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Abstract
Speculation is a well-known means of increasing parallelism
among concurrent methods that are usually but not always
independent. Traditional nonblocking data structures em-
ploy a particularly restrictive form of speculation. Software
transactional memory (STM) systems employ a much more
general—though typically blocking—form, and there is a
wealth of options in between.

We explore data-structure-specific speculation as a design
pattern for concurrent data structures. Using several different
structures as examples, we consider issues of safety (sand-
boxing), validation mechanism, and granularity of locking.
We note that it can sometimes be useful to perform valida-
tion and locking at different granularities. Through experi-
ments on UltraSPARC and x86 platforms, we demonstrate
that MSpec can lead to highly efficient algorithms, particu-
larly in methods with a significant search component.

1. Introduction
Concurrent data structures play a key role in multithreaded
programming. Typical implementations use locks to ensure
the atomicity of method invocations. Locks are often overly
pessimistic: they prevent threads from executing at the same
time even if their operations don’t actually conflict. Finer
grain locking can reduce unnecessary serialization at the ex-
pense of additional acquire and release operations. For data
that are often read but not written, reader-writer locks will
allow non-mutating methods to run in parallel. In important
cases, RCU [16] may additionally eliminate all or most of
the overhead of reader synchronization. Even so, the typical
concurrent data structure embodies an explicit compromise
between, on the one hand, the overhead of acquiring and re-
leasing extra locks and, on the other hand, the loss of poten-
tial concurrency when logically nonconflicting method calls
acquire the same lock.

In a different vein, nonblocking concurrent data structures
are inherently optimistic. Their dynamic method invoca-
tions always include an instruction that constitutes their lin-
earization point. Everything prior to the linearization point
is (speculative) preparation, and can be repeated if neces-
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sary without compromising the correctness of other method
invocations. Everything subsequent to the linearization point
is “cleanup,” and can typically be performed by any thread.

The usual motivation for nonblocking data structures is
to avoid performance anomalies when a lock-holding thread
is preempted or stalled. For certain important (typically sim-
ple) data structures, average-case performance may also im-
prove: in the absence of conflicts (and consequent misspec-
ulation), the reduction in serial work may outweigh the in-
crease in (non-serial) preparation and cleanup work. Unfor-
tunately, for more complex data structures the tradeoff tends
to go the other way and, in any event, the creation of efficient
nonblocking algorithms is notoriously difficult.

Transactional memory, by contrast, places the empha-
sis on ease of programming. Few implementations are non-
blocking, but most are optimistic. With hardware support,
TM may provide performance as good or better than that
of the best-tuned fine-grain locking. For application code,
written by non-experts, even software TM (STM) may out-
perform coarse-grain locking. For concurrent data structures
in libraries, however, STM seems unlikely ever to be fast
enough to supplant lock-based code written by experts.

But what about speculation? Recent work by Bronson
et al. [2] demonstrates that hand-written, data-structure-
specific speculation can provide a significant performance
advantage over traditional pessimistic alternatives. Specif-
ically, the authors describe a relaxed-balance speculative
AVL tree that outperforms the java.util.concurrent
.ConcurrentSkipListMap by 32–39%. Their code em-
ploys a variety of highly clever optimizations. While fast,
it is very complex, and provides little guidance for the con-
struction of other hand-written speculative data structures.

Our work takes a different tack. Drawing inspiration
(loosely) from the NOrec STM algorithm [4], we present
a general design pattern, Manual SPECulation(MSpec), for
concurrent data structures. Following MSpec, programmers
can, with modest effort, add speculation to existing lock-
based code, or write new versions based on sequential code.
While less efficient than the work of Bronson et al., MSpec
is not limited to a particular data structure, and does not
require dramatic code mutation.

Our intent is to establish manual speculation as a widely
recognized complement to locking in the concurrent pro-
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grammer’s toolbox. Using four example data structures—
equivalence sets, Blink-trees, cuckoo hash tables, and linear
bitmap allocators—we show how to tune speculation and
the related tasks of sandboxing and validation to obtain short
critical sections and low overhead at different locking gran-
ularities. We note that in contrast to STM, MSpec makes it
easy to perform locking and validation at different granular-
ities. Subjectively, we also find that MSpec does not intro-
duce significant code complexity relative to equivalent lock-
based implementations, and it may even simplify the locking
protocol for certain data structures.

In experiments on UltraSPARC and x86 platforms, we
find that MSpec outperforms pessimistic code with similar
or (in many cases) finer granularity locking. The advantage
typically comes both from reducing the overall number of
atomic (read-modify-write) instructions and from moving
instructions and—more importantly—cache misses out of
critical sections (i.e., off the critical path) and into specu-
lative computation.

