
Hybrid NOrec: A Case Study in the Effectiveness
of Best Effort Hardware Transactional Memory ∗

Luke Dalessandro1 François Carouge2 Sean White2

Yossi Lev3 Mark Moir3 Michael L. Scott1 Michael F. Spear2

1University of Rochester 2Lehigh University 3Oracle Labs
{luked, scott}@cs.rochester.edu {frc309, saw207, spear}@cse.lehigh.edu {yossi.lev,mark.moir}@oracle.com

Abstract
Transactional memory (TM) is a promising synchronization mech-
anism for the next generation of multicore processors. Best-effort
Hardware Transactional Memory (HTM) designs, such as Sun’s
prototype Rock processor and AMD’s proposed Advanced Syn-
chronization Facility (ASF), can efficiently execute many transac-
tions, but abort in some cases due to various limitations. Hybrid TM
systems can use a compatible software TM (STM) in such cases.

We introduce a family of hybrid TMs built using the recent
NOrec STM algorithm that, unlike existing hybrid approaches, pro-
vide both low overhead on hardware transactions and concurrent
execution of hardware and software transactions. We evaluate im-
plementations for Rock and ASF, exploring how the differing HTM
designs affect optimization choices. Our investigation yields valu-
able input for designers of future best-effort HTMs.

Categories and Subject Descriptors C.1.4 [Computer System Or-
ganization]: Parallel Architectures; D.1.3 [Software]: Concurrent
Programming

General Terms Algorithms, Design

Keywords Transactional Memory

1. Introduction
As the industry shifts to pervasive multicore computing, consid-
erable effort is being invested in exploring hardware support for
concurrency and parallelism. Transactional Memory (TM) [25] is a
leading example of such support. It allows the programmer to mark
regions of code that should be executed atomically, without requir-
ing them to specify how that atomicity is achieved. Typical imple-
mentations are based on speculation. While proposals exist for un-
bounded and fully virtualized hardware TM (HTM) [24], concrete
industry proposals are currently focused on best-effort HTM that
imposes limits on hardware transactions. Sun’s prototype multicore
SPARCTM processor code named Rock [8], and AMD’s proposed
Advanced Synchronization Facility (ASF) extension to the x86 ar-
chitecture [3] are two prominent examples. The limitations of such

∗ At the University of Rochester, this work was supported by NSF
grants CNS-0615139, CCF-0702505, CSR-0720796, and CCR-0963759.
At Lehigh University, this work was supported by NSF grant CNS-1016828.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

systems can be hidden from programmers using a hybrid approach,
in which logical transactions can be executed using HTM, but re-
sort to a software TM (STM) alternative when necessary.

Early hybrid TM algorithms [11, 30] support concurrent execu-
tion of hardware and software transactions, achieved by instrument-
ing a hardware transaction’s memory operations with accesses to
STM metadata, allowing it to detect conflicts with software transac-
tions. This approach enables logical transactions to switch to soft-
ware on a per-transaction basis but imposes significant overhead
on hardware transactions and constrains the STM implementation.
This results in systems with both high overheads and limited scala-
bility.

Lev et al.’s PhTM hybrid significantly reduces the impact on
hardware transactions by establishing global phases of execution
[29]. As a result hardware transactions need instrumentation only
at the boundaries of transactions, to detect global phase changes.
PhTM performs significantly better than prior options when hard-
ware transactions are mostly successful, and allows more flexibility
for the STM implementation, which is no longer constrained by the
potential for concurrent hardware transactions. However, PhTM’s
phase changes amount to application-wide synchronization barri-
ers that result in poor performance for workloads in which switch-
ing becomes frequent. In addition, tuning of PhTM’s phase change
protocol is complicated and prone to overfitting.

Our goal is to develop a family of novel hybrid TM algorithms
that combine the best features of both HyTM and PhTM: support
for concurrent hardware and software transactions without the over-
head of per-access instrumentation for hardware transactions. We
achieve this by using Dalessandro et al.’s NOrec STM [10] as the
software component. Section 2 presents more detailed background
about best-effort HTM and previous hybrid TM algorithms. Sec-
tion 3 expands a two-paragraph hybrid TM sketch appearing in Da-
lessandro et al. [10] into a simple but full-fledged hybrid design
and then discusses a variety of novel, hardware-independent refine-
ments that address its obvious weaknesses. Sections 4 and 5 de-
velop platform-specific implementations, optimizations, and evalu-
ations for Rock and ASF respectively.

While direct performance comparisons between Rock hard-
ware and the ASF simulator are not meaningful, differences be-
tween their HTM implementations result in different optimization
choices. Section 6 elaborates on these differences, and highlights
some of the advantages and disadvantages of each platform in sup-
porting a NOrec-based hybrid system—a contribution that we be-
lieve provides useful guidance to designers of future HTM. Section
7 gives an overview of related work and Section 8 concludes.

2. Background
Comprehensive coverage of TM proposals and implementations is
available in a recent book by Harris et al. [24]. Here we focus on
issues of particular relevance to our work.

2.1 Hardware TM
Herlihy and Moss [25] proposed TM as a hardware mechanism to
support the development of non-blocking data structures. In this
proposal, and in many others that followed it, the atomicity of
transactions is enforced by using the cache coherence protocol.

To avoid revealing speculative state to other processors, transac-
tional stores are typically buffered locally until the transaction com-
pletes. Herlihy and Moss use a special transactional cache, which
bounds the size of transactions, for this purpose.

To ensure that successful transactions appear to occur atomi-
cally, a processor attempts to acquire exclusive ownership of all
cache lines modified by its transaction. If successful, it can then
decide locally to commit the transaction, at which point requests
for any cache lines modified by the transaction will receive the data
written by the transaction; partial effects are never visible.

HTM implementations must also ensure that reads are consis-
tent and current at commit time. Again, many proposals use cache
coherence to achieve this: if the processor retains (at least shared)
ownership of every cache line read by the transaction up to the point
of its commit, then each of the locations read is unchanged and the
transaction is consistent at the commit. Typically the transaction is
aborted if such a cache line is invalidated or evicted.

A key issue is how a processor responds to a request for a cache
line it holds transactionally. The requestor-wins policy provides
the requested line and aborts the local transaction. While simple,
this policy can lead to poor performance and livelock: competing
transactions may abort each other repeatedly. Backoff is effective
in avoiding this effect, but can be difficult to tune. More sophisti-
cated conflict resolution mechanisms are appealing but entail more
implementation complexity.

Some HTM implementations, such as the β-TVP proposal of
Tabba et al. [40], can reacquire ownership of a lost cache line, check
that any values read from it previously are current, and thus avoid
aborting the transaction. Similar value based validation is found in
some STM systems, including the NOrec algorithm.

As described, HTM implementations cannot commit transac-
tions that exceed the size or geometry of the hardware structures
used to track the cache lines accessed by a transaction and to buffer
speculative stores. Proposals for unbounded HTM [4, 5, 21, 33, 35]
overcome such limitations, but introduce significant complexity;
commercial systems built or proposed to date do not attempt to
implement unbounded transactions.

Without unbounded transactions, an STM alternative is needed
to support transactions that exceed hardware limits. Given this, it is
reasonable for hardware transactions to fail occasionally for other
reasons, such as interrupts, traps, etc. The option of an occasional
spurious failure simplifies hardware design, because difficult corner
cases can be resolved simply by aborting the transaction.

This design strategy is known as best-effort HTM: the hardware
attempts to support as many transactions as possible given the
constraints of the implementation, but can abort any transaction for
any reason. It is important for software to receive good feedback
about the reason for a particular abort, to enable sensible decisions
about whether and when to retry a hardware transaction.

Sun’s prototype Rock processor and AMD’s ASF proposal are
concrete examples of best-effort HTMs. While their designs are
similar in some ways, they have different interfaces, capabilities,
and reasons for aborting transactions. For example, Rock uses a
core’s store buffer to hold transactional stores, imposing a limit of
32 stores per transaction. The ASF specification simply states that
conforming implementations will support (potentially repeated or
redundant) stores to at least 4 elements. We examine the design
decisions of Rock and ASF in more detail as we develop hybrid
TM implementations for them in Sections 4 and 5 respectively.

1 padded orec orecs []

3 HW READ(address)
4 value = ∗address
5 if (orecs [hash(address)]. mode != WRITE)
6 return value
7 abort

9 HW WRITE(address, value)
10 if (orecs [hash(address)]. mode != UNOWNED)
11 abort
12 ∗address = value

Figure 1. Pseudocode illustrating HyTM instrumentation for hard-
ware, from Damron et al. [11]. This code assumes the STM coun-
terpart uses visible (or semivisible) readers. We use padded to in-
dicate variables that are padded to avoid false sharing.

2.2 Hybrid TM
We use the term hybrid TM for systems that can execute a logical
transaction in hardware, or use a compatible STM implementation
when this is not successful. Hybrid systems [11, 30] do not require
that the hardware be able to commit any particular transaction.
Some other hybrid-like systems [10, 26] depend on the HTM to
be able to commit at least some small transactions. Next we briefly
describe two hybrid TM systems most closely related to this paper.

HyTM1 [11] generates two code paths for each source-level
transaction—a software path targeting an ownership record (orec)-
based STM, and a hardware path in which memory accesses are
instrumented to perform appropriate checks of the STM metadata.

