining, and timer-based periodic validation.

3.1 LLVM-based Instrumentation
LLVM and its associated IR provide several benefits that
make it suitable for sandboxing.

• The IR’s high-level nature explicitly encodes the danger-
ous operations that we need to consider without exposing
the analysis to low-level details such as stack manipula-
tion.

• The publicly available Dresden Transactional Mem-
ory Compiler (DTMC) and its Tanger instrumentation
pass [11] produces instrumented LLVM IR that is ready
for sandboxing analysis and instrumentation.

• LLVM’s link-time-optimization functionality allows us
to perform whole-program analysis and instrumentation,
which can result in less conservative sandboxing instru-
mentation.

In principle, the only operations of concern are those de-
tailed in Section 2.1. In practice, we have little direct control
of how LLVM’s code generator uses the stack. To guarantee
the safety of sp- and fp-relative addressing, we must instru-
ment anything that may update these registers in a poten-
tially inconsistent way. Specifically, we instrument allocas
if they may be executed on an inconsistent control flow path,
or if their size parameter may be inconsistent. A benefit

3 2012/2/15

of aggressively protecting the consistency of the stack is
that return instructions—technically indirect branches—
are not dangerous because the return address on the stack
cannot have been corrupted.

Our goal is to instrument all dangerous operations that
will execute in an inconsistent context. Identifying such con-
texts precisely is an information-flow-tracking problem rem-
iniscent of taint analysis [36, pp. 558ff], where the values
produced by transactional reads are taint sources and the
operands of dangerous instructions are taint sinks. The cost
of tracking precise taint in the presence of aliasing and con-
text sensitivity is high. We use conservative approximations
and our evaluation finds that these are mostly adequate.

We start by dynamically tracking taint using a single bit
of data. We extend the STM read barrier to mark the transac-
tion as tainted, and we instrument every dangerous operation
with a validation barrier that checks the tainted status and
then calls the underlying algorithm-specific validation rou-
tine if needed. This conservative dynamic approach trivially
satisfies our requirement that no in-place store is performed
inconsistently. While the overhead of this barrier is small in
the common case (a function call, thread-local access, and
branch) we would still like to statically eliminate as many
redundant barriers as possible.

The single optimization that we perform is straight-line
redundant validation elimination (SRVE), which hinges on
the observation that a consistent transaction remains consis-
tent until it performs a transactional read. SRVE tracks taint
statically, at the basic block level. It initializes each basic
block as tainted, and then scans forward. When SRVE en-
counters a dangerous operation in a tainted state it inserts a
validation barrier and clears the tainted bit. When SRVE en-
counters an instrumented read or function call (SRVE is not
context sensitive) it sets the tainted flag.

SRVE instrument(BasicBlock bb)
bool tainted = true;
foreach Instruction i in bb

if i is STM read
tainted = true

else if i is function call
tainted = true

else if i is dangerous
if tainted

instrument(i)
tainted = false

SRVE is conservative in initializing each basic block
as tainted. Global analysis could be used to identify basic
blocks that are clean on entry, however our results show that
SRVE eliminates most of the redundant validation barriers
in our benchmarks so we are not compelled to implement
anything more costly yet.

3.2 POSIX Signal Chaining and Validation
We seek to implement signal sandboxing at run time without
the aid of a dynamic binary translator, which requires some
careful software engineering. First, we provide custom han-

dlers for the necessary signals that perform validation and
abort if the signal was generated by zombie execution. In
the case that this signal is the result of consistent execution
we forward the signal to a chained user handler if one exists,
or perform the default action for that signal if it does not. We
prevent users from overwriting our handlers using dynamic
signal chaining interposition techniques in much the same
way as JavaTM’s libjsig [34] library, using libdl-based
interposing on signal and sigaction.

POSIX requires the use of an alternate stack in order to
handle a SIGSEGV resulting from a stack overflow. In the
absence of an alternate stack the default SIGSEGV handler
is used without regard for potential user-registered handlers.
If the TM user has not chained a SIGSEGV handler, or has
not specified an alternate stack for SIGSEGV execution, we
simply emulate the required terminate-and-core-dump for a
stack overflow. Unfortunately, such a core dump will show
that the sandboxing handler was running on an alternate
stack which would be inconsistent with the user’s expecta-
tion and violate the sandbox. At this time we simply require
that, if the user registers a SIGSEGV handler, then they must
do so with an alternate stack—even if they do not expect to
successfully handle stack overflows.