2. Motivating Example: Equivalence Sets
We illustrate the use of MSpec style with a concurrent im-
plementation of equivalence sets. An instance of the data
structure partitions some universe of elements into a col-
lection of disjoint sets, where the elements of a given set
have some property in common. For illustrative purposes,
the code of Figure 1 envisions sets of integers, each rep-
resented by a sorted doubly-linked list. Two methods are
shown. The Move method moves an integer from one set to
another. The Sum method iterates over a specified set and re-
turns some aggregate result. We have included a set field in
each element to support a constant-time MemberOf method
(not shown). Conventional lock-based code is straightfor-
ward: each method comprises a single critical section pro-
tected (in our code) by a single global lock.

2.1 A Speculative Implementation
The speculative version of Sum exploits the fact that the
method is read only. By adding a version number to each
set, we obtain an obstruction-free [10] SpecSum. If we iter-
ate over the entire set without observing a change in its ver-
sion number, we know that we have seen a consistent snap-
shot. As in most STM systems, failed validation aborts the
loop and starts over. In MSpec, however, the programmer is
responsible for any state that must be restored (in this case,
none).

The baseline critical section in Move begins by remov-
ing element e from its original list (lines 15–16). An ap-
propriate (sorted) position is then found in the target list s
(lines 17–19). Finally, e is inserted into s at the chosen po-
sition (lines 20–23).

The position-finding part of Move is read only, so it can
be performed speculatively in SpecMove—that is, before en-
tering the critical section. The validation at line 51 ensures

that the next element remains in the same set and no new
element has been inserted between prev and next since
line 49. To reflect changes to the circular list, a set’s ver-
sion number is increased both before and after a modifica-
tion. An odd version number indicates that an update is in
process, preventing other threads from starting new specula-
tions (line 30).

2.2 Performance Results
2.2.1 Experimental Platforms
We tested our code on a Sun Niagara 2 and an Intel Xeon
E5649. The Sun machine has two UltraSPARC T2+ chips,
each with 8 in-order, 1.2 GHz, dual-issue cores, and 8 hard-
ware threads per core (4 threads per pipeline). The Intel ma-
chine also has two chips, each with 6 out-of-order, 2.53 GHz,
hyper-threaded cores, for a total of 24 hardware thread con-
texts. Code was compiled with gcc 4.4.5 (-O3).

To measure throughput, we arrange for a group of worker
threads to repeatedly call randomly chosen methods of the
data structure for a fixed period of time (1 second). We bind
each thread to a logical core to eliminate thread migration,
and fill all thread contexts on a given chip before employing
multiple chips.

Unless otherwise specified, all mutex locks used in this
paper are test-and-test and set locks with exponential
back-off, tuned individually for the two experimental ma-
chines.

2.2.2 Test Configurations
We compare six different implementations of equivalence
sets.

CGL is the coarse-grained “baseline” code of Figure 1.
The single global lock is shared by all sets, and becomes a
bottleneck at high thread counts.

Spec-CGL is the speculative code of Figure 1. Its critical
sections are shorter than those of CGL.

FGL is a fine-grained locking version with a single lock
per set. It is slightly more complex than CGL because the
critical section in Move must acquire two locks (in canonical
order, to avoid deadlock).

Spec-FGL is a speculative implementation of FGL. It
performs locking and validation at the same granularity,
so we combine the lock and version number into a single
field, eliminating the four version number increments in the
critical section.

TinySTM and ε-STM are transactional analogues of
CGL. TinySTM employs the RSTM [1] OrecEager back
end, which emulates TinySTM [6]. ε-STM employs elastic
transactions [7], which are optimized for search structures.
Loads and stores of shared locations were hand-annotated.

2.2.3 Scalability
Performance results appear in Figures 2 and 3. We used
50 equivalence sets in all cases, with either 500 or 5000
elements in the universe (10 or 100 per set, on average).
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1 int Sum (Set *s) {
2 int sum = 0;
3 globalLock. acquire () ;
4 Element *next = s→head→next;
5 while (next != s→head) {
6 sum += next→value;
7 next = next→next;
8 }
9 globalLock. release () ;

10 return sum;
11 }

13 void Move (Element *e, Set *s) {
14 globalLock. acquire () ;
15 e→prev→next = e→next;
16 e→next→prev = e→prev;
17 Element *next = s→head;
18 while (next→value < e→value)
19 next = next→next;
20 next→prev→next = e;
21 next→prev = e;
22 e→next = next ;
23 e→set = s ;
24 globalLock. release () ;
25 }