A software transaction modifies the mode of each orec covering
a location it accesses, and hardware transactions access this infor-
mation on each memory access in order to detect conflicts with soft-
ware transactions. The instrumentation for hardware-path accesses
is shown in Figure 1. The instrumentation ensures that a hardware
transaction detects a conflict with a software one, either by observ-
ing that the mode of an orec indicates a conflict, or by aborting
when a software transaction modifies the mode after the hardware
transaction has read it. The overhead imposed on hardware transac-
tions by this per-access instrumentation is considerable, including
both additional instructions and the use of scarce, best-effort HTM
resources to track per-location metadata (i.e., orecs).

PhTM [29] introduces global phases of execution, typically
hardware-only and software-only. It employs simple instrumenta-
tion at transaction start and finish to enforce the phase discipline,
and eliminates the costly per-access instrumentation of other hy-
brid systems. Because hardware and software transactions do not
run concurrently, PhTM also allows more flexibility in implement-
ing the STM used in software phases. However, if transactions must
frequently be executed in software, phase changes incur system-
wide synchronization barriers that severely impact performance
and scalability. In addition, the algorithms used to trigger phase
changes are difficult to tune and susceptible to overfitting. For
workloads in which most transactions can succeed in hardware, the
software-only phase may be implemented as a single, serial trans-
action running with minimal software instrumentation [29]. This
design has been shown to lower the cost of phase synchronization
barriers, at the cost of significantly less concurrency [9].

The emergence of STMs that do not employ per-location meta-
data (e.g., the NOrec STM [10] described in Section 3) provides an
opportunity to reevaluate HyTM’s defining characteristic—the con-

1 We use HyTM to both refer to Damron et al. [11], and to describe algo-
rithms in which hardware and software transactions execute concurrently.

1 padded unsigned seqlock

3 thread local unsigned snapshot
4 thread local ReadSet reads
5 thread local WriteSet writes

6 SW VALIDATE
7 snapshot = seqlock
8 if (snapshot & 1)
9 goto 7

10 foreach (addr, val) in reads
11 if (∗addr != val)
12 SW ABORT
13 if (snapshot != seqlock)
14 goto 7

15 SW BEGIN
16 snapshot = seqlock
17 if (snapshot & 1)
18 goto 16

19 SW COMMIT
20 if (writes .empty())
21 return
22 while (!CAS(&seqlock, snapshot,

snapshot + 1))
23 SW VALIDATE
24 foreach (addr, val) in writes
25 ∗addr = val
26 seqlock = seqlock + 1
27 reads . reset () , writes . reset ()

28 SW READ(addr)
29 if (addr in writes)
30 return writes . find (addr)
31 val = ∗addr
32 if (snapshot != seqlock)
33 SW VALIDATE
34 goto 31
35 reads .append(addr, val)
36 return val

38 SW WRITE(addr, val)
39 writes .append(addr, val)

41 SW ABORT
42 reads . reset () , writes . reset ()
43 /∗ restart transaction ∗/

Figure 2. The basic NOrec algorithm. The CAS on line 22 represents atomic compare-and-swap. Read and write sets are implemented at
byte granularity and thus compatible with the draft C++ TM specification [1].

current execution of hardware and software transactions—without
per-access instrumentation overhead on hardware transactions.
That is the goal of the work described herein.

3. NOrec Hybrid Design
Our family of hybrid TM algorithms begins with Dalessandro
et al. NOrec STM (Figure 2) [10]. NOrec does not require fine-
grained, shared metadata, merely a single global sequence lock [27]
(seqlock) for concurrency control. Transactions buffer transac-
tional writes and log read address/value pairs in thread local struc-
tures. Committing writers increment the seqlock before writeback.
Active transactions poll the global seqlock for changes indicating
concurrent writer commits. A new value is evidence of possible
inconsistency and triggers validation, done in a value-based style
by comparing the logged address/value pairs to the actual values in
main memory [17, 22, 34, 40].

An odd seqlock value indicates that a transaction is perform-
ing writeback; it effectively locks the entire shared heap. A con-
sequence of this protocol is that only a single writer can commit
and perform writeback at a time. This sequential bottleneck is min-
imized by validation prior to acquiring the seqlock for commit
(Figure 2, Line 22). Successfully incrementing seqlock transitions
a writer to a committed state in which it immediately performs its
writeback and then releases the lock. A read-only transaction need
only confirm that its reads were consistent and can commit without
modifying seqlock.

NOrec scales well when its single-writer commit serialization
does not represent the overall application bottleneck, i.e., writeback
does not dominate the run time, and has been shown to have low
latency. NOrec supports the privatization idiom [24] as required
for compatibility with the C++ draft TM standard [1] and provides
strong publication guarantees [32].

For the purposes of initial development, we assume that the
best-effort HTM is strongly atomic [6], and that we can issue
nontransactional loads within the context of a transaction—i.e.,
that we can load a location without adding it to our transactional
read set. This second capability is not fundamental, but is useful
for some optimizations and is supported by both Rock and ASF. In
Sections 4 and 5 we discuss the implementation of variants of these
algorithms on Rock and ASF, respectively.

In a NOrec-based hybrid TM, hardware transactions must re-
spect the integrity of NOrec’s single-writer commit protocol. Ac-
cordingly, hardware transactions that modify program data cannot
commit during software writeback, and must signal their commit so
as to trigger validation by concurrent software transactions. These

transaction {
x = 1
y = 1
}

transaction {
if (x != y)

STATEMENT
}

(a) Static transactions.

Initially: x == y == 0

1 SW WRITEBACK
2 x = 1
3

4

5

6

7 y = 1

HW POST BEGIN

r1 = x
r2 = y
if (r1 != r2)

STATEMENT

(b) Dynamic execution trace.

Figure 3. Execution of two transactions resulting in a hardware
transaction observing inconsistent state.

two constraints neither impose requirements on hardware transac-
tions in the absence of active software transactions, nor restrict the
behavior of read-only transactions, however one further detail must
be addressed in the hybrid TM design; hardware transactions may
become logically inconsistent due to a concurrent software trans-
action’s non-atomic writeback.

Consider the execution in Figure 3. The logical transaction in
the left column executes and commits as a software transaction,
while the logical transaction on the right executes in hardware.
The dynamic trace shows one possible interleaving of operations
from the software transaction’s writeback with the hardware trans-
action’s execution.

The hardware transaction performs an inconsistent read at Line
4—its read of x on Line 3 returns the value written by the software
transaction, while the read of y returns the value written before the
software transaction occurred. The strongly atomic hardware trans-
action will ultimately detect this inconsistency when the software
transaction performs its update of y on Line 7, but can perform ar-
bitrary actions in the meantime.

The danger here is that the inconsistent transaction may perform
an action that has visible effects (e.g., a nontransactional store) that
is not consistent with the semantics of the program. This situation is
nearly identical to that of zombie transactions in STM [14, 38, 41],
where inconsistent software transactions may perform most of the
same dangerous operations that an inconsistent hardware transac-
tion could. The difference is that a zombie transaction cannot com-

1 padded unsigned seqlock

5 HW POST BEGIN
6 if (seqlock & 1)
7 while (true) // await abort

9 HW PRE COMMIT
10 seqlock = seqlock + 2

(a) Our naive algorithm

1 padded unsigned seqlock
2 padded unsigned counter

5 HW POST BEGIN
6 if (seqlock & 1)
7 while (true) // await abort

9 HW PRE COMMIT
10 counter = counter + 1

(b) 2-Location

1 padded unsigned seqlock
2 padded unsigned counter[]
3 thread local unsigned id

5 HW POST BEGIN
6 if (seqlock & 1)
7 while (true) // await abort

9 HW PRE COMMIT
10 counter[id] = counter[id] + 1

(c) P-Counter

Figure 4. Instrumentation of hardware transactions in our basic hybrid NOrec algorithms. Line 7 spins until the committing software
transaction completes writeback and releases the seqlock at which point the hardware transaction aborts and restarts. 2-Location adds
a counter location that only hardware transactions modify, P-Counter distributes this counter to reduce cache contention. The HW ∗
instrumentation occurs within the scope of a hardware transaction, and all accesses are transactional.

mit from an inconsistent state, while a hardware transaction could
if not prevented. We use the term zombie to refer to inconsistent
logical transactions with the understanding that they are slightly
different in hardware and in software.

In STM one of two solutions is used to avoid incorrect behavior
due to inconsistent execution. An implementation may eliminate
zombies by ensuring that each operation performed by a transaction
is done from a consistent state, a property known as opacity and de-
tailed by Guerraoui and Kapalka [20]. Alternatively, an implemen-
tation may admit the possibility of zombie execution and include
appropriate preventative and recovery code, a process known as
sandboxing and employed by Harris et al. [23] and Saha et al. [37].
Each of these approaches is possible in hybrid TM designs. Our ini-
tial algorithms are opaque (satisfy opacity); we discuss sandboxing
hardware transactions in Section 3.2.

3.1 Basic Algorithms
The code in Figure 4a represents a naive integration of NOrec and
a strongly atomic HTM. We instrument hardware transactions with
a HW POST BEGIN barrier in which they read NOrec’s shared
seqlock. This includes seqlock in their read sets, effectively sub-
scribing hardware transactions to software commit notifications: an
abort is triggered when a software transaction acquires the lock to
commit. If a hardware transaction starts and detects that a software
transaction already owns the seqlock it spins until the software
transaction completes writeback and releases the lock. Hardware
transactions update seqlock in a HW PRE COMMIT barrier, sig-
naling their commits to software transactions.