We only need to sandbox the synchronous signals dis-
tinguished by the libc reference manual [35] as program
error signals. The remaining signals are asynchronous noti-
fications of events that the program has asked to, or needs
to, know about. We believe that user (or default) handlers
for these asynchronous signals can be run without regard for
the current transactional state of the interrupted execution.
These signal handlers are effectively independent threads of
execution and thus must be properly synchronized and will
be protected from potential zombies with standard transac-
tional mechanisms.

3.3 POSIX Timer-based Periodic Validation
We guard against inconsistent infinite loops and infinite re-
cursion by installing a POSIX timer that triggers periodic
validation. This technique is a compelling choice in RSTM,
which allows dynamic adaptation among numerous STM
algorithms, most of which are opaque. Instrumenting loop
back edges statically would force those algorithms to pay
the back-edge overhead needlessly.

Implementing the timer-based approach requires careful
software engineering. The user application may attempt to
use the process-wide POSIX timer functionality, so we must
be prepared to interpose timer-based routines, multiplex li-
brary timers with client timers, and use the signal chaining
infrastructure to call chained handlers if required.

Our handler leverages an existing RSTM transactional-
epoch mechanism to detect transactions that have made
progress since the last timer event, and uses pthread kill
to trigger validation in those that have not. If all threads
have made progress, we reduce the frequency of future val-
idation interrupts. If an interrupted thread detects that it is

4 2012/2/15

volatile uintptr t global time
thread uintptr t start time
thread WriteSet writes
thread ReadLog reads
thread LockLog locks
thread int cursor

do lazy hashing ()
if (cursor == reads.size()) return true
while (cursor < reads. size ())

addr = reads[cursor]. orec
reads [cursor]. orec = &orecs[hash(addr)]
cursor++

return false

STM write(addr, val)
writes . log(addr, val)

STM read(addr)
if (found = writes . find (addr)) return found
reads . log(addr)
return ∗addr

STM validate()
if (start time != global time)

if (do lazy hashing () != true)
snapshot = global time
foreach read in reads

if (read. orec→time > start time)
abort

start time = snapshot

STM begin()
cursor = 0
start time = global time

revert locks and abort ()
foreach lock in locks

lock . revert ()
abort

STM commit()
if (writes .empty())

STM validate()
return

foreach write in writes
if (write . orec→time > start time)

if (write . orec→lock != my lock)
revert locks and abort ()

if (! write . acquire with (my lock))
revert locks and abort ()

locks . log(write)
end time = fetch and increment(global time) + 1
if (end time != start time + 1)

do lazy hashing ()
foreach read in reads

if (read. orec→time > start time)
if (read. orec→lock != my lock)

revert locks and abort ()
foreach write in writes
∗write .addr = write. value

foreach lock in locks
lock . orec→time = end time

Figure 1. Simplified implementations of the relevant parts of our sandboxed STM. Many details are suppressed for clarity (not
shown for instance: privatization, subword accesses, adaptivity, epochs, log maintenance, etc). The abort routine abstracts the
non-local control flow associated with aborting a transaction, often implemented as longjmp.

in an inconsistent infinite loop, we increase the frequency of
future interrupts. We set upper and lower bounds on timer
frequency at 100Hz and 1Hz, respectively. We also provide a
low overhead mechanism to enable and disable timer-based
validation on a per-thread basis; this can be used to protect
critical, non-reentrant, STM library code.

4. A Sandboxed STM
Section 3 presents the three components of our sandboxing
infrastructure. Though we have yet to develop a formal proof
of safety, we believe that these components demonstrate the
feasibility of sandboxing in an unmanaged language. Using
this infrastructure we have develop a novel, sandboxed STM
algorithm that descends from the time-based algorithms of
Dice et al.’s TL2 [8], Felber et al.’s TinySTM [10], and
Dragojević et al.’s SwissTM [9] in their buffered-update
forms, using Marathe et al.’s two-counter commit protocol
[21] to provide privatization safety. A simplified version of
the algorithm appears in Figure 1.