26 int SpecSum (Set *s) {
27 again :
28 int sum = 0;
29 int ver = s→ver;
30 if (ver & 1) goto again ;
31 Element *next = s→head→next;
32 while (next != s→head && ver == s→ver) {
33 sum += next→value;
34 next = next→next;
35 }
36 if (ver != s→ver) goto again ;
37 return sum;
38 }

40 void SpecMove (Element *e, Set *s) {
41 again :
42 Element *prev = s→head;
43 Element *next = prev→next;
44 while (next→value < e→value) {
45 prev = next ;
46 next = next→next;
47 if (prev→set != s)
48 goto again ;
49 }

50 globalLock. acquire () ;
51 if (next→set != s || next→prev != prev) {
52 globalLock. release () ;
53 goto again ;
54 }
55 e→set→ver++;
56 e→prev→next = e→next;
57 e→next→prev = e→prev;
58 e→set→ver++;
59 s→ver++;
60 next→prev→next = e;
61 next→prev = e;
62 e→next = next ;
63 e→set = s ;
64 s→ver++;
65 globalLock. release () ;
66 }

Figure 1. Coarse-grained lock implementation of concurrent equivalence sets. Sum and Move are baseline code, while SpecSum
and SpecMove are code written in MSpec style. The value field of each set’s head is initialized to +∞ to avoid loop bound
checks in lines 18 and 44. For simplicity, memory fences are omitted.
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Figure 2. Throughput of concurrent equivalence sets on
Niagara 2. The X axis is the number of concurrent threads;
the Y axis is method invocations per second.

We use 100% Move operations to simulate a write-dominant
workload, and a 50/50 mix of Move and Sum operations
to simulate a mixed but higher-contention workload. The
number of elements per set determines the amount of work
that can be moved out of the critical section in SpecMove.

Figure 2 illustrates the scalability of our five implemen-
tations for different workloads on Niagara 2. As expected,
FGL outperforms CGL in all tests, and spec-FGL outper-
forms spec-CGL. Since an invocation of the Move method
holds 2 locks simultaneously, FGL reaches its peak through-
put when the thread count is around 32. The sharper perfor-
mance drop after 64 threads is due to cross-chip communi-
cation costs.
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Figure 3. Throughput (invocations/s) of concurrent equiva-
lence sets on Intel Xeon E5649.

MSpec improves scalability for FGL, and throughput for
both CGL and FGL. In the 5000-element, 50/50 sum/move
case, Spec-CGL even outperforms FGL by a tiny margin,
out to 64 threads. This suggests that simple coarse-grained
locking with speculation could be an attractive alternative
to fine-grained locking for workloads with significant work
amenable to speculation.

The baseline overhead of Spec-FGL, measured by com-
paring to FGL on a single thread, is less than 10%. There-
fore, even without contention, Spec-FGL can deliver com-
petitive performance. By contrast, both TinySTM and ε-
STM have significant baseline overhead (2–4× slower than
CGL on a single thread), and outperform only CGL.
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Results on the Intel machine resemble those on Niagara 2,
with a couple of interesting exceptions. First, single-thread
performance is significantly higher in the 500-element case,
where the data set can almost fit in the 32KB L1 data cache.
Second, STM, while still slower than spec-FGL in most
cases, performs much better on the Intel machine than it does
on Niagara 2. We attribute the difference to the lower cost
of atomic (CAS) instructions, which reduces the penalty for
locking ownership records, and to out-of-order execution,
which allows much of the STM instrumentation to execute
in parallel with “ordinary” computation.

3. Principles of Coding in MSpec Style
The previous section showed how to convert a particular
lock-based data structure to the MSpec style. This section
generalizes on the example, and discusses three key design
principles.

3.1 Code Skeleton
The code skeleton for a generic MSpec critical section ap-
pears in Figure 4. The key idea is to move work from the
original critical section into speculation. Once the specula-
tive phase has “figured out what it wants to do,” the actual
writeback occurs under the protection of one or more locks.
To avoid erroneous write-back, the critical section must be-
gin by validating its view of memory (ensuring it was con-
sistent). If inconsistency can lead to erroneous behavior dur-
ing the speculative phase, additional validation operations
must be inserted there as well. Exactly what must be checked
to ensure consistency—and which locks acquired to ensure
serializability—is the programmer’s responsibility.

1 function SpecOp
2 again :
3 if (++ try counter > MAX TRY NUM)
4 return NonSpecOp
5 ... // speculative phase
6 if any validation in speculation phase fails
7 goto again
8 acquire ( locks )
9 if ( validation fails )

10 restore any necessary state
11 goto again
12 ... // nonspeculative phase
13 release ( locks )

Figure 4. Code skeleton of concurrent operation in MSpec
style.

