
Hybrid TM Using NOrec STM ∗

Luke Dalessandro, Michael F. Spear,† and Michael L. Scott
University of Rochester †Lehigh University

{luked,scott}@cs.rochester.edu spear@cse.lehigh.edu

Transactional memory (TM) aims to simplify parallel program-
ming by providing serializable memory transactions as an exten-
sion to the system’s memory model. In the context of increas-
ing numbers of on-chip processor cores, Sun’s Rock processor [3]
and AMD’s proposed Advanced Synchronization Facility (ASF)
[1] suggest that commercial support for best-effort hardware TM
(HTM) may finally be forthcoming.

Best-effort HTMs impose implementation-defined limits on the
length, size, or behavior of transactions. Rock transactions, for
example, must not make function calls, overflow the write buffer, or
suffer evictions of speculatively read cache lines. ASF transactions
are guaranteed only four lines of speculatively written state, though
more are likely in practice. Neither system supports transactions
that span exceptions or interrupts.

Best-effort HTMs suffice for most concurrent data structure
methods, but may fail repeatedly for larger, general-purpose trans-
actions. Hybrid TM systems [5, 6] address this limitation by falling
back to software TM (STM) when hardware limits are exceeded.

A hybrid system must arrange for hardware and software trans-
actions to be aware of each others’ activity. Because hardware
transactions are typically isolated from nontransactional accesses
(a property known as strong atomicity [2]), a hardware transaction
can be expected to abort if a location it has accessed is written by a
software transaction. Software transactions, however, are not usu-
ally strongly atomic; they detect conflicts based on metadata that
identifies writers and (often) readers. Previous hybrid TM systems
have therefore assumed that hardware transactions must include in-
structions that access metadata according to the STM protocol.

Kumar et al. [6] combine HTM with an object-cloning STM
system. Hardware transactions modify the most recent version of
an object in place, but software transactions create entirely new
copies. Both kinds of transactions inspect and update object head-
ers. Unfortunately, cloning introduces unacceptably high time and
space overheads in many cases, and its data layout requirements are
incompatible with systems languages like C. Recent STM research
has moved to lower-overhead alternatives.

Damron et al. [5] combine HTM with a buffered-update, non-
object-based STM that maintains a table of ownership records
(orecs). Hardware transactions are instrumented with read and
write barriers that inspect and update these orecs. This instrumenta-
tion significantly increases both the instruction count of hardware
transactions and the size of their read sets, which in turn makes
them more likely to fail due to capacity limits. Moreover meta-
data updates by software reader transactions, performed to alert
hardware transactions of their existence, will induce cache misses
in other software transactions and may abort concurrent hardware
readers. Finally, subroutines called from both transactional and
nontransactional contexts must be made available not only in na-
tive and STM versions, but in an HTM version as well.

We have devised [4] a low-overhead STM system (“NOrec”)
that we believe may constitute an ideal software fall-back in hybrid
TM. Rather than a table of ownership records, NOrec maintains a

∗ This work was supported in part by NSF grants CNS-0615139, CCF-
0702505, and CSR-0720796; by equipment support from Sun and IBM;
and by financial support from Intel and Microsoft.

single global sequence lock, which is used to trigger consistency
checks and to serialize commits. Transactions log address/value
pairs for read locations and check consistency by re-reading all
locations and verifying that their values have not changed. This
value-based validation eliminates the need for hardware transac-
tions to modify metadata outside the begin- and end-transaction
code. Crucially, hardware transactions in a NOrec hybrid do not
require per-read or per-write barriers for communication with
software-mode transactions.

For use in hybrid TM, we augment NOrec with a second word
of global metadata. The original sequence lock continues to serve
its purpose for software transactions, while a second lock serves
to signal hardware transactions that a software writer is commit-
ting. Hardware transactions start by reading the second lock and
then execute without further read or write instrumentation. As their
last action before commit they read and increment the sequence
lock, triggering validation in software transactions. Software trans-
actions acquire both locks with a two-word hardware transaction at
commit time, simultaneously signaling both software and hardware
peers. The required read-modify-write sequence on the second lock
will abort only those hardware transactions that are in the narrow
window immediately prior to committing. We conjecture that the
rate of such aborts will be very low in practice.

Experiments suggest [4] that the software-only version of
NOrec combines surprisingly good scalability with lower over-
head than any other STM system that supports concurrent writers.
It also provides unusually clean semantics for programs that mix
transactional and nontransactional access to the same data. The hy-
brid system described here adds minimal overhead to the hardware
path. We plan to evaluate it on both Rock and ASF, with the expec-
tation of developing a solid, general-purpose TM system suitable
for production use on next-generation multicore chips.

References
[1] Advanced Micro Devices. Advanced Synchronization Facility: Pro-

posed Architectural Specificaiton. Publication #45432, rev. 2.1, Mar.
2009. developer.amd.com/assets/45432-ASF_Spec_2.1.pdf.

[2] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of Trans-
actional Memory Atomicity Semantics. IEEE Computer Architecture
Letters, 5(2), Nov. 2006.

[3] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, and
S. Yip. Rock: A High-Performance Sparc CMT Processor. IEEE Micro,
29(2):6–16, Mar.-Apr. 2009.

[4] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In Proc. of the 15th ACM
Symp. on Principles and Practice of Parallel Programming, Jan. 2010.

[5] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid Transactional Memory. In Proc. of the 12th Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems, Oct. 2006.

[6] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
Transactional Memory. In Proc. of the 11th ACM Symp. on Principles
and Practice of Parallel Programming, Mar. 2006.

1 2010/2/1