While traditional, time-based STM read barriers compute
and inspect an orec and perform at least one memory fence,
our runtime merely performs a read-after-write check, logs
the address and returns the current value at this address. The

simplicity results from our ability to lazily convert addresses
into orec locations at validation time—a task we accomplish
by keeping a cursor that indicates of the next read log entry
that must be hashed. This cursor serves a second purpose
in STM validate as the tainted bit for conservative dy-
namic filtering (Section 3.1). Lazy hashing, combined with
standard time-based filtering, eliminates the need to compute
hashes during single-threaded execution, resulting in lower
single-threaded overhead than comparable opaque systems.
The lack of ordering constraints or volatile accesses in the
STM read barrier contributes further reductions in overhead.

We continue to use TinySTM-style timestamp extension,
updating our start time on a successful validation; how-
ever, where TinySTM can recover from reading an inconsis-
tent value, we cannot. TinySTM can validate and re-execute
the inconsistent read based on the new start time before
returning from the STM read barrier. Our proposed STM
will return the inconsistent value which may then be used
in the client code, dooming the transaction.

5. Performance Evaluation
The goal of our performance evaluation is twofold. First, we
show that the cost of the sandboxing infrastructure (i.e., the

5 2012/2/15

0.72

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30
H

as
h
B

en
ch

−
R

1
0
0

H
as

h
B

en
ch

−
R

9
0

H
as

h
B

en
ch

−
R

7
5

H
as

h
B

en
ch

−
R

6
7

H
as

h
B

en
ch

−
R

5
0

T
re

eB
en

ch
−

R
1
0
0

T
re

eB
en

ch
−

R
9
0

T
re

eB
en

ch
−

R
7
5

T
re

eB
en

ch
−

R
6
7

T
re

eB
en

ch
−

R
5
0

L
is

tB
en

ch
−

R
1
0
0

L
is

tB
en

ch
−

R
9
0

L
is

tB
en

ch
−

R
7
5

L
is

tB
en

ch
−

R
6
7

L
is

tB
en

ch
−

R
5
0

F
o
re

st
B

en
ch

−
R

1
0
0

F
o
re

st
B

en
ch

−
R

9
0

F
o
re

st
B

en
ch

−
R

7
5

F
o
re

st
B

en
ch

−
R

6
7

F
o
re

st
B

en
ch

−
R

5
0

m
es

h
b
ay

es
g
en

o
m

e
k
m

ea
n
s−

lo
w

k
m

ea
n
s−

h
ig

h
ss

ca
2

v
ac

at
io

n
−

lo
w

v
ac

at
io

n
−

h
ig

h
y
ad

a
la

b
y
ri

n
th

n
o
_
o
u
tp

u
t_

ap
ri

o
ri

h
m

m
p
fa

m
h
m

m
se

ar
ch

h
m

m
ca

li
b
ra

te
sc

al
p
ar

c
u
ti

li
ty

_
m

in
e

V
al

id
at

io
n
s

p
er

 S
T

M
 R

ea
d

Sandboxing Instrumentation Overhead

 0.00

Figure 2. The number of dynamic validations that are re-
quired relative to the number of STM read barriers.

dangerous operation instrumentation and timer-based vali-
dation) is comparable to that of an opaque STM. Second, we
show that zombie transactions do not waste a troublesome
amount of work, even in an STM that is strongly susceptible
to such wasted work.

All of our evaluation results are performed using a 6-core
XeonTME5649 processor running Linux 2.6.34. All bench-
marks are compiled using a research version of the DTMC
compiler that is compatible with LLVM-2.9. Sandboxing in-
strumentation is generated using a custom LLVM pass im-
plementing the SRVE algorithm (Section 3.1). The STM
runtimes are based on a development version of RSTM,
compiled into a highly optimized archive library with gcc-
4.6.2, and linked into the benchmarks as native 64-bit li-
braries.

RSTM contains a set of microbenchmarks that allow us
to focus our evaluation on the performance of STMs in spe-
cific conditions. We use the set microbenchmark that per-
forms repeated inserts, lookups, and deletes in sets imple-
mented as lists, hashtables, and red-black trees. This mi-
crobenchmark has no dangerous operations, aside from read-
only (STM commit) operations, but does suffer from incon-
sistent infinite loops and inconsistent SIGSEGV signals. The
RSTM mesh application performs Delaunay mesh triangu-
lation using transactions [29]. It uses transactions sparingly
but does contain dangerous operations. We also use Minh et
al.’s STAMP benchmark suite [23], patched to support com-
pilation and instrumentation with DTMC, and Kestor et al.’s
RMS-TM benchmark suite [19], containing transactionalized
versions of benchmarks in the recognition, mining, and syn-
thesis spectrum.