This implementation trivially satisfies the two constraints men-
tioned above. The HW POST BEGIN seqlock read and corre-
sponding branch ensure both that no hardware transaction can com-
mit during software writeback, and that the overall implementation
is opaque: no transactional load can occur while the seqlock is held
by software for writeback, thus logical zombies are impossible. The
increment and write of the seqlock in HW PRE COMMIT noti-
fies active software transactions of the need to validate their con-
sistency.

Unfortunately, each hardware transaction conflicts with ev-
ery software transaction (due to the early read of seqlock in
HW POST BEGIN), and will abort when any software transac-
tion commits, regardless of actual data conflicts. Similarly, each
hardware transaction conflicts with every other hardware transac-
tion (due to the early read of seqlock and the write of seqlock in
HW PRE COMMIT), and will abort when any hardware trans-
action commits. These conflicts exist for each transaction’s full
duration, eliminating concurrency.

2-Location Figure 4a uses the NOrec global seqlock for bidirec-
tional communication: hardware transactions read it to subscribe to
software commit notification and increment it to signal their com-
mits to software transactions. Dalessandro et al. observe that a sim-
ple modification can address this shortcoming: a second shared lo-
cation, counter, decouples subscribing from signaling.

As shown in Figure 4b,2 hardware transactions still subscribe
to software commits by reading seqlock in HW POST BEGIN,
but they use counter to signal their own commits. This reduces the
window of vulnerability to metadata conflicts between hardware
transactions from the entire hardware transaction to the time that
it takes to execute the increment in HW PRE COMMIT and com-
mit.

Where software transactions previously polled only seqlock
(Figure 2, Line 32) they must now maintain snapshots for, and poll,
both seqlock and counter. NOrec’s SW COMMIT must also now
perform additional validation after acquiring seqlock, in order to
detect any hardware commit(s) that occurred before the CAS (Fig-
ure 2, Line 22). This validation consists of reading the hardware
counter, and performing value-based validation if it has changed.
This extra validation adds serial overhead to software transactions.

P-Counter In 2-Location, hardware transactions use the counter
to signal their commits to software transactions, but not to coor-
dinate with other hardware transactions. Thus, hardware-hardware
conflicts during counter increments are artificial and can be re-
duced or eliminated by distributing counter. Figure 4c assigns
each processor core its own hardware counter. Hardware transac-
tions modify different counter variables in HW PRE COMMIT
and thus no longer conflict with each other. Any number of coun-
ters and any mapping of threads to counters can be used; we explore
some variants in Section 4.

Where the 2-Location modification required software transac-
tions to poll two locations, P-Counter requires them to poll n + 1,
where n is the number of counters. Thus, there is a tradeoff: us-
ing more counters reduces conflicts between hardware transactions,
but increases overhead on software transactions—including the se-
rial overhead in their SW COMMIT barriers due to validation as
described above. In practice, it makes sense to dynamically deter-
mine the number of counters and the thread-to-counter mapping
based on current system conditions; this is future work. 2-Location
can be seen as the degenerate case in which all threads share a sin-
gle counter.

2 This algorithm is slightly different than that presented in Dalessandro
et al.. Their version requires progress guarantees for 2-location transactions,
which we do not assume here.

1 HW POST BEGIN
2 return

4 HW PRE COMMIT
5 if (seqlock & 1) while (true) ;
6 ...

8 HW VALIDATE
9 while (non tx load(seqlock) & 1)

10 ; // spin

12 HW READ(address)
13 value = ∗address;
14 HW VALIDATE;
15 return value ;

Figure 5. Code to ensure opacity in a system with
lazy subscription. Uses a nontransactional read in
HW VALIDATE. All other accesses are transac-
tional.

1 padded unsigned sw exists

3 SW BEGIN
4 atomic add(sw exists ,1)
5 ...

7 SW COMMIT, SW ABORT
8 atomic add(sw exists,−1)
9 ...

11 HW PRE COMMIT
12 if (sw exists == 0) return
13 ...

(a) SW-Exists

1 thread local bool readonly

3 HW POST BEGIN
4 non tx store(readonly , true)
5 ...

7 HW POST WRITE
8 non tx store(readonly , false

)

10 HW PRE COMMIT
11 if (non tx load(readonly))
12 return
13 ...

(b) Read-Only

Figure 6. Filters that allow hardware transactions to avoid accesses to seqlock
and counter in HW PRE COMMIT. The pseudo-code augments the underlying
algorithm’s metadata and instrumentation. HW ∗ instrumentation occurs within the
scope of a hardware transaction.

3.2 Lazy Subscription and Sandboxing
In the HW POST BEGIN barriers of the hybrid algorithms de-
scribed so far, a transactional read of the NOrec seqlock sub-
scribes hardware transactions to software commit notification, and
the corresponding branch stalls hardware transactions while soft-
ware transactions write back. This both establishes opacity and
prevents hardware writers from committing during software write-
back.

The early read of the seqlock is conservative as it forces all
hardware transactions to abort whenever any software transac-
tion commits, regardless of true data conflicts. We can be more
optimistic—and admit more concurrency—by delaying the trans-
actional read of seqlock until commit time, as shown in Figure 5.
In this manner, hardware transactions subscribe to software commit
notification immediately prior to committing, increasing hardware-
software concurrency by reducing the number of false aborts re-
ceived by hardware transactions.

Delaying the read of seqlock sacrifices opacity, as nothing pre-
vents a hardware transaction from reading inconsistent data during
software writeback. The listing in Figure 5 re-establishes opacity
by adding a HW READ barrier that polls the seqlock nontransac-
tionally and pauses if it is locked. This requires instrumentation on
the hardware path. While per-access instrumentation in HyTM was
shown to be a significant obstacle, this instrumentation neither per-
forms writes nor uses scarce best-effort HTM resources, and is thus
worth exploring.

As observed previously, sandboxing exists as an alternative to
opacity. Rather than instrumenting all loads for consistency, we in-
strument only instructions whose effects may expose a transaction’s
inconsistency. Fortunately, sandboxing best-effort hardware trans-
actions appears simpler than sandboxing STM [2, 23, 34, 37], as
many of the behaviors that must be avoided (divide by zero, bus
error, an infinitely looping thread reaching a context switch) cause
hardware transactions in most best-effort HTM systems to abort
without software intervention. Others can be avoided with software
assistance by inserting a HW VALIDATE call in front of any in-
struction that may be dangerous to perform from an inconsistent
state (nontransactional store, indirect branch, etc.). The number of
such instructions is likely to be significantly smaller than the num-
ber of reads.

3.3 Communication Filters
Recall that our constraints for the serializability of hardware and
software transactions apply to writer transactions only in the pres-
ence of active software transactions. Our algorithms so far are thus
overly conservative. We can “filter out” a significant number of
cache misses and false aborts by avoiding competition for shared
counters in the absence of software transactions.

The SW-Exists filter introduces a shared location, sw exists ,
for use as an early exit test in the HW PRE COMMIT bar-
rier. Software transactions make their presence visible by setting
this location; hardware transactions may elide counter updates if
sw exists is not set. Figure 6a shows a simple atomic counter im-
plementation of SW-Exists; a more scalable mechanism such as
Ellen et al.’s [18] scalable non-zero indicator (SNZI) may be de-
sirable depending on best-effort HTM characteristics. The atomic
counter implementation causes a hardware transaction that has read
it to abort on every change, and induces cache contention among
the software transactions seeking to modify it; SNZI limits aborts to
the important cases—the transitions between the zero and non-zero
states—while reducing software contention.

Some transactions can be statically shown by the compiler to be
read-only and in this case HW PRE COMMIT can be omitted in
its entirety. Alternatively, a transaction may dynamically track its
read-only status using a HW WRITE barrier. Figure 6b presents
instrumentation to update a thread-local flag after writing, and
then test it at commit time. Note that the combined use of lazy
subscription with sandboxing and the Read-Only filter requires at
least a HW VALIDATE barrier before committing because without
it, the readonly flag may be based on inconsistent execution.

4. Rock
Sun’s prototype multicore processor code named Rock uses aggres-
sive checkpointing and speculative execution to improve single-
threaded performance [8], and uses the same mechanisms to pro-
vide HTM via new checkpoint and commit instructions. Rock’s
checkpointing mechanism restores all registers when a transaction
aborts. Memory accesses within a transaction are transactional un-
less explicitly marked nontransactional.

Rock augments L1 cache lines to track speculative reads, and
holds speculative writes in the store buffer until commit or abort.
Thus transactions can read as many lines as fit in the L1 data cache

(limited by associativity), and can write as many locations as fit
in the store buffer (32 in the configuration we used). Nontransac-
tional stores are held in the store buffer as well; they cannot be used
to circumvent its limited capacity. Some instructions cause aborts
deterministically, as do some TLB misses and all page faults. Fur-
thermore, any misspeculation (e.g., due to branch misprediction)
during a transaction’s execution will trigger an abort. The program-
mer should assume that every transaction may need to fall back to
software mode even in the absence of contention or capacity over-
flow [12, 13].

4.1 Algorithms
We initially built both a Rock-compatible implementation of the
NOrec-hybrid sketched in Dalessandro et al. [10] along with a
straightforward implementation of P-Counter. We had to modify
the former algorithm slightly to eliminate its dependence on small
hardware transactions in the software commit protocol, because
Rock does not guarantee such transactions will commit. We found
that results using this algorithm were indistinguishable from P-
Counter using a single counter, so we do not consider it further. The
distributed counter in P-Counter uses a fixed number of counters,
and threads are mapped to them by thread id.

