
Making the Simple Case Simple

Michael L. Scott
University of Rochester

October 2009

With the proliferation of multicore processors, and
the anticipation of “many-core,” it has become com-
monplace to predict dire consequences if researchers
fail to make it easy for rank-and-file programmers to
write correct, efficient parallel code. Certainly any-
one who has taught traditional concurrency knows
that students have great difficulty with the subject.
Much of the pedagogical problem, I believe, stems
from a tendency to introduce material in the way it
developed historically, starting with data races and
the implementation of mutual exclusion (and today
including, by necessity, memory consistency models).

In the “real world,” only concurrency wizards in-
troduce low-level data races into their code on pur-
pose. Above the level of wizards, there would seem
to be several “tiers” of parallel programming tech-
niques, with progressively less conceptual complexity
(Table 1). One tier up from the bottom of the table,
explicitly synchronized concurrency is a mature and
well-understood discipline, though still generally too
complex for most programmers. Transactional mem-
ory (TM) may simplify matters considerably, but will
not be a panacea: it does not eliminate the need to
think about high-level races. Ubiquitous parallelism,
effected by “ordinary” programmers, will likely re-
quire innovation in Tiers 1 and 2, where even high-
level races are precluded, and program behavior can-
not change due to changes in thread interleaving.

In a recent article, Bocchino et al. [2] argue elo-
quently for a deterministic model of parallel program-
ming, in which the introduction of concurrency does
not change program behavior. Similar arguments
have been made by many others, going back at least
as far as Multilisp [5]. Potential approaches include
automatic parallelization of (mostly loop-based) pro-
grams; side-effect-free programming; safe futures in
imperative languages [14]; pipelining [7]; partially or-
dered iterators [6]; ordered locking [10]; and data
partitioning effected with types [1]. Unfortunately,
the longevity of the argument, the diversity of ap-
proaches, the flurry of recent papers, and the com-
plexity of some proposed solutions all make deter-
ministic parallelism look more like a vibrant research
topic than an established technology suitable for un-
dergraduate instruction. So what should we be doing
in the classroom?

I suggest 4 concrete principles:
(1) Make it easy to express concurrent tasks.
Algol 68 had simpler concurrency syntax (begin A,
B end) than any language in widespread use today,
with the possible exception of Fortran 95. We need
equally simple syntax in modern teaching languages.
Calling two independent subroutines in parallel—or
mapping a pure function across the elements of a
collection—should not require the import of special
libraries, the instantiation of special classes, or the
creation of closure objects.
(2) Teach independence as a programming dis-
cipline. Early in the curriculum, we need to es-
tablish the assumption that parallelism exists, by
default, for the execution of mutually independent
tasks, and we need to help students learn to build
such tasks into their code. Once the habit is ingrained
(later in the curriculum), we can relax the model a
bit—e.g., to allow parallel tasks to make atomic calls
to commutative operations.
(3) Leverage speculation as an implementation
technique. As many researchers have observed,
speculation can enable optimistic parallel execution
in semantically sequential code, without changing the
programming model. Sections of code worth exe-
cuting speculatively may be identified by program-
mer hints, static analysis, or profile-driven feedback.
Speculation may be implemented using virtual mem-
ory protection [4], software instrumentation [8,9,12],
or hardware support [11, 13]. Deeply embedded in
standard run-time systems, speculation can also sup-
port race detection in parallel code, transactional
memory, and statically unsafe optimization.
(4) Embrace race detection as a debugging
tool. Someday, we may all program in a language
that is side effect free, or that makes it easy to par-
tition the heap dynamically among concurrent tasks.
Until then, students will continue to write code con-
taining accidental data races, and we will need to help
them find and eliminate those races. I lean toward dy-
namic detection, which can be retrofitted into exist-
ing languages without little or no modification, gener-
ates no false alarms, and can find all dynamic races at
relatively modest cost (about 3× for typical code, us-
ing the latest instrumentation techniques from trans-
actional memory [3]). At that cost, programmers will

1

mls
OOPSLA Wkshp. on Curricula for Concurrency, Orlando, FL, Oct. 2009.