This “parallel work, serial writeback” idiom is charac-
teristic of many STM systems. MSpec differs from these
systems in two key ways. First, in most STM systems, pro-
grammers cannot control the division between speculative
and nonspeculative work. In MSpec, programmers can move
work that is unlikely to cause conflicts into the speculative
section and keep the rest in the critical section. Second, val-
idation in STM systems, because it must be provably safe
in the general case, is generally both costly and frequent.
In MSpec, the validation mechanism is invoked only when

necessary, and can exploit the programmer’s understanding
of the specific data structure at hand.

If a method has no side effects (does not update the data
structure), it may be possible to move everything into the
speculative phase, and elide the critical section altogether.
We saw an example of this with the Sum method in Section 2.
If all read-only methods become speculative, we may be
able to replace a reader-writer lock with a simple mutual
exclusion lock.

3.2 What can be done in speculative code?
Generally, any work that does not move shared data into an
inconsistent state can be speculatively executed. Since the
speculative work typically comes from the original critical
section, intuitively, the more we are able to do in specula-
tion, the shorter the critical path should be at run time. The
principal caveat is that too large an increase in total work—
e.g., due to misspeculation or extra validation—may change
the critical path, so that the remaining critical section is
no longer the application bottleneck. (Speculation may also
have an impact on overall system throughput or energy con-
sumption, but we do not consider those issues here.)

In general, a to-be-atomic method may consist of several
logical steps. These steps may have different probabilities of
conflicting with the critical sections of other method invo-
cations. The overall conflict rate (and hence abort rate) for
the speculative phase of a method is bounded below by the
abort rate of the most conflict-prone step. Steps with a high
conflict rate may therefore best be left in the critical section.

There are several common code patterns in concurrent
data structures. Collection classes, for example, typically
provide lookup, insert, and remove methods. Lookup is typi-
cally read-only, and may often be worth executing entirely in
speculation. Insert and remove typically start with a search
to see whether the desired key is present. The search is in-
dependent of other computation and thus can be speculative
as well. In resource managers, an allocate method typically
searches for free resources in a shared pool before actually
performing allocation. The searching step can be moved to
speculation. In other data structures, time-consuming logi-
cal or mathematical computations, such as compression and
encryption, are also good candidates for speculation.

At least three factors at the hardware level can account for
a reduction in execution time when speculation is successful.
First, MSpec may lead to a smaller number of instructions on
the program’s critical path, assuming this consisted largely
of critical sections. Second, since the speculative phase and
the following critical section usually work on similar data
sets, speculation can serve as a data prefetcher, effectively
moving cache misses off the critical path. This can improve
performance even when the total number cache misses per
method invocation stays the same (or even goes up). Within
the limits of cache capacity, the prefetching effect increases
with larger working sets. Third, in algorithms with fine-
grain locks, speculation may reduce the number of locks that
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must be acquired, and locks are quite expensive on many
machines. We will return to these issues in more detail in
Section 4.

3.3 How do we validate?
Validation is the most challenging and flexible part of
MSpec. Most STM systems validate after every shared-
memory load, to guarantee opacity (mutual consistency of
everything read so far) [8]. Heuristics such as a global com-
mit counter [22] or per-location timestamps [5, 20] may al-
low many validation operations to complete in constant time,
but the worst-case cost is typically linear in the number of
shared locations read so far. (Also: per-location timestamps
aren’t privatization safe [15].) As an alternative to opacity,
an STM system may sandbox inconsistent transactions by
performing validation immediately before any “dangerous”
instruction, rather than after every load [3], but for safety in
the general case, a very large number of validations may still
be required.

In MSpec, we can exploit data-structure-specific pro-
grammer knowledge to minimize both the number of valida-
tions and their cost. Determining when a validation is neces-
sary is a tricky affair; we consider it further in the following
subsection. To minimize the cost of individual validations,
we can identify at least two broadly useful idioms.

Version Numbers (Timestamps): While STM systems
typically associate version numbers with individual objects
or ownership records, designers of concurrent data structures
know that they can be used at various granularities [2, 12].
Regardless of granularity, the idea is the same: if an up-
date to location l is always preceded by an update to the
associated version number, then a reader who verifies that a
version number has not changed can be sure that all reads in
between were consistent.

It is worth emphasizing that while STM systems often
conflate version numbers and locks (to minimize the num-
ber of metadata updates a writer must perform), versioning
and locking serve different purposes and may fruitfully be
performed at different granularities. In particular, we have
found that the number of locks required to avoid over-
serialization of critical sections is sometimes smaller than
the number of version numbers required to avoid unneces-
sary aborts. The code of Figure 1, for example, uses a single
global lock, but puts a version number on every set. With a
significant number of long-running readers (the lower-right
graphs in Figures 2 and 3), fine-grain locking provides little
additional throughput at modest thread counts, but a single
global version number would be disastrous. For read-mostly
workloads (not shown), the effect is even more pronounced:
fine-grain locking can actually hurt performance, but fine-
grain validation is essential.