Lazy Subscription Rock’s HTM lends itself well to the sandbox-
ing implementation of lazy subscription (Section 3.2). Memory ac-
cesses are transactional by default and therefore have no effect
if the transaction aborts. Most potential side effects of executing
with inconsistent data, such as exceptions, simply cause the trans-
action to abort and therefore do not have a visible effect. We believe
manual sandboxing instrumentation is needed only for commit in-
structions, nontransactional stores, and indirect branches that po-
tentially lead to one of these (including unintentionally branch-
ing into executable data that may contain them). Referring to Fig-
ure 5, HW PRE COMMIT serves to sandbox commit instruc-
tions, so to fully sandbox Rock transactions, we must simply insert
calls to HW VALIDATE before nontransactional stores and indi-
rect branches.

We find that lazy subscription and sandboxing consistently out-
performs both eager HW POST BEGIN subscription and lazy
subscription with read instrumentation. Admittedly, our bench-
marks use neither nontransactional stores nor indirect branches.
Rock’s limitation on the total number of stores in a transaction im-
plies that the use of nontransactional stores will be limited. Thus
we do not anticipate significant overhead related to instrumenting
them. Indirect branches are more common: they are used to im-
plement function call returns, virtual function calls, and computed
gotos. We do expect that sandboxing will show overheads for trans-
actions that use these operations. Hardware validation requires a
load (commonly a cache hit) and an easily predicted branch. As
an indirect branch is already a relatively high overhead operation,
indirect branch instrumentation should be proportionally less ex-
pensive than that of a load or store.

SW-Exists We have found that it is always beneficial to use the
SW-Exists filter, implemented using the SNZI algorithm variant
from Lev et al. [28]. The simple implementation in Figure 6a, by
contrast, suffers frequent cache misses and aborts as the counter
changes among non-zero values.

Read-Only We considered the Read-Only optimization but dis-
missed it for two reasons. First, it consumes precious locations in
the store buffer, as multiple writes to the same location, even if
thread local and nontransactional, are not necessarily coalesced. We
can overcome this cost with a write barrier that checks the value of
the flag and only updates it if it is not yet set, but we have seen
in HyTM that branching in a barrier has severe negative conse-
quences. Second, as discussed above, using this optimization in a

sandboxed algorithm requires validating in HW PRE COMMIT,
which we had initially hoped to avoid. We do believe that statically
identifying read-only transactions and using HW VALIDATE as
the HW PRE COMMIT barrier for such cases is likely to be prof-
itable.

4.2 Test Results
We used the same Rock processor used by Dice et al. [12, 13], and
the Deque, Hashtable, and Red-Black Tree microbenchmarks [13].
The STAMP benchmarks, used in Section 5, were not an option
on Rock due to hardware limitations—specifically, the fact that
function calls within a transaction usually cause an abort. All mi-
crobenchmarks use the draft transactional C++ API [1], compiled
with an internal development version of Oracle’s transactional C++
compiler. STM compilation targets the open-source SkySTM li-
brary [28] interface; our hybrid and STM implementations imple-
ment this interface.

We report results for four TM systems. CGL is a pessimistic
software implementation that simply acquires a global lock in
SW BEGIN and releases it in SW COMMIT. This admits no con-
currency, but is useful when comparing single-thread overheads.
NOrec is the software implementation given in Figure 2. PhTM-
NOrec is Lev et al.’s [29] PhTM algorithm as implemented by Dice
et al. [12] and configured to use NOrec rather than TL2 [14] in the
STM phase. (Separate experiments confirm that PhTM-NOrec con-
sistently outperforms the equivalent PhTM-TL2 on our system.)

HyTM-NOrec is the P-Counter algorithm with lazy subscrip-
tion, sandboxing, and the SNZI SW-Exists optimization. This com-
bination consistently performed best. Algorithm suffixes indicate
the number of counters used.

For all experiments in this paper, we take five data points, drop
the high and low ones, and average the remaining ones. Variance
was generally low, except as discussed or indicated.

Deque benchmark In this benchmark, threads are divided evenly
between the two ends of a deque, where they each perform 100, 000
operations chosen at random. Accesses to opposite ends of the
deque usually do not conflict, so some parallelism is available, but
contention among operations on each end means we cannot expect
more than a 2× speedup regardless of the number of threads. Re-
sults are shown in Figure 7a. For completeness, we also compare
to McKenney’s state-of-the-art lock-based, two-queue deque im-
plementation [31]—a simple but clever concurrent algorithm that
eluded noted concurrency experts for several years [12]. It is inter-
esting that HyTM-NOrec largely closes the performance gap be-
tween the simple CGL and McKenney’s algorithm without impact-
ing programming complexity.

While CGL performs best with one thread, every transactional
method outperforms it in all multithreaded cases, and every hy-
brid method outperforms NOrec. PhTM-NOrec either matches or
slightly improves on the performance of the HyTM-NOrec vari-
ants with one and two threads, but then degrades to the point that
it is worse than single-threaded throughput at sixteen threads. This
is consistent with prior results [12], and suggests that added con-
tention forces PhTM-NOrec into system-wide software mode fre-
quently.

HyTM-NOrec allows a transaction to switch to software mode
without causing all other transactions to do so, and thus avoids
the cascade effect that PhTM-NOrec suffers. With 16 threads (8
for each end of the deque), only about 3% of operations caused
PhTM-NOrec to switch to a software phase, but almost 24% of
them committed using STM. In contrast, with HyTM-NOrec-1C,
0.6% of transactions switched to software without causing others
to switch, allowing for a much higher success rate for hardware
transactions, and better throughput and scalability as a result.

HyTM-NOrec-C4
HyTM-NOrec-C2
HyTM-NOrec-C1

NOrec
CGL HyTM-NOrec-C6

HyTM-NOrec-C8
HyTM-NOrec-C10PhTM-NOrec

161 2 4 6 8 10 12

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

7.1 ops/usec

McKenney

42% Standard Deviation

(a) Deque

161 2 4 6 8 10 12

18

0

2

4

6

8

10

12

14

16

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1.8 ops/usec

(b) 100% lookups, 0% key changes

161 2 4 6 8 10 12

14

0

2

4

6

8

10

12

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1.9 ops/usec

(c) 50% lookups, 0% key changes

161 2 4 6 8 10 12

11

0

1

2

3

4

5

6

7

8

9

10

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1.9 ops/usec

(d) 95% lookups, 5% key changes

161 2 4 6 8 10 12

7

0

1

2

3

4

5

6

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

1.8 ops/usec

(e) 50% lookups, 5% key changes

161 2 4 6 8 10 12

5.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Threads
H

W
 R

et
rie

s
Pe

r
Lo

gi
ca

l T
xn

(f) 50% lookups, 5% key changes

Figure 7. Selected Hashtable and Deque Results. Hashtable results are all for 128K key sets. -NC suffix indicates N hardware counters.
Throughput is normalized to the single-threaded CGL results, which are explicitly given. In graphs 7a, 7b, and 7c we show only HyTM-
NOrec-1C results as they are indistinguishable from other options. In 7d and 7e we add 6C and 10C results to illustrate their differences.

Hashtable benchmark This benchmark consists of lookup, in-
sert, and delete operations on a large hashtable (217 buckets), pa-
rameterized by the number of keys to access. Large key ranges re-
sult in access to the entire table, a working set that exceeds Rock’s
L1 cache capacity, while small key ranges fit comfortably in cache.
In either case, conflicts between transactions are rare, and transac-
tions are small and should be able to succeed in hardware. Prior
hardware-assisted methods have been able to achieve fast, scal-
able performance with this workload. This predictable behavior
provides us the opportunity to test hybrid TM performance as a
function of the number of transactions failing to software in a con-
trolled manner. To do so, we introduce a fourth type of operation,
key change, which contains an instruction that is not supported in
Rock transactions, and thus must complete in software.

We have conducted experiments with this benchmark for both
small and large key ranges, and with a variety of operation mixes.
Although all algorithms are faster when using a small key range
such that the hashtable fits in the L1 cache, the results achieved
for small and large key ranges are qualitatively similar. A repre-
sentative sample, all using the large key range (128K), is shown in
Figures 7b through 7e.

The HyTM-NOrec family outperforms PhTM-NOrec in almost
all cases, often by significant margins. In the 100% lookup case
(Figure 7b), almost all transactions succeed in hardware with all
HTM-assisted algorithms, and their performance is similar. How-
ever, if we introduce a small number of key change operations
(Figure 7d), all of the hardware-assisted algorithms perform worse,

but PhTM-NOrec is affected worse than most of the HyTM-NOrec
variants. This again illustrates the advantage that HyTM-NOrec has
over PhTM-NOrec: one transaction switching to software does not
cause a cascade of other transactions to do so too.

Although HyTM-NOrec outperforms PhTM-NOrec, it turns out
that NOrec significantly outperforms all hardware-assisted meth-
ods in some cases; Figure 7d shows one example. There are several
reasons for this. First, the workload is heavily dominated by read-
only transactions, and NOrec overhead is low for such transactions:
its serialized writeback phase is executed infrequently and therefore
does not become a bottleneck.

Second, all of our hybrid TM implementations first try to use a
hardware transaction, repeatedly in some cases, before switching to
software if they do not succeed. The time spent on such transactions
is largely wasted when they ultimately resort to software, as at
least the key change operations must in this case. There are several
possible ways to improve this situation. If the HTM gave clearer
feedback about which transactions are unlikely to succeed, we
might be able to switch to software more quickly. Relatedly, an
HTM that does not fail transactions due to transient conditions such
as cache misses and branch prediction may require less retrying in
order to achieve good performance for some cases, thus allowing
transactions that are going to switch to software to do so sooner.
Finally, if compiler analysis or profiling could identify transactions
that are unlikely to succeed using HTM, the system could run them
in software from the outset.