5.1 Sandboxing Infrastructure
Figure 2 compares the dynamic number of validation barri-
ers when pre-validating dangerous operations to the number
when post-validating every STM read operation. The −R
suffixes in the RSTM microbenchmark name indicate the
percentage of read-only transactions in the particular exe-
cution. Here we see that sandboxing has the potential to re-

duce, sometimes dramatically, the number of validation bar-
riers performed during an execution. In contexts with a large
number of short and/or read-only transactions, sandboxing’s
forced validation at STM commit results in much higher than
average validation rate, maxing out at about 0.28 per read
for the read-only HashSet benchmark. In general, the rate is
much lower, and we often find that transactions contain no
dangerous operations and thus perform no validations aside
from those required at writer commit for both sandboxing
and opaque implementations.

The single outlier is RMS-TM’s no output apriori
where our SRVE analysis fails to effectively eliminate re-
dundant validations, which make up 75% of the dynamic
validations encountered. This suggests that a better static
analysis may be important in a production environment.
Note however that dynamic filtering means that the only cost
incurred during a redundant validation is that of a function
call and branch.

The overhead of timer-based validation, given the upper
and lower frequency bounds of 100Hz and 1Hz, respectively,
is so small that we cannot measure it.

5.2 Wasted Work
In an opaque STM implementation, a transaction that is
doomed to abort discovers this fact as soon as possible by
validating each instrumented STM read operation. The na-
ture of a sandboxed implementation is that a doomed trans-
action will continue to run for some period of time before
detecting that it is inconsistent. The work performed in this
zombie state is known as wasted work.

While our sandboxing infrastructure provides a hard up-
per bound on the potential amount of wasted work due to its
periodic validation, the real upper bound will be STM algo-
rithm specific, and the actual amount will depend on the ap-
plication. In particular, a principal motivation for sandbox-
ing is to shift the overhead of validation off the critical path
and into an available coprocessor [3, 20]. In this case wasted
work can be expected to be inconsequential: zombie status
will be detected “very soon.”

Nevertheless, we would like to evaluate the performance
of the sandboxed STM detailed in Section 4, to assess the
impact of wasted work in this “maximally lazy” case—and
of course to verify that our sandboxing infrastructure actu-
ally works. Figure 3 compares the throughput of our sand-
boxed STM (OrecSandbox) to that of an equivalent, priva-
tization safe, opaque STM (OrecELA) using four RSTM
microbenchmarks. Throughput numbers are averaged across
five runs and normalized to those of a coarse-grained-lock
STM implementation at 1 thread (CGL). Again, the−R suf-
fixes in the legend indicate the percentage of read-only trans-
actions in the particular execution.

The results of these tests are encouraging and consistent
with our expectations given Figure 2. The relative number of
validation barriers is a good predictor of a reduction in the

6 2012/2/15

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6

Sp
ee

du
p

R
el

at
iv

e
to

 C
G

L
at

 1
 T

hr
ea

d
(T

ra
ns

ac
tio

ns
 P

er
 S

ec
on

d)

Threads

HashBench

OrecSandbox-R100
OrecELA-R100

OrecSandbox-R90
OrecELA-R90

OrecSandbox-R75
OrecELA-R75

OrecSandbox-R67
OrecELA-R67

OrecSandbox-R50
OrecELA-R50

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 3 4 5 6

Sp
ee

du
p

R
el

at
iv

e
to

 C
G

L
at

 1
 T

hr
ea

d
(T

ra
ns

ac
tio

ns
 P

er
 S

ec
on

d)

Threads

ListBench

OrecSandbox-R100
OrecELA-R100

OrecSandbox-R90
OrecELA-R90

OrecSandbox-R75
OrecELA-R75

OrecSandbox-R67
OrecELA-R67

OrecSandbox-R50
OrecELA-R50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6

Sp
ee

du
p

R
el

at
iv

e
to

 C
G

L
at

 1
 T

hr
ea

d
(T

ra
ns

ac
tio

ns
 P

er
 S

ec
on

d)

Threads

TreeBench

OrecSandbox-R100
OrecELA-R100

OrecSandbox-R90
OrecELA-R90

OrecSandbox-R75
OrecELA-R75

OrecSandbox-R67
OrecELA-R67

OrecSandbox-R50
OrecELA-R50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6

Sp
ee

du
p

R
el

at
iv

e
to

 C
G

L
at

 1
 T

hr
ea

d
(T

ra
ns

ac
tio

ns
 P

er
 S

ec
on

d)

Threads

ForestBench

OrecSandbox-R100
OrecELA-R100

OrecSandbox-R90
OrecELA-R90

OrecSandbox-R75
OrecELA-R75

OrecSandbox-R67
OrecELA-R67

OrecSandbox-R50
OrecELA-R50

Figure 3. Our sandboxed STM compared to an equivalent opaque STM on the RSTM set microbenchmarks. Throughput is
shown as speedup relative to coarse-grained-lock throughput at 1 thread.

overhead for OrecSandbox, and we see few ill effects from
wasted work.