In-place Validation: In methods with a search component,
the “right” spot to look up, insert, or remove an element
is self-evident once discovered: how it was discovered is

then immaterial. Mechanisms like “early release” in STM
systems exploit this observation [11]. In MSpec, we can
choose to validate simply by checking the local context. An
example appears at line 51 of Figure 1, where next→set
and next→prev are checked to ensure that the two key
nodes are still in the same set, and adjacent to one another.
When it can be used, in-place validation has low overhead, a
low chance of aborts, and zero additional space overhead.

3.4 What can go wrong and how do we handle it?
Speculative loads, almost by definition, constitute data races
with stores in the critical sections of other threads. At the
very least, speculative code must be prepared to see shared
data in an inconsistent state. On some machines, with some
compilers, it may also see “out of thin air” values or other vi-
olations of sequential consistency. Guaranteeing safety in the
face of data races is a significant challenge for MSpec, but
one that is shared by various other concurrent programming
tasks—notably, the implementation of synchronization it-
self. Informally, we expect to be safe if validation operations
include compiler and memory fences that serialize them with
respect to other code in the same thread and that guarantee,
when the validation succeeds, that no dynamic data race oc-
curred. The precise specification of sufficient conditions is a
subject of future work.

In general, our approach to safety is based on sandboxing
rather than opacity. It requires that we identify “dangerous”
operations and prevent them from doing any harm. Poten-
tially dangerous operations include the use of incorrect data
values, incorrect or stale data pointers, and incorrect indirect
branches. Incorrect data can lead to faults (e.g., divide-by-
zero) or to control-flow decisions that head into an infinite
loop or down the wrong code path. Incorrect data pointers
can lead to additional faults or, in the case of stores, to the
accidental update of nonspeculative data. Incorrect indirect
branches (e.g., through a function pointer or the vtable of a
dynamically chosen object) may lead to arbitrary (incorrect)
code.

An STM compiler, lacking programmer knowledge, must
be prepared to validate before every dangerous instruction—
or at least before those that operate on values “tainted” by
speculative access to shared data. In a few cases (e.g., prior
to a division instruction or an array access) the compiler may
be able to perform a value-based sanity check that delays
the need for validation. In MSpec, by contrast, we can be
much more aggressive about reasoning that the “bad cases”
can never arise (e.g., based on understanding of the pos-
sible range of values stored to shared locations by other
threads). We can also employ sanity checks more often, if
these are cheaper than validation (after following a child
pointer in a tree, for example, we might check to see whether
the target node’s parent field points back to where we came
from). Both optimizations may be facilitated by using a type-
preserving allocator, which ensures that deallocated mem-
ory is never reused for something of a different type [18].
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One final issue, shared with STM, is the possibility of
starvation in the face of repeated misspeculation. This is
most easily addressed by reverting to a nonspeculative ver-
sion of the code after some maximum number of aborts.

4. Additional Case Studies
This section outlines the use of MSpec in three additional
concurrent data structures, and summarizes performance re-
sults.

4.1 Blink-tree
Blink-trees [14, 21] are a concurrent enhancement of B+-
trees, an ordered data structure widely used in database and
file systems. The main difference between a B+-tree and
a Blink-tree is the addition of two fields in each node: a
high key representing the largest key among this node and
its descendants, and a right pointer linking the node to its
immediate right sibling. A node’s high key is always smaller
than any key of the right sibling or its descendants, allowing
fast determination of a node’s key range. The right pointer
facilitates concurrent operations.

The original disk-based implementation of a Blink-tree
uses the atomicity of file operations to avoid the need for
locking. Srinivasan and Carey describe an in-memory ver-
sion with a reader-writer lock in every node [23]. To perform
a lookup, a reader descends from the root to a leaf node, then
checks the node’s high key to see if the desired key is in
that node’s key range. If not (in the case that the node has
been split by another writer), the reader follows right point-
ers until an appropriate leaf is found. During this process, the
reader holds only one reader lock at a time. When moving to
the next node, it releases the previous node’s lock before ac-
quiring the new one. In an insert/remove operation, a writer
acts like a reader to locate a correct leaf node, then releases
that leaf’s reader lock and acquires the same leaf’s writer
lock. Because a node split may occur during the lock switch,
the writer starts another round of search for the proper leaf
using writer locks.

A full node A is split in three steps. First, a new node B
is allocated with its right pointer linking to A’s right sibling,
and half the elements from A are moved to B. Second, A’s
right pointer is redirected to B, and A’s writer lock is released.
Third, A’s new high key is inserted into its parent node. For
simplicity, we employ the remove algorithm of Lehman and
Yao [14], which does not merge underflowed leaf nodes; this
means there is no node deallocation in our code.