Third, a transaction switching to software not only makes that
operation slower, but can also degrade the performance of ongoing
hardware transactions. For example, software transactions cause
changes to the SW-Exists mode which causes hardware aborts
due to branch misprediction. Moreover, software transactions re-
quire hardware transactions to increment counters that are often
not present in their caches, adding substantial overhead to other-
wise fast transactions. Therefore, hardware transactions are much
more likely to fail when executed while software transactions are
running. To avoid a cascade effect, the HyTM-NOrec logic sets a
much higher threshold for failing to software if it observes, after a
hardware transaction fails, that a SW transaction is already running.

As the number of non-read-only operations increases, NOrec’s
serialized writeback phase becomes a bottleneck, resulting in nega-
tive scalability at high thread counts. The HyTM-NOrec algorithms
continue to increase throughput with larger numbers of threads,
while the PhTM-NOrec performance is limited by that of its STM
component. This can be seen clearly in Figure 7c. Even as we force
some transactions to software (Figure 7e), the HyTM-NOrec vari-
ants outperform NOrec.

Within the HyTM-NOrec family, we observe that larger num-
bers of counters reduce hardware-hardware contention. This is due
to reduced contention on the counters, and thus fewer conflicts be-
tween hardware transactions. For example, Figure 7f shows how
adding counters reduces the abort rate. However, it is not always
the case that such reduced contention increases overall through-
put. Observe, for example, that performance becomes worse in Fig-
ure 7e going from 12 to 16 threads when using 10 counters. This is
not surprising. More counters means validation of software transac-
tions takes longer. Especially at higher threading levels, this in turn
means there is more chance of a concurrent hardware transaction
committing, forcing the software transaction to revalidate. Addi-
tionally, the SW COMMIT barrier requires that software transac-
tions read all of the hardware counters—likely missing in cache for
some of them—after acquiring seqlock at commit, thus increasing
NOrec’s serial bottleneck. Similarly, in workloads in which there is
application-level contention, slower validation makes it more likely
that an actual conflict occurs, forcing the software transaction to
retry. Thus, different numbers of counters are preferable for differ-
ent workloads and threading levels.

We have not experimented with adaptive policies, such as vary-
ing the number of counters used, nor with static analysis to iden-
tify which transactions should attempt to use hardware transactions,
and which should resort to software more quickly, or even immedi-
ately. We did experiment with various more sophisticated synchro-
nization mechanisms between hardware and software transactions,
but as in previous work [13], code used to implement more com-
plex decisions about whether and when to retry a failed hardware
transaction can affect cache, branch predictor, and TLB state, often
reducing the chances for a subsequent attempt to succeed. There-
fore, a more robust best-effort HTM may be needed to effectively
implement such policies.

Red-black tree benchmark We have also performed experiments
with red-black trees (not shown), similar to those reported in Dice
et al. [13]. In experiments with 100% lookups on small trees (key
ranges of 128 and 512), HyTM-NOrec-1C performs best or close
to best in all multithreaded tests. However, as we increase the
key range and/or the fraction of operations that modify the tree,
transactions acquire larger read sets and unpredictable branches,
and have more trouble succeeding, for reasons similar to those
reported by Dice et al. [13]. Again, a best-effort HTM that is less
prone to failure due to misspeculation may be needed to improve
our results for these kinds of workloads.

Discussion We also tested a variant of PhTM whose software
phase executes a single, uninstrumented transaction at a time
(SEQUENTIAL-NOABORT mode in Lev et al. [29]), as tested by
Christie et al. [9]. While it outperformed other algorithms in some
of our tests, we do not consider this a viable solution. It cannot
support explicit user-level abort due to its lack of instrumenta-
tion. It cannot execute multiple transactions concurrently, even if
they are read-only. In contrast, NOrec allows read-only transac-
tions to run concurrently without interference, and serializes only
the writeback phase of non-read-only transactions, not the entire
transaction. A simple variant of the SEQUENTIAL-NOABORT PhTM
mode could allow read-only transactions to execute concurrently
by using a reader-writer lock. However, this mode can be used only
by transactions that are known in advance to be read-only. NOrec
overcomes all of these problems.

It is tempting focus on performance comparisons between our
new hybrid algorithms and previous systems. However, in our ex-
perience, performance of these systems can be highly dependent
on idiosyncrasies of Rock, and minor changes in tuning parame-
ters, optimizations, retry policies, etc. can have significant impact
on performance. Thus, conclusions we would draw from such com-
parisons may be invalid for more robust HTM implementations. It
is more important to identify specific implementation-related chal-
lenges to performance and scalability, and how these challenges
differ between our system and previous work.

We have observed that tuning of PhTM—for example when to
switch to and from STM phase or which STM to use in that phase—
is sensitive to a number of factors, including specific characteris-
tics of workloads. An unnecessary phase switch in PhTM can be
expensive, and if this occurs frequently, it can have disastrous con-
sequences for performance. In contrast, HyTM systems make these
decisions on a per-transaction basis, and thus overall performance
is much less sensitive to occasional wrong decisions.

On the other hand, we have seen that NOrec-based hybrid so-
lutions on Rock do not isolate hardware and software performance
as much as expected, as the software transactions influence the per-
formance of concurrent hardware transactions more strongly than
the basic algorithm implies on its surface.

5. ASF
AMD’s ASF proposal [3, 15] extends the x86 64 architecture with
explicit transactional constructs. ASF guarantees that transactions
accessing four or fewer locations will never abort due to limited ca-
pacity. This bound admits an implementation that tracks the cache
lines accessed by a transaction in a 4-way set-associative cache,
while leaving open the possibility of using a separate hardware
“Locked Line Buffer” (LLB) instead [9]. ASF hardware is not cur-
rently available; we used PTLsim, a cycle-accurate out-of-order
x86 simulator [43], running Linux 2.6.20.

Within transactions, loads and stores must be prefixed with
the x86 LOCK prefix to be considered transactional; unlabeled
accesses are nontransactional. The exact memory model for the
resulting mix of transactional and nontransactional access is not
clearly defined [3], but the implication (and the behavior of the
current simulator) is that ordinary accesses propagate immediately,
and become globally visible, without preserving program order
with respect to transactional stores. ASF checkpoints only the pro-
gram counter and stack pointer at the beginning of a transaction;
any rollback of general registers on abort must be achieved by
software (e.g., using compiler support or setjmp). A transaction
that suffers a page fault is restarted automatically after completion
of the usual kernel page-in operation. Diestelhorst et al. [16] dis-
cuss the challenges that out-of-order execution presents to progress
guarantees.

ASF transactions that encounter traps, exceptions, infinite
loops, etc., abort without visible side effects, such as segmentation
violations (Section 4.1). Because nontransactional stores do not
consume transactional resources on ASF, programmers and com-
pilers may choose to use them more than they would on Rock. Such
use may increase the cost of sandboxing, because each nontransac-
tional store may need to be instrumented with HW VALIDATE.

5.1 Algorithms
As in Section 4, we implement 2-Location as a baseline hybrid
TM system. Given ASF’s guarantees for small transactions, we use
HTM to emulate a double-location compare-and-swap (DCAS), as
proposed by Dalessandro et al. [10]. We keep both counters on the
same virtual page, so SW COMMIT will never fail due to capacity
or pathological page allocation. However, by using a hardware
transaction to perform the DCAS, software transactions lose the
livelock-free guarantee of the original NOrec algorithm.

We find that the Read-Only filter (Figure 6b) is always bene-
ficial on ASF as the nontransactional write to readonly does not
consume HTM resources. Every hybrid algorithm described in this
section includes the Read-Only filter.

We refer to our ASF variant of 2-Location with the Read-Only
filter as 2-Location-ASF, or 2LA.

Lazy subscription In addition to 2LA, we tested lazy subscription
algorithms based on the naive algorithm in Figure 4a, with the
read and branch on seqlock delayed from HW POST BEGIN to
HW PRE COMMIT for hardware transactions. We tested both the
Opaque and Sandbox methods described in Section 3 for avoiding
incorrect behavior due to inconsistent execution.

Opaque uses post-read validation barriers as detailed in Fig-
ure 5. The use of nontransactional loads in HW VALIDATE avoids
conflicts and allows a transaction to survive concurrent software
writer commits, but it does not let the transaction make progress
during those commits. This algorithm requires one line of trans-
actional capacity for metadata in writing transactions, as we read
seqlock transactionally in HW PRE COMMIT. Sandbox relies on
sandboxing for correctness, rather than calling HW VALIDATE af-
ter every read.

SW-Exists Opaque and Sandbox update seqlock in non-read-
only transactions, regardless of the presence of software transac-
tions. In Opaque-SWExists and Sandbox-SWExists, we add the
SW-Exists filter (Figure 6a) to avoid this. As spurious updates of
seqlock do not affect correctness, we leverage nontransactional
loads to avoid some artificial conflicts, while using a transactional
load to prevent races due to a software transaction arriving, exe-
cuting, and committing concurrently with a hardware transaction
committing. The pseudocode below demonstrates how we handle
this circumstance by subscribing to the sw exists field when at-
tempting to commit without modifying seqlock. (Variants that do
not use the SW-Exists filter do not include lines 5, 6, 10 and 11.)