Tier Techniques Issues Curricular location

(1) Automatic canned libraries,
parallelizing compilers,
VHL primitives

(none) computer appreciation

(2) Deterministic do-all or futures,
with system-enforced
independence or fall-back
to sequential execution;
vector for-all; pipelining;
partially-ordered iterators

locality, granularity,
load balance, design
patterns

data structures

(3) Explicitly synchronized
(data-race-free):
(a) concurrent (event-driven);
(b) parallel (thread-based);
(c) distributed (message-based)

atomic blocks
(transactional memory),
locks/monitors,
loop post-wait, map/reduce,
condition synchronization,
run-until-block,
send/receive/rendezvous

progress, consensus,
happens-before,
data-race freedom,
2-phase commit,
self-stabilization,
Byzantine agreement

(a) graphics, HCI,
web computing;
(b) SW engg.,
languages,
scientific computing;
(c) networks,
distributed computing

(4) Low-level (racy) implementation of threads
and synchronization,
nonblocking data structures

memory models,
consistency,
linear/serial-izability,
consensus hierarchy

OS, architecture,
parallel computing,
DBMS

Table 1: Tiers of parallelism. Speculation may help to enable the techniques shown in bold.

typically want to turn checking off “once debugging is
complete.” While this is not ideal, it’s hardly a new
phenomenon, and emerging speculative hardware or
language advances will eventually reduce it.

Guided by these principles, I believe we should
introduce parallelism not as a special topic, but as
one of the standard control flow mechanisms in the
programmer’s tool chest, along with selection, iter-
ation, recursion, and the like. We should then in-
troduce assignments—throughout the undergraduate
curriculum—in which parallelism makes a difference,
and we should run those assignments on multicore
machines: students need the positive reinforcement of
concrete, significant speedups when they parallelize
their code.

References

[1] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. Adve, S.
Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System
for Deterministic Parallel Java. OOPSLA 2009.

[2] R. Bocchino Jr., V. S. Adve, S. V. Adve, and M.
Snir. Parallel Programming Must Be Deterministic
By Default. HotPar 2009.

[3] L. Dalessandro, M. F. Spear, and M. L. Scott.
NOrec: Streamlining STM by Abolishing Ownership
Records. PPoPP 2010 (to appear).

[4] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and
C. Zhang. Software Behavior Oriented Paralleliza-
tion. PLDI 2007.

[5] R. H. Halstead, Jr. Multilisp: A Language for Con-
current Symbolic Computation. ACM TOPLAS,
7(4):501-538, Oct. 1985.

[6] M. Kulkarni, K. Pingali, B. Walter, G. Rama-
narayanan, K. Bala, and L. P. Chew. Optimistic
Parallelism Requires Abstractions. PLDI 2007.

[7] E. A. Lee. The Problem with Threads. Computer,
39(5):33-43, May 2006.

[8] M. Mehrara, J. Hao, P.-C. Hsu, and S. A. Mahlke.
Parallelizing Sequential Applications on Commodity
Hardware using a Low-cost Software Transactional
Memory. PLDI 2009.

[9] C. E. Oancea, A. Mycroft, and T. Harris. A
Lightweight In-Place Implementation for Software
Thread-Level Speculation. SPAA 2009.

[10] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
Efficient Deterministic Multithreading in Software.
ASPLOS 2009.

[11] M. K. Prabhu and K. Olukotun. Using Thread-
level Speculation to Simplify Manual Parallelization.
PPoPP 2003.

[12] M. F. Spear, K. Kelsey, T. Bai, L. Dalessandro, M. L.
Scott, C. Ding, and P. Wu. Fastpath Speculative
Parallelization. LCPC 2009.

[13] C. von Praun, L. Ceze, and C. Caşcaval. Im-
plicit Parallelism with Ordered Transactions. PPoPP
2007.

[14] A. Welc, S. Jagannathan, and A. L. Hosking. Safe
Futures for Java. OOPSLA 2005.

2