Speculation: The Blink-tree algorithm already uses fine-
grained locking. Its lookup, insert and remove operations
contain two kinds of critical sections: (1) Critical sections
protected by reader locks check a node’s key range for a
potential right move, or search for a key within a node. In
MSpec code, these are all replaced with equivalent specula-
tion. (2) Critical sections protected by writer locks perform
actual insertion and removal. If a node is full, a split oc-

0.0e0
5.0e6
1.0e7
1.5e7
2.0e7
2.5e7
3.0e7
3.5e7
4.0e7
4.5e7
5.0e7

12 4 8 12 16 20 24

10K, 50% Insert + 50% Remove

root-spec
spec

0.0e0

2.0e7

4.0e7

6.0e7

8.0e7

1.0e8

1.2e8

12 4 8 12 16 20 24

10K, 90% Lookup + 5% Insert/Remove

0.0e0
5.0e6
1.0e7
1.5e7
2.0e7
2.5e7
3.0e7
3.5e7
4.0e7
4.5e7

12 4 8 12 16 20 24

1M, 50% Insert + 50% Remove

0.0e0
1.0e7
2.0e7
3.0e7
4.0e7
5.0e7
6.0e7
7.0e7
8.0e7

12 4 8 12 16 20 24

1M, 90% Lookup + 5% Insert/Remove

Figure 5. Throughput of Blink-tree methods on Intel Xeon
E5649, for different tree sizes and method ratios.

curs in the critical section. The result of the MSpec trans-
formation is that lookup becomes entirely speculative, and
insert and remove start with a speculative search to check
the presence/absence of the key to be inserted/removed. By
performing searches in speculative mode, MSpec eliminates
the need for reader-writer locks. Simpler and cheaper mu-
tex locks suffice for updates, and lookup operations become
nonblocking.

Validation: Validation in a Blink-tree is relatively easy. Ev-
ery speculation works on a single node, to which we add a
version number. If (type-preserving) node deallocation were
added to remove, we would use one bit of the version number
to indicate whether the corresponding node is in use. By set-
ting the bit, deallocation would force any in-progress spec-
ulation to fail its validation and go back to the saved parent
(note: not to the beginning of the method) to retry.

Performance: Figure 5 compares the original and MSpec
versions of Blink-tree on the Intel Xeon. Results on the Ni-
agara 2 machine are qualitatively similar (Figure 6). The
non-MSpec code uses a simple, fair reader-writer lock [17].
To avoid experimental bias, the MSpec code uses the same
lock’s writer side. Each node contains a maximum of 32
keys in both algorithms, and occupies about 4 cache lines.
To avoid a performance bottleneck at the top of the tree, the
original algorithm uses speculation at the root node (only).

We ran the code with two different sizes of trees and
two different mixes of methods. Small trees (10K elements)
are more cache friendly than larger trees (1M elements),
but suffer higher contention because of fewer nodes. The
90% lookup, 5% insert and 5% remove method mix simu-
lates read-dominant workloads, and 0%:50%:50% simulates
write-dominant workloads. Before each throughput test, a
warm-up phase inserts an appropriate number of elements
into the tree, randomly selected from a double-sized range
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Figure 6. Throughput of Blink-tree methods on Niagara 2.

(e.g., [0, 20000) for small trees). Keys used in the timing test
are randomly selected from the same range.

MSpec provides both greater throughput and greater scal-
ability in all experiments, even with speculation at the non-
MSpec root node. MSpec scales very well even when the
benchmark is running across chips (>12 threads on the
Xeon; >64 on the Niagara 2). Comparing the left-hand and
right-hand graphs in Figures 5 and 6, we can see that the ad-
vantage of MSpec increases with higher contention (smaller
trees).

Figure 7 presents hardware profiling results to help under-
stand the behavior of speculation. Clearly, the critical path is
shorter in MSpec code. As a consequence, lock contention is
significantly reduced.1 In separate experiments (not shown)
we began with originally-empty trees, and ran until they
reached a given size. This, too, increased the advantage of
MSpec, as the larger number of node splits led to dispropor-
tionately longer critical sections in the non-MSpec runs.
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Figure 7. Hardware profiling of CPU cycles and L2 load
misses per operation for “50% Insert/Remove” on Intel
Xeon.

1 We modified the OS kernel so that hardware performance counters could
be read in user mode with low cost. Due to profiling overhead (20-30%
in Blink-tree), the throughput of profiled code (Figure 7) does not exactly
match the un-profiled case (Figure 5).