1 HW PRE COMMIT:
2 if (non tx load(readonly))
3 HW VALIDATE // not needed in Opaque
4 return
5 if (non tx load(sw exists) != 0)
6 HW VALIDATE
7 reg = tx load(seqlock)
8 if (reg & 1) asf abort
9 tx store (seqlock , reg+2)

10 else
11 if (tx load(sw exists) != 0) asf abort

Calling HW VALIDATE before loading seqlock transaction-
ally helps to avoid subscribing to seqlock during a software trans-
action writeback, which forces the hardware transaction to abort.

We used a simple counter for sw exists , not a SNZI. Simi-
larly, we did not experiment with separate counter(s) for hardware
transactions to signal their commits. The Read-Only and SW-Exists
optimizations are effective in reducing contention from hardware
transactions on seqlock, and our use of ample hardware resources
(see Section 5.2) further avoids the need to resort to software fre-
quently. Furthermore, even when transactions do resort to software,
if transaction commits are infrequent enough that contention on
sw exists or seqlock is unlikely, using SNZI and separate counters
is unnecessary. Nonetheless, for different workloads and/or system
configurations, it may be necessary to revisit the use of SNZI and/or
separate counters to aid scalability.

5.2 Test Results
We evaluated our hybrid NOrec algorithms using the STAMP
benchmark suite [7] on the PTLsim ASF simulator [43]. We did
not employ a transactifying compiler for ASF, instead putting all
hybrid instrumentation in libraries. This enabled us to easily add
per-access instrumentation to hardware transactions. Furthermore,
as STAMP is manually instrumented, this decision avoided unnec-
essary instrumentation due to imprecise compiler analysis, which
could produce unnecessary best-effort HTM capacity overflows.
We did not add any sandboxing instructions to STAMP for our
experiments, and thus our results provide a best-case estimate
of performance. This decision appears safe based on a review
of STAMP’s code, and because STAMP provides limited post-
operation sandboxing, based on programmer knowledge, with an
explicit abort-and-restart macro.

We used PTLsim’s ASF out-of-order core module (asfooo) with
a locked-line buffer (LLB) of 256 entries. We modified the sim-
ulator to support up to 16 cores, but report results here for only
8: performance at 16 was uniformly poor, and noisy as well, sug-
gesting an inherent lack of scalability in the simulated machine.
Code was compiled with gcc 4.3.2, using –O3 optimizations. Re-
sults were generated using the default “simulator” input parameters
for STAMP. Due to space constraints, we present only a subset of
these results; the trends and observations we report extend to the
entire suite. We tested basic CGL and NOrec implementations as
well as the five hybrid NOrec variants described above. In addition,
we tested PhTM-Serial, a version of PhTM in which software-mode
consists of a single serial transaction that executes with lightweight
instrumentation so as to support user-level aborts. Blundell et al.’s
[5] use of such serial execution in unbounded HTM suggests that
this may be a viable alternative if hardware aborts are rare. Our
hybrid infrastructure is configured to retry hardware transactions
repeatedly with exponential backoff unless a transaction exceeds
the capacity of the 256-entry LLB, in which case it falls back to
software.

With a 256-entry LLB, few STAMP transactions exceed the
capacity of the LLB and therefore need to run in software; see
Table 1. Furthermore, comparing the behavior of algorithms that
do not allow conflicts on metadata between hardware transactions
(such as PhTM-Serial) and those that do, we find that the abort
rates are very similar for most workloads, suggesting that there are
few such conflicts and therefore that the use of SNZI and multiple
counters would probably not provide significant benefit for these
workloads at the threading levels we tested.

The Benefit of Lazy Subscription Our results support the intu-
ition that PhTM-Serial is inappropriate for general purpose use. In
Bayes (not shown) and Labyrinth (Figure 8a) it does not scale at all.
For most of the STAMP benchmarks, 2LA scales well to 8 threads,
and offers better performance than the NOrec algorithm on which
it is based. Lazy subscription reduces the time a hardware trans-
action is vulnerable to aborts by software commits, and as a result
the lazy subscription algorithms often outperform 2LA. However,

81 2 4

3

0

0.5

1

1.5

2

2.5

Threads

Sp
ee

du
p

re
la

tiv
e

to
 C

GL
 (1

 th
re

ad
)

0.012 seconds

(a) Labyrinth

81 2 4

2.5

0

0.5

1

1.5

2

Threads

Sp
ee

du
p

re
la

tiv
e

to
 C

GL
 (1

 th
re

ad
)

0.004 seconds

(b) Genome

81 2 4

2.5

0

0.5

1

1.5

2

Threads

Sp
ee

du
p

re
la

tiv
e

to
 C

GL
 (1

 th
re

ad
)

0.005 seconds

(c) KMeans (High Contention)

8 2 4

3

0

0.5

1

1.5

2

2.5

Threads

Sp
ee

du
p

re
la

tiv
e

to
 C

GL
 (1

 th
re

ad
)

0.010 seconds

(d) SSCA2

81 2 3 4 5 7

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Threads

Sp
ee

du
p

re
la

tiv
e

to
 C

GL
 (1

 th
re

ad
)

0.012 seconds

(e) Vacation (High Contention)

81 2 4

2

0

0.5

1

1.5

Threads

Sp
ee

du
p

re
la

tiv
e

to
 C

GL
 (1

 th
re

ad
)

0.006 seconds

Opaque
Sandbox

Opaque-SWExists
Sandbox-SWExists

CGL
NOrec

PhTM-Serial
2LA

(f) Intruder

Figure 8. STAMP benchmarks, run on a simulated 8-core ASF x86 64 system. Results are shown as speedups over the CGL single-threaded
execution time, which is also explicitly given.

Benchmark Total Transactions Percent Hardware
Labyrinth 194 94.3%
Genome 5912 99.4%
KMeans 8193 99.9%
SSCA2 47257 99.9%
Vacation 4096 97.7%
Intruder 11209 99.5%

Table 1. Dynamic transaction count and percentage that fit in the
ASF LLB, allowing them to complete in hardware (single-threaded
execution).

they suffer the same metadata conflicts between hardware transac-
tions, which can eliminate the benefit of lazy subscription if those
conflicts occur frequently. For example, in the SSCA2 benchmark,
Sandbox performs just as poorly as 2LA. The SW-Exists filter can
avoid these conflicts, as discussed below, allowing the lazy sub-
scription algorithms to outperform all others. Thus, while lazy sub-
scription is not always sufficient in its own right, it is a key enabler
for the best algorithms.

The SW-Exists Filter By comparing Sandbox-SWExists to Sand-
box and Opaque to Opaque-SWExists, we can assess the benefit of
avoiding metadata modifications when committing writer transac-
tions. For this evaluation, we used SSCA2 (Figure 8d) which exe-
cutes roughly 47K transactions, all of which modify shared state,
and perform at most six memory operations (and therefore never
need to fall back to STM).

NOrec cannot scale on this workload, as its single counter be-
comes a bottleneck. Among hybrid algorithms, PhTM-Serial is
best, as there are no software transactions, and PhTM-Serial does
not require metadata updates for hardware transactions. Further-

more, the low abort rate for PhTM-Serial indicates that conflicts on
program data are rare.

The algorithms that use the SW-Exists filter perform almost as
well as PhTM-Serial. The -SWExists implementations avoid any
modification of metadata when all transactions run in hardware
mode, and thus the slight slowdown relative to PhTM-Serial, which
is not coupled with a noticeable increase in abort rate, indicates
that Opaque-SWExists and Sandbox-SWExists are paying a small
amount in unnecessary instrumentation, but are not wasting work
by aborting due to metadata conflicts.

In contrast, the algorithms that do not use the SW-Exists filter
(2LA, Sandbox, and Opaque) experience an increase in aborts as
the thread count increases, resulting in significantly worse perfor-
mance. For example, Sandbox reaches 1.1 aborts per commit at 8
threads, whereas PhTM-Serial has only 0.002 aborts per commit
at the same thread count. As Sandbox and Sandbox-SWExists dif-
fer only in their use of the SW-Exists filter (and likewise Opaque
and Opaque-SWExists), we conclude that the aborts in Sandbox
and Opaque are a consequence of conflicting updates to metadata,
which the SW-Exists filter avoids.

Opacity vs. Sandboxing Although neither of these approaches
is a clear winner, we observe Sandbox-SWExists outperforming
Opaque-SWExists in most cases, due to its lower instrumentation
costs. In some cases, however, the opposite is true. Recall that both
opaque and sandboxing algorithms access seqlock transactionally
whenever a writing transaction commits. When this variable is not
cached at commit time, the commit operation may take longer,
increasing vulnerability to unnecessary aborts due to conflicts with
in-flight transactions. For the opaque algorithms, HW VALIDATE
is called on every read, and thus seqlock is likely to remain in
cache. For the sandboxing algorithms, compiler-inserted calls to

HW VALIDATE can have the same prefetching effect. However, as
our instrumentation omitted these calls, the sandboxing algorithms
were more likely to experience a cache miss on seqlock at commit
time.

When Software TM is Better While only 5% of transactions ex-
ceed the hardware’s transactional capacity in Labyrinth, the cost of
running these transactions almost to completion in hardware before
aborting and retrying in software resulted in worse performance
than NOrec even at 1 thread. In Labyrinth, transactions first per-
form thousands of nontransactional loads and stores, then up to
several hundred transactional loads and stores. Thus, a hardware
transaction that overflows the LLB capacity does so after perform-
ing a lengthy prefix, magnifying the cost of the overflow.