The hashtable set consists of tiny, CPU-bound transac-
tions, where the cost of validation is quite low. OrecSand-
box suffers from negligible wasted work in this context, and
thus its performance relative to OrecELA is entirely pre-
dictable. Read-only transactions typically read a single loca-
tion, thus the single validation done by OrecELA is directly
balanced by the single validation done during STM commit
in OrecSandbox. OrecELA occasionally preforms multiple
validations per transaction when it encounters a chained
bucket that must be followed. As writers become more com-
mon, OrecELA transactions must validate more frequently
than their OrecSandbox counterparts resulting in slightly
less scalable performance. The baseline OrecELA imple-
mentation contains a scalability bottleneck that manifests at
six cores—mirrored by OrecSandbox—which we are still in-
vestigating.

The two tree-based benchmarks contain longer, larger
transactions, as well as cases where rotation provides large
asymmetries. These cases are interesting tests of our sand-
boxing infrastructure as they both suffer from inconsistent
SEGFAULTs and infinite loops. Nonetheless, relative perfor-
mance again tracks the results predicted by Figure 2. Orec-

Sandbox consistently outperforms its opaque counterpart in
these conditions.

The list microbenchmark evaluates performance in the
context of large, as well as highly contended, transactions.
Large, non-conflicting transactions are an ideal environment
for our OrecSandbox implementation, which simply per-
forms a single validation barrier at commit time, where the
OrecELA implementation must perform the barrier for each
node read during the search. This results in substantially
less overhead for the OrecSandbox runtime, as well as better
scalability when conflicts are infrequent. On the other hand,
writer transactions trigger high abort rates that OrecELA
tolerates better due to its opaque validation. OrecSandbox
suffers from large amounts of wasted work in this context.
It must be noted that neither runtime performs well in this
common-conflict setting, however it suggests that RSTM’s
ability to dynamically adapt between opaque and sandboxed
execution is a valuable feature.

These microbenchmark results show the potential of
sandboxed STM. We were unable to get stable results for
parallel execution of STAMP and RMS-TM at this time,
but intend to continue this investigation and anticipate that
Figure 2 will continue to provide accurate predictions for
OrecSandbox performance.

7 2012/2/15

6. Conclusions
We have shown that the infrastructure required to support a
sandboxed STM in an unmanaged language is both possible
and practical. Furthermore our positive preliminary results
from testing a novel sandboxed STM indicate that the devel-
opment of sandboxed STMs may be a promising avenue to-
ward improved STM (and HTM) performance—particularly
if sandboxing is used to enable out-of-band validation. We
believe that this work will enable future researchers to ex-
plore this design space without concern.

Future Work Our general notion of dangerous operations
and sandboxing semantics must be formalized to prove that
we have not overlooked important cases where instrumenta-
tion is necessary. At the same time, formalization is likely
to ignore certain practical interactions that the program has
with the system, e.g., operating system accounting, perfor-
mance counters, debugging, etc., where zombie execution
will become visible. Working within such a setting remains
a topic of research.

The analysis presented here is valid only for buffered-
update STMs due to the fact that we are not considering
STM write barriers to be dangerous. For in-place systems,
STM write barriers must be instrumented and thus the num-
ber of sandboxing validation barriers will be substantially
larger. This is more than simply an academic issue, as sand-
boxed STMs such as the one presented by Kestor et al. [20]
depend on in-place stores for their performance.

The opportunity exists to implement more expensive
static analysis to attempt to eliminate always-redundant
instrumentation on dangerous operations. This could in-
clude full information-flow tracking as well as potential
code cloning and specialization to partition occasionally-
redundant instrumentation points into always-redundant and
necessary pairs.

Our microbenchmarks imply that sandboxed STMs should
perform well in low-contention conditions with moderately-
sized transactions, however more testing is needed to verify
that this is the case.