4.2 Cuckoo Hash Table
Cuckoo hashing [19] is an open-addressed hashing scheme
that uses multiple hash functions to reduce the frequency of
collisions. With two functions, each key has 2 hash values
and thus 2 possible bucket locations. To insert a new ele-
ment, we examine both possible slots. If both are already
occupied, one of the prior elements is displaced and then re-
located into its alternative slot. This process repeats until a
free slot is found.

Concurrent cuckoo hashing was proposed by Herlihy and
Shavit [9]. It splits the single table in two with each hav-
ing its own hash function. In addition, each table becomes
an array of probe sets instead of elements. A probe set is
used to store elements with the same hash value. To guar-
antee constant time operation, the number of elements in a
probe set is limited to a small constant CAPACITY. One vari-
ant of the data structure (a striped cuckoo hash table) uses
a constant number of locks, and the number of buckets cov-
ered by a lock increases if the table is resized. In an alter-
native variant, (a refinable cuckoo hash table) the number of
locks increases with resizing, so that each probe set retains
an exclusive lock. The refinable variant avoids unnecessary
serialization, but its code is more complex.

Since an element E may appear in either of two probe
sets—call them A and B—an atomic operation in the concur-
rent cuckoo hash table has to hold two locks simultaneously.
Specifically, when performing a lookup or remove, the locks
for both A and B are acquired before entering the critical sec-
tion. In the critical section of the insert method, if both A
and B have already reached CAPACITY, then a resize opera-
tion must be done. Otherwise, E is inserted into one probe
set. If that set contains more than THRESHOLD < CAPACITY
elements, then after the critical section, elements will be re-
located to their alternative probe sets to keep the set’s size
below THRESHOLD.

Speculation: As in the Blink-tree, MSpec makes lookup
lock-free, and moves the presence/absence check at the be-
ginning of insert/remove out of the critical section. In addi-
tion, insert executes the code that decides which probe set
the new element should be added to in the speculative phase.
If the element to remove is speculatively found in probe set
A, remove needs to acquire only A’s lock instead of both A’s
and B’s.

Validation: A version number is added to each probe set to
enable validation. To minimize space overhead, we embed a
probe set’s size field (a few bits are sufficient) in its version
number. In lookup, to validate the presence of an element
in a set, we only need to compare the set’s latest version
number to the version seen during speculation. To validate
the absence of an element, we compare two probe sets’ latest
version numbers with the versions seen during speculation.
If either has changed, a retry is performed. In most cases,
only one is changed, and we can skip the unchanged set
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Figure 8. Throughput of cuckoo hash table on Intel Xeon
E5649, for different data-set sizes and method ratios. The
2*128 curves use striped locking; the 2*64K curves are
refinable.

in the next try. If both are unchanged, lookup returns false.
Though the two sets may be checked at different times, their
version numbers ensure that the two histories (in each of
which the element is not in the corresponding set) overlap, so
their exists a linearization point [13] in the overlapped region
when the element was in neither set. To support concurrent
resize, a resize version number is associated with the whole
data structure. At any validation point, that number is also
checked to detect a resize during speculation.

Performance: Our experiments (Figures 8 and 9) employ
a direct (by-hand) C++ translation of the Java code given
by Herlihy and Shavit [9]. We use a CAPACITY of 8 and a
THRESHOLD of 4; this means a probe set usually holds no
more than 4 elements and a half full table’s final size is
#elements/4. We ran our tests with two different data set
sizes: the smaller (∼500 elements) can fit completely in the
shared on-chip cache of either machine; the larger (∼200K
elements) is cache averse. For the striped version of the table,
we use 128 locks. For the refinable version, the number of
locks grows to 64K. As in the Blink-tree experiments, we
warm up all tables before beginning timing.

For striped tables with 128 locks, MSpec is 10%-20%
faster than the baseline with 64 threads on the Niagara 2,
and more than 50% faster with 120 threads. The gap is sig-
nificantly larger on the Xeon. Scalability in the baseline suf-
fers from lock conflicts with increasing numbers of threads.
MSpec overcomes this problem with fine-grain speculation,
a shorter critical path, and fewer lock operations (in lookup
and remove). For the same reason, MSpec is also useful for
refinable tables in all configurations (“2*128 locks-spec”
vs “2*128 locks” in the first row, “2*64K locks-spec” vs
“2*64K locks” in the second row).
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Figure 9. Throughput of cuckoo hash on Niagara 2.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

thread

S
-1

28
S

-1
28

-s
pe

c
B

-1
28

B
-1

28
-s

pe
c

B
-6

4k
B

-6
4k

-s
pe

ccritical section
lock
speculation

1681

(a) CPU cycles/op

 0

 5

 10

 15

 20

 25

thread

S
-1

28
S

-1
28

-s
pe

c
B

-1
28

B
-1

28
-s

pe
c

B
-6

4k
B

-6
4k

-s
pe

ccritical section
lock
speculation

1681

(b) L2 cache misses/op

Figure 10. Hardware profiling for “33% Lookup/Insert/Re-
move” cuckoo hash on Intel Xeon. In labels, prefix “S”
means small table with 500 elements; “B” means big table
with 200k elements.