Across all workloads, the relative benefit of hybrid TM seems
to diminish at higher thread counts. This is not surprising because
NOrec is livelock-free, its transactions do not abort due to false
sharing, and it is effective at preventing aborts, whereas hybrid TM
with requester-wins conflict detection is prone to livelock and can
experience high abort rates, even in workloads with few conflicts.
Labyrinth at 8 threads provides an extreme example: across all
threads, NOrec aborted 8 times when committing 208 transactions;
every hybrid algorithm aborted at least 600 times.

More generally, when the fraction of execution time that all
software transactions spend in the commit operation is small, the
instrumentation and shared metadata inherent in STM algorithms
can become less of a bottleneck, and the wasted work due to
excessive hybrid TM aborts can outweigh its lower instrumentation
overhead. This can be particularly true as read-write conflicts are
not deferred until commit time by hybrid TM: seemingly benign
conditions such as a software transaction validating, or sharing
between a committing reader and in-progress writer, can cause
hardware transactions to abort.

6. Discussion
A concern with NOrec has been the lack of scalability of its serial-
ized writeback mechanism: a workload that performs many write-
dominated transactions will perform poorly. STAMP’s SSCA2
benchmark is an example; Figure 8d clearly illustrates NOrec’s
weakness. Our results show that NOrec-based hybrids can avoid
this problem. If an application completes a large fraction of its
logical transactions in hardware, then its scalability is determined
more by the hardware than by the STM algorithm. Our tests show
NOrec-based hybrid scalability to be good for such workloads, in-
cluding for SSCA2. Admittedly, some applications may include
frequent transactions that are ill suited for execution using either
HTM or NOrec, in which case it may be desirable to include modes
that use more scalable STM algorithms.

In addition to achieving some encouraging results, we have
made observations about the impact that aspects of best-effort HTM
design have on its effectiveness in NOrec-based, hybrid systems.
Neither PhTM-NOrec nor the HyTM-NOrec variants are compet-
itive with NOrec when transactions commonly require software
execution, because logical transactions that ultimately succeed in
software do so only after failed attempts as hardware transactions.
HyTM implementations have a potential advantage over PhTM in
dealing with this problem: static analysis, profiling, and program-
mer guidance may allow transactions that are unlikely to succeed
using HTM to aggressively switch to software, without forcing the
entire system to undergo a mode change. We would like to con-
struct more adaptive retry policies. However, limitations of best-
effort HTM make it difficult without sacrificing performance in
other cases. Below we discuss the impact of Rock’s and ASF’s
HTM designs on our hybrid systems, and make some suggestions
for designers of future HTM features to consider.

Branch prediction Rock’s sensitivity to branch misprediction
in transactions negatively impacts adaptive policies, which often
branch between alternatives based on the contents of a shared vari-
able. By nature, shared variables are not necessarily cached, and
the branches associated with such adaptation can be unpredictable.
Rock provides speculation barriers [13] that can avoid the need
to predict a branch accurately, but their high overhead prevents
their ubiquitous use. We strongly urge HTM implementors to avoid
dependence on branch prediction for transactional success.

Contention management ASF’s guarantees for small transac-
tions are attractive but apply only in the absence of conflicts. In
practice, backoff is necessary to avoid livelock. This is inherent to
the requestor-wins conflict resolution policy used by both ASF and
Rock. Backing off just long enough to avoid conflicts is difficult.
Thus, STM sometimes outperforms HTM because it can actively
resolve conflicts, rather than merely avoid them using backoff.

Requestor-wins has a subtle effect in our HyTM-NOrec imple-
mentations. A software transaction reads data, including program
data as well as metadata such as counters, in order to detect poten-
tial conflicts. If a concurrent hardware transaction has speculatively
written such data, requestor-wins will cause the hardware trans-
action to abort, without guaranteeing that the software transaction
will succeed. This increases the potential for poor performance and
livelock, even in workloads where true conflicts are infrequent.

Unlabeled Accesses Rock and ASF both provide the capability to
execute transactional and nontransactional accesses within a trans-
action. Both Rock and ASF require one type to be explicitly la-
beled, and treat unlabeled accesses as the other type. However, they
make opposite choices: Unlabeled ASF accesses are nontransac-
tional whereas Rock considers them to be transactional. Rock’s ap-
proach allows the same code to be used both transactionally and
nontransactionally and supports the use of libraries inside trans-
actions, Transactional Lock Elision (TLE) [13] with a single code
path, and straightforward compilation of transactional code. ASF’s
choice carries the implicit assumption that transactional accesses
have large incremental costs and require careful use. This is true in
a minimally conforming ASF implementation and a good assump-
tion even in PTLsim’s default 256 LLB implementation. However
it complicates code generation and library reuse.

Rock’s prohibition on CAS inside transactions limits some of
the benefits of treating unlabeled accesses as transactional. Con-
sider memory allocation, where a hardware transaction calls a
thread-safe malloc implemented with a CAS-based lock. On Rock,
the transaction will fail due to the restriction on CAS. On ASF,
it can succeed, but a worse problem arises if a transaction aborts
while executing malloc, because it will fail to release the lock,
preventing all subsequent memory allocation. An ideal implemen-
tation would allow ordinary code to be executed within hardware
transactions, and have its effects negated upon abort, but provide
for unfettered use of nontransactional operations too.

Sandboxing for lazy subscription requires validation barriers on
nontransactional accesses. If nontransactional accesses are more
common on ASF than on Rock, then sandboxing may be more
expensive on ASF.

Nontransactional accesses ASF and Rock both support non-
transactional accesses within transactions, but with different mem-
ory-model semantics. Rock’s nontransactional accesses are re-
quired to preserve TSO regardless of the surrounding transaction’s
success or failure. The specification for ASF’s nontransactional ac-
cesses is currently incomplete, but the implication (and PTLsim’s
implementation) is that they can become globally visible without
respecting the program order of interleaved transactional accesses.

Several of our key optimizations depend on support for non-
transactional loads from shared locations, for which ASF’s and

Rock’s differing semantics are both effective. Riegel et al. [36] find
that it is beneficial to be able to access shared data with a nontrans-
actional CAS instruction inside a transaction (Section 7), provided
the CAS becomes visible before the transaction is committed.

We do not currently have a use for nontransactional stores to
shared locations, but we do find nontransactional stores to thread
private locations useful. For these, strong ordering with respect
to stores of other threads is not needed. PTLsim effectively sup-
ports such accesses and the corresponding optimizations. However,
Rock’s requirement that nontransactional stores respect TSO leads
them to occupy a store buffer slot, inhibiting their use significantly.
For example, on Rock, dynamically tracking whether a transaction
performs a store (for the Read-Only optimization) requires us to
avoid writing the flag on every store, complicating the write barrier
code and introducing a branch we would prefer to avoid.

We recommend that designers carefully consider how they can
support flexible use of nontransactional accesses, as well as the
interaction of those accesses with the memory consistency model.
White and Spear [42] suggest that it may be useful to distinguish
between nontransactional stores that become visible before the
transaction commits and those that respect (say) TSO order.

Visibility into transactional execution Information about the be-
havior of a transaction that is executing can be useful for a variety
of reasons. For example, a cheap way to determine how many loads
and stores a transaction has performed would provide a convenient
solution to the problem of determining whether a Read-Only opti-
mization can be applied in a given transaction, or could inform a
decision about whether and when to retry. It is also useful for code
to be able to determine whether it is executing in a transaction (for
example to allow a TLE implementation to decide between com-
mitting a transaction and releasing a lock). Numerous other kinds
of information are potentially useful, such as addresses accessed,
addresses that cause conflicts, etc. In addition, transaction-aware
performance counters and sampling mechanisms may be useful.

Scalability with contention With requestor-wins conflict resolu-
tion, it is not surprising that the naive HyTM-NOrec algorithm that
requires every hardware transaction to increment a shared counter
at the end performs poorly. It may be tempting for designers to
consider this “a software problem,” especially in light of our suc-
cess in distributing the counters in the SW-Exists algorithm. How-
ever, the techniques we used not only complicate our algorithms
but entail performance tradeoffs, such as requiring software trans-
actions to read more counters. By aiming to avoid pathological per-
formance under contention in such cases, designers can allow us to
avoid these mechanisms, or at least to use fewer counters. Possible
approaches include more sophisticated conflict resolution policies,
(perhaps limited) support for nesting, and support for nontransac-
tional CAS within transactions.

7. Related Work
In related concurrent work, Felber et al. [19] and Riegel et al. [36]
evaluate hybrid TM systems on the ASF simulator. Like ours, one
of their hybrids starts with the sketch from Dalessandro et al. [10],
leading to some overlap with the basic algorithm that we have pre-
sented. This includes lazy subscription via read instrumentation,
though not with sandboxing, and the Read-Only filter. Riegel et al.
observed that ASF’s nontransactional CAS capability allows hard-
ware transactions to modify the seqlock/counter nontransaction-
ally within a transaction in order to avoid unnecessary conflicts be-
tween hardware transactions. While this capability is not clearly
supported by the ASF documentation, it works using the current
simulator implementation, and is shown to be effective at prevent-
ing counter contention from causing unnecessary aborts.

Interestingly, the nontransactional CAS optimization is both or-
thogonal and complementary to the most effective of our ASF opti-
mizations, Read-Only and SW-Exists. Our limited testing suggests
that integrating the three techniques often slightly outperforms
Read-Only with SW-Exists for the STAMP applications. This av-
enue deserves more attention as the ASF specification matures.