Acknowledgments
Our thanks to: Patrick Marlier for his help in understanding
the DTMC/TinySTM code base, as well as his implementa-
tion of the DTMC shim for RSTM used in our evaluation;
Michael Spear for his assistance in the development of our
sandboxed STM; Martin Nowak for his help in delivering a
DTMC compiler compatible with LLVM-2.9; and Gökçen
Kestor for assistance with the RMS-TM benchmark suite. In
addition, we thank our reviewers for their careful reading of
our original draft and their resulting valuable advice.

References
[1] Draft Specification of Transaction Language Constructs for

C++. Version 1.0, IBM, Intel, and Sun Microsystems, Aug.
2009.

[2] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and Runtime Support
for Efficient Software Transactional Memory. In Proc. of the
SIGPLAN 2006 Conf. on Programming Language Design and
Implementation, pages 26–37, June 2006.

[3] J. Casper, T. Oguntebi, S. Hong, N. G. Bronson, C. Kozyrakis,
and K. Olukotun. Hardware Acceleration of Transactional
Memory on Commodity Systems. In Proc. of the 16th Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, Mar. 2011.

[4] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L.
Scott, and M. F. Spear. Hybrid NOrec: A Case Study in the
Effectiveness of Best Effort Hardware Transactional Memory.
In Proc. of the 16th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Mar. 2011.

[5] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions
as the Foundation of a Memory Consistency Model. In Proc.
of the 24th Intl. Symp. on Distributed Computing, Sept. 2010.
Earlier but expanded version available as TR 959, Dept. of
Computer Science, Univ. of Rochester, July 2010.

[6] D. Detlefs. Unpublished manuscript, 2007.
[7] D. Dice and N. Shavit. TLRW: Return of the Read-Write

Lock. In 4th ACM SIGPLAN Workshop on Transactional
Computing, Feb. 2009.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In Proc. of the 20th Intl. Symp. on Distributed Computing,
pages 194–208, Sept. 2006.

[9] A. Dragojević, R. Guerraoui, and M. Kapałka. Stretching
Transactional Memory. In Proc. of the SIGPLAN 2009 Conf.
on Programming Language Design and Implementation, June
2009.

[10] P. Felber, T. Riegel, and C. Fetzer. Dynamic Performance
Tuning of Word-Based Software Transactional Memory. In
Proc. of the 13th ACM Symp. on Principles and Practice of
Parallel Programming, pages 237–246, Feb. 2008.

[11] P. Felber, E. Rivière, W. M. Moreira, D. Harmanci, P. Mar-
lier, S. Diestelhorst, M. Hohmuth, M. Pohlack, A. Cristal,
I. Hur, O. S. Unsal, P. Stenström, A. Dragojevic, R. Guer-
raoui, M. Kapalka, V. Gramoli, U. Drepper, S. Tomić, Y. Afek,
G. Korland, N. Shavit, C. Fetzer, M. Nowack, and T. Riegel.
The Velox Transactional Memory Stack. IEEE Micro, 30(5):
76–87, Sept.-Oct. 2010.

[12] K. Fraser. Practical Lock-Freedom. Ph. D. dissertation,
UCAM-CL-TR-579, Computer Laboratory, Univ. of Cam-
bridge, Feb. 2004.

[13] R. Guerraoui and M. Kapałka. On the Correctness of Transac-
tional Memory. In Proc. of the 13th ACM Symp. on Principles
and Practice of Parallel Programming, Feb. 2008.

[14] R. Guerraoui and M. Kapałka. Principles of Transactional
Memory. Morgan & Claypool, 2010.

[15] T. Harris and K. Fraser. Language Support for Lightweight
Transactions. In OOPSLA 2003 Conf. Proc., Oct. 2003.

[16] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimiz-
ing Memory Transactions. In Proc. of the SIGPLAN 2006
Conf. on Programming Language Design and Implementa-
tion, pages 14–25, June 2006.

8 2012/2/15

[17] M. Herlihy and J. E. Moss. Transactional Memory: Architec-
tural Support for Lock-Free Data Structures. In Proc. of the
20th Intl. Symp. on Computer Architecture, pages 289–300,
May 1993. Expanded version available as CRL 92/07, DEC
Cambridge Research Laboratory, Dec. 1992.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer
III. Software Transactional Memory for Dynamic-sized Data
Structures. In Proc. of the 22nd ACM Symp. on Principles of
Distributed Computing, pages 92–101, July 2003.