For small data sets (upper graphs in Figures 8 and 9),
refinable locking offers no advantage: there are only 128
buckets. For large data sets (lower graphs), non-MSpec refin-
able tables (“2*64K locks”) outperform non-MSpec striped
tables (“2*128 locks”) as expected. Surprisingly, striped
MSpec tables (“2*128 locks-spec”) outperform both non-
MSpec refinable tables and MSpec refinable tables (“2*64K
locks-spec”), because the larger lock tables induce additional
cache misses (compare the four “B-*” bars in Figure 10b).

This example clearly shows that fine-grained locking is
not necessarily best. The extra time spent to design, imple-
ment and debug a fine-grained locking algorithm does not
always yield the best performance. Sometimes, a simpler
coarse-grained algorithm with speculation can be a better
choice.

4.3 Bitmap Allocator
Bitmaps are widely used in memory management [24] and
file systems. They are very space efficient: only one bit is
required to indicate the use of a resource. A bitmap allo-
cator may use a single flat bitmap or a hierarchical collec-
tion of bitmaps of different sizes. We consider the simplest

8 2012/2/15



Data Structure Locks Speculation Validation Safety Issues Performance Wins LOC (base:MSpec)
equivalence sets CG, FG key search, set iteration VN, in-place stale pointer cache misses, atomic ops
Blink-tree FG lookup, key range check,

pointer chasing, node allocation
VN stale pointer cache misses, atomic ops,

lock protocol
775 : 809

cuckoo hash CG, FG lookup VN, in-place stale pointer cache misses, atomic ops,
fewer locks

530 : 636

bitmap allocator CG bits ops in-place none computation 76 : 93

Table 1. A summary of the application of MSpec. CG/FG = coarse-/fine-grained, VN = version number, LOC = lines of code
for concurrent methods.

case, where a next-fit algorithm is used to search for avail-
able slots. In the baseline algorithm, a global lock protects
the entire structure. The data structure supports concurrent
allocate and deallocate operations. To find the desired num-
ber of adjacent bits, allocate performs a linear search in its
critical section, then sets all the bits to indicate they are used.
Deallocate takes a starting position and size as parameters,
and resets the corresponding bits in its critical section.

Speculation: Most of execution time is spent searching the
bitmap for free bits. This process can easily be moved to a
speculative phase.

Validation: After the lock is acquired, an in-place valida-
tion checks to make sure the bits found during speculation
are still available. If any of them has been taken by a concur-
rent thread, we abort and perform a new speculative search
starting from the current position. No safety issues arise, as
the bitmap always exists.

Performance: Our experiments (Figure 11) employ an ar-
ray of 256K bits with a time-limited scenario in which a 70%
allocate / 30% deallocate mix consumes the bitmap gradu-
ally so it gets harder and harder to find a free slot. Allocation
requests have the distribution 20% 1 bit, 30% 2 bits, 30%
4 bits, 15% 8 bits, and 5% 16 bits.
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Figure 11. Throughput of linear bitmap allocator.

On Niagara 2, both implementations reach their peak
throughput at low thread count. However, with all threads
running on one chip, MSpec code’s peak throughput is con-
siderably higher as a result of a much shorter critical section
in Allocate. By contrast, the benefit of MSpec is much
more modest on the Intel Xeon. This is because the Xeon
CPU can execute bit operations much faster than the simpler
cores of the Niagara 2 machine, leaving less work available
to be moved to speculation, as shown in Figure 12.
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Figure 12. Hardware profiling for bitmap allocator CPU
cycles distribution.

5. Summary
We have described the application of MSpec to four different
concurrent data structures: equivalence sets, a Blink-tree, a
cuckoo hash table, and a bitmap allocator. Each benefits
from the MSpec design pattern. Table 1 summarizes these
data structures, comparing the baseline locking policies, the
work done in speculation, the validation methods, safety
issues, the source of performance wins, and programming
complexity as measured by lines of code. We see that MSpec
does not increase the code complexity dramatically.

We encourage the designers of concurrent data structures
to consider more aggressive use of manual speculation. In
most cases, the principal design challenge will be to identify
the minimal set of places in the code requiring memory
fences and validation. Tools or programming disciplines to
simplify this task are an appealing topic for future research.
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