8. Conclusion And Future Work
We have explored the use of best-effort HTM to implement several
hybrid versions of the low-overhead NOrec. These NOrec-based
HyTM algorithms support the concurrent execution of hardware
and software transactions, as previous hybrid TMs do, but with the
low overhead on hardware transactions previously achieved only in
phased TMs.

Our results show the significant potential for this approach,
but also reveal a number of challenges in realizing that potential.
We expect to continue to improve our results using the Rock and
(simulated) ASF best-effort HTM as currently designed. However,
it appears that overcoming some of the challenges will require
better best-effort HTM support than the existing implementations
and proposals provide. An important contribution of our work is
to identify and discuss such issues, in order to guide designers of
future best-effort HTMs.

Perhaps the greatest opportunities lie in adaptation. The P-
Counter algorithm, for example, would benefit from a dynamic
choice of an appropriate number of counters. We also need better
ways to identify transactions that should start in software mode.
The decision might be made using compile-time static analysis or
profiling feedback, or using runtime lightweight statistics gathering
and dynamic adaptation [39]. Even with good initial choices, we
need faster ways to determine when a given dynamic transaction
should resort to software, rather than retrying in hardware.

Acknowledgments
Our thanks to Dave Dice for his implementation of NOrec STM,
to Dan Nussbaum for his initial integration of NOrec into Oracle’s
SkySTM hybrid infrastructure, to Stephan Diestelhorst for updated
PTLsim source code and advice on extending it to larger numbers
of threads, and to our shepherd Milo Martin for his patience and
helpful advice.

References
[1] A.-R. Adl-Tabatabai and T. Shpeisman (Eds.). Draft Specification of

Transactional Language Constructs for C++. research.sun.com/
scalable/pubs/C++-transactional-constructs-1.0.pdf,
Aug. 2009. Version 1.0.

[2] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha,
and T. Shpeisman. Compiler and Runtime Support for Efficient
Software Transactional Memory. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation, Jun. 2006.

[3] Advanced Micro Devices. Advanced Synchronization Facility:
Proposed Architectural Specification. Publication #45432, rev. 2.1,
developer.amd.com/assets/45432-ASF_Spec_2.1.pdf, Mar.
2009.

[4] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded Transactional Memory. In 11th Intl. Symp. on
High-Performance Computer Architecture, Feb. 2005.

[5] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making
the fast case common and the uncommon case simple in unbounded
transactional memory. SIGARCH Comput. Archit. News, 35:24–34,
June 2007.

[6] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of
Transactional Memory Atomicity Semantics. Computer Architecture
Letters, 5(2), Nov. 2006.

research.sun.com/scalable/pubs/C++-transactional-constructs-1.0.pdf
research.sun.com/scalable/pubs/C++-transactional-constructs-1.0.pdf
developer.amd.com/assets/45432-ASF_Spec_2.1.pdf

[7] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford Transactional Applications for Multi-processing. In IEEE
Intl. Symp. on Workload Characterization, Sep. 2008.

[8] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, and
S. Yip. Rock: A High-Performance SPARCTM CMT Processor.
IEEE Micro, 29(2):6–16, Mar.-Apr. 2009.

[9] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere.
Evaluation of AMD’s Advanced Synchronization Facility within a
Complete Transactional Memory Stack. In EuroSys Conf., Apr. 2010.

[10] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In 15th ACM Symp. on
Principles and Practice of Parallel Programming, Jan. 2010.

[11] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid Transactional Memory. In 12th Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems, Oct. 2006.

[12] D. Dice, Y. Lev, V. J. Marathe, M. Moir, D. Nussbaum, and
M. Oleszewski. Simplifying Concurrent Algorithms by Exploiting
Hardware Transactional Memory. In 22nd ACM Symp. on
Parallelism in Algorithms and Architectures, 2010.

[13] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski. Early
Experience with a Commercial Hardware Transactional Memory
Implementation. SMLI TR-2009-180, Sun Microsystems
Laboratories, Oct. 2009.

[14] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In 20th
Intl. Symp. on Distributed Computing, Sep. 2006.

[15] S. Diestelhorst and M. Hohmuth. Hardware Acceleration for
Lock-Free Data Structures and Software-Transactional Memory. In
Wkshp. on Exploiting Parallelism with Transactional Memory and
other Hardware Assisted Methods, Apr. 2008.

[16] S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie, J.-W. Chung,
and L. Yen. Implementing AMD’s Advanced Synchronization
Facility in an Out-of-Order x86 Core. In 5th ACM SIGPLAN Wkshp.
on Transactional Computing, Apr. 2010.

[17] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software Behavior Oriented Parallelization. In ACM SIGPLAN Conf.
on Programming Language Design and Implementation, Jun. 2007.

[18] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable
NonZero Indicators. In 26th ACM Symp. on Principles of Distributed
Computing, Aug. 2007.

[19] P. Felber, C. Fetzer, P. Marlier, M. Nowack, and T. Riegel. Brief
announcement: Hybrid time-based transactional memory. In
N. Lynch and A. Shvartsman, editors, Distributed Computing,
Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2010.

[20] R. Guerraoui and M. Kapalka. On the Correctness of Transactional
Memory. In 13th ACM Symp. on Principles and Practice of Parallel
Programming, 2008.

[21] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabju, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional Memory Coherence and Consistency. In
31st Intl. Symp. on Computer Architecture, Jun. 2004.

[22] T. Harris and K. Fraser. Revocable Locks for Non-Blocking
Programming. In 10th ACM Symp. on Principles and Practice of
Parallel Programming, Jun. 2005.

[23] T. Harris, M. Plesko, A. Shinar, and D. Tarditi. Optimizing Memory
Transactions. In ACM SIGPLAN Conf. on Programming Language
Design and Implementation, Jun. 2006.

[24] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Synthesis
Lectures on Computer Architecture. Morgan Claypool, 2nd edition,
2010.

[25] M. Herlihy and J. E. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In 20th Intl. Symp. on
Computer Architecture, May. 1993.

[26] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
Transactional Memory. In 11th ACM Symp. on Principles and
Practice of Parallel Programming, Mar. 2006.

[27] C. Lameter. Effective Synchronization on Linux/NUMA Systems. In
May 2005 Gelato Federation Meeting, May. 2005.

[28] Y. Lev, V. Luchangco, V. J. Marathe, M. Moir, D. Nussbaum, and
M. Olszewski. Anatomy of a Scalable Software Transactional
Memory. In 4th ACM SIGPLAN Wkshp. on Transactional
Computing, 2009. http://research.sun.com/scalable/pubs/
TRANSACT2009-ScalableSTMAnatomy.pdf.

[29] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased Transactional
Memory. In 2nd ACM SIGPLAN Wkshp. on Transactional
Computing, Aug. 2007.

[30] S. Lie. Hardware Support for Unbounded Transactional Memory.
Master’s thesis, Massachusetts Institute of Technology Department of
Electrical Engineering and Computer Science, May 2004.

[31] P. E. McKenney. Is Parallel Programming Hard, And, If So, What
Can You Do About It? http://www.rdrop.com/users/paulmck/
perfbook/perfbook.2010.01.23a.pdf, 2010. [Viewed Jan. 24,
2010].

[32] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics
for Java STM. In 20th ACM Symp. on Parallelism in Algorithms and
Architectures, June 2008.

[33] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based Transactional Memory. In 12th Intl. Symp. on
High-Performance Computer Architecture, Feb. 2006.

[34] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory. In
16th Intl. Conf. on Parallel Architectures and Compilation
Techniques, Sep. 2007.

[35] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional
Memory. In 32nd Intl. Symp. on Computer Architecture, Jun. 2005.

[36] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer.
Optimizing Hybrid Transactional Memory: The Importance of
Nonspeculative Operations. TUD-FI10-06-Nov.2010, Technische
Universitaet Dresden, Nov. 2010.

[37] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software
Transactional Memory System For A Multi-Core Runtime. In 11th
ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, Mar. 2006.

[38] M. Spear, V. Marathe, W. Scherer, and M. Scott. Conflict detection
and validation strategies for software transactional memory. In
S. Dolev, editor, Distributed Computing, Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 2006.

[39] M. F. Spear. Lightweight, Robust Adaptivity for Software
Transactional Memory. In 22nd ACM Symp. on Parallelism in
Algorithms and Architectures, June 2010.

[40] F. Tabba, A. W. Hay, and J. R. Goodman. Transactional Value
Prediction. In 4th ACM SIGPLAN Wkshp. on Transactional
Computing, Feb. 2009.

[41] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai.
Code Generation and Optimization for Transactional Memory
Constructs in an Unmanaged Language. In Intl. Symp. on Code
Generation and Optimization, Mar. 2007.

[42] S. White and M. Spear. On Reconciling Hardware Atomicity,
Memory Models, and tm waiver. In 2nd Workshop on the Theory of
Transactional Memory (WTTM), Sep. 2010.

[43] M. Yourst. PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator. In 2007 IEEE Intl. Symp. on
Performance Analysis of Systems and Software, Apr. 2007.

http://www.rdrop.com/users/paulmck/perfbook/perfbook.2010.01.23a.pdf
http://www.rdrop.com/users/paulmck/perfbook/perfbook.2010.01.23a.pdf

	Introduction
	Background
	Hardware TM
	Hybrid TM

	NOrec Hybrid Design
	Basic Algorithms
	Lazy Subscription and Sandboxing
	Communication Filters

	Rock
	Algorithms
	Test Results

	ASF
	Algorithms
	Test Results

	Discussion
	Related Work
	Conclusion And Future Work