[19] G. Kestor, S. Stipic, O. Unsal, A. Cristal, and M. Valero.
RMS-TM: A Transactional Memory Benchmark for Recog-
nition, Mining, and Synthesis Applications. In 4th ACM SIG-
PLAN Workshop on Transactional Computing, Feb. 2009.

[20] G. Kestor, R. Gioiosa, T. Harris, O. S. Unsal, A. Cristal, I. Hur,
and M. Valero. STM2: A Parallel STM for High Performance
Simultaneous Multithreading Systems. In Proc. of the 2011
Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, Oct. 2011.

[21] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable Tech-
niques for Transparent Privatization in Software Transactional
Memory. In Proc. of the 2008 Intl. Conf. on Parallel Process-
ing, Sept. 2008.

[22] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai,
R. L. Hudson, B. Saha, and A. Welc. Practical Weak-
Atomicity Semantics for Java STM. In Proc. of the 20th ACM
Symp. on Parallelism in Algorithms and Architectures, pages
314–325, June 2008.

[23] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford Transactional Applications for Multi-
Processing. In Proc. of the 2008 IEEE Intl. Symp. on Workload
Characterization, Sept. 2008.

[24] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dy-
namic Binary-Rewriting Approach to Software Transactional
Memory. In Proc. of the 16th Intl. Conf. on Parallel Archi-
tectures and Compilation Techniques, pages 365–375, Sept.
2007.

[25] Reconfigurable Software Transactional Memory Runtime.
Project web site. code.google.com/p/rstm/.

[26] T. Riegel, C. Fetzer, and P. Felber. Snapshot Isolation for Soft-
ware Transactional Memory. In 1st ACM SIGPLAN Workshop
on Transactional Computing, June 2006.

[27] T. Riegel, C. Fetzer, and P. Felber. Time-based Transactional
Memory with Scalable Time Bases. In Proc. of the 19th ACM
Symp. on Parallelism in Algorithms and Architectures, pages
221–228, June 2007.

[28] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software
Transactional Memory System for a Multi-Core Runtime. In
Proc. of the 11th ACM Symp. on Principles and Practice of
Parallel Programming, pages 187–197, Mar. 2006.

[29] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe.
Delaunay Triangulation with Transactions and Barriers. In
Proc. of the 2007 IEEE Intl. Symp. on Workload Characteri-
zation, Sept. 2007. Benchmarks track.

[30] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott.
Ordering-Based Semantics for Software Transactional Mem-
ory. In Proc. of the 12th Intl. Conf. on Principles of Dis-

tributed Systems, Dec. 2008.
[31] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.

Privatization Techniques for Software Transactional Memory.
Tr 915, Dept. of Computer Science, Univ. of Rochester, Feb.
2007.

[32] M. F. Spear, M. M. Michael, M. L. Scott, and P. Wu. Reduc-
ing Memory Ordering Overheads in Software Transactional
Memory. In Proc. of the Intl. Symp. on Code Generation and
Optimization, Mar. 2009.

[33] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L.
Scott. Conflict Detection and Validation Strategies for Soft-
ware Transactional Memory. In Proc. of the 20th Intl. Symp.
on Distributed Computing, pages 179–193, Sept. 2006.

[34] libjsig: JavaTMRFE 4381843. Online documenta-
tion. docs.oracle.com/javase/1.5.0/docs/guide/vm/
signal-chaining.html.

[35] The GNU C Library. Online documentation. www.gnu.org/
s/hello/manual/libc/index.html.

[36] L. Wall, T. Christiansen, and J. Orwant. Programming Perl.
O’Reilly Media, Third Edition, 2000.

9 2012/2/15

code.google.com/p/rstm/
docs.oracle.com/javase/1.5.0/docs/guide/vm/signal-chaining.html
docs.oracle.com/javase/1.5.0/docs/guide/vm/signal-chaining.html
www.gnu.org/s/hello/manual/libc/index.html
www.gnu.org/s/hello/manual/libc/index.html

	Introduction
	Sandboxing Pragmatics
	Dangerous Events
	Impact on existing STM algorithms

	Sandboxing Infrastructure
	LLVM-based Instrumentation
	POSIX Signal Chaining and Validation
	POSIX Timer-based Periodic Validation

	A Sandboxed STM
	Performance Evaluation
	Sandboxing Infrastructure
	Wasted Work

	Conclusions

