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Abstract
In a thread-safe concurrent queue, consumers typically 
wait for producers to make data available. In a synchronous 
queue, producers similarly wait for consumers to take the 
data. We present two new nonblocking, contention-free syn-
chronous queues that achieve high performance through a 
form of dualism: The underlying data structure may hold 
both data and, symmetrically, requests.

We present performance results on 16-processor SPARC 
and 4-processor Opteron machines. We compare our algo-
rithms to commonly used alternatives from the literature 
and from the Java SE 5.0 class java.util.concurrent 
.SynchronousQueue both directly in synthetic 
microbenchmarks and indirectly as the core of Java’s 
ThreadPoolExecutor mechanism. Our new algorithms 
consistently outperform the Java SE 5.0 SynchronousQueue 
by factors of three in unfair mode and 14 in fair 
mode; this translates to factors of two and ten for the 
ThreadPoolExecutor. Our synchronous queues have been 
adopted for inclusion in Java 6.

1. INTRODUCTION
Mechanisms to transfer data between threads are among 
the most fundamental building blocks of concurrent sys-
tems. Shared memory transfers are typically effected via 
a concurrent data structure that may be known variously as a 
buffer, a channel, or a concurrent queue. This structure serves 
to “pair up” producers and consumers. It can also serve to 
smooth out fluctuations in their relative rates of progress by 
buffering unconsumed data. This buffering, in systems that 
provide it, is naturally asymmetric: A consumer that tries to 
take data from an empty concurrent queue will wait for a 
producer to perform a matching put operation; however, a 
producer need not wait to perform a put unless space has 
run out. That is, producers can “run ahead” of consumers, 
but consumers cannot “run ahead” of producers.

A synchronous queue provides the “pairing up” function 
without the buffering; it is entirely symmetric: Producers 
and consumers wait for one another, “shake hands,” and 
leave in pairs. For decades, synchronous queues have played 
a prominent role in both the theory and practice of concur-
rent programming. They constitute the central synchroniza-
tion primitive of Hoare’s CSP8 and of languages derived from 
it, and are closely related to the rendezvous of Ada. They are 
also widely used in message-passing software and in stream-
style “hand-off” algorithms.2, Chap. 8 (In this paper we focus on 
synchronous queues within a multithreaded program, not 
across address spaces or distributed nodes.)

Unfortunately, design-level tractability of synchronous 
queues has often come at the price of poor performance. 
“Textbook” algorithms for put and take may repeat-

edly suffer from contention (slowdown due to conflicts 

with other threads for access to a cache line) and/or block-
ing (loops or scheduling operations that wait for activity in 
another thread). Listing 1, for example, shows one of the 
most commonly used implementations, due to Hanson.3 
It employs three separate semaphores, each of which is a 
potential source of contention and (in acquire operations) 
blocking.a

The synchronization burden of algorithms like Hanson’s 
is especially significant on modern multicore and mul-
tiprocessor machines, where the OS scheduler may take 
thousands of cycles to block or unblock threads. Even an 
uncontended semaphore operation usually requires special 
read-modify-write or memory barrier (fence) instructions, 
each of which can take tens of cycles.b

a Semaphores are the original mechanism for scheduler-based synchroniza-
tion (they date from the mid-1960s). Each semaphore contains a counter and 
a list of waiting threads. An acquire operation decrements the counter and 
then waits for it to be nonnegative. A release operation increments the 
counter and unblocks a waiting thread if the result is nonpositive. In effect, a 
semaphore functions as a non-synchronous concurrent queue in which the 
transferred data is null.
b Read-modify-write instructions (e.g., compare_and_swap [CAS]) faci-
litate constructing concurrent algorithms via atomic memory updates. 
Fences enforce ordering constraints on memory operations.

Listing 1: Hanson’s synchronous queue. Semaphore sync indicates 
whether item is valid (initially, no); send holds 1 minus the number 
of pending puts; recv holds 0 minus the number of pending takes.

00 public class HansonSQ<E> {
01 E item = null;
02 Semaphore sync = new Semaphore(0);
03 Semaphore send = new Semaphore(1);
04 Semaphore recv = new Semaphore(0);
05
06 Public E take() {
07  recv.acquire();
08  E x = item;
09  sync.release();
10  send.release();
11  return x;
12 }
13
14 public void put(E x) {
15  send.acquire();
16  item = x;
17  recv.release();
18  sync.acquire();
19 }
20 }

A previous version of this paper was published in Proceed-
ings of the 11th ACM Symposium on Principles and Practice 
of Parallel Programming, Mar. 2006.
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It is also difficult to extend Listing 1 and other “clas-
sic” synchronous queue algorithms to provide addi-
tional functionality. Many applications require poll 
and offer operations, which take an item only if a 
producer is already present, or put an item only if a con-
sumer is already waiting (otherwise, these operations 
return an error). Similarly, many applications require 
the ability to time out if producers or consumers do not 
appear within a certain patience interval or if the wait-
ing thread is asynchronously interrupted. In the java.util 
.concurrent library, one of the ThreadPoolExecutor imple-
mentations uses all of these capabilities: Producers deliver 
tasks to waiting worker threads if immediately available, but 
otherwise create new worker threads. Conversely, worker 
threads terminate themselves if no work appears within a 
given keep-alive period (or if the pool is shut down via an 
interrupt).

Additionally, applications using synchronous queues vary 
in their need for fairness: Given multiple waiting producers, 
it may or may not be important to an application whether the 
one waiting the longest (or shortest) will be the next to pair 
up with the next arriving consumer (and vice versa). Since 
these choices amount to application-level policy decisions, 
algorithms should minimize imposed constraints. For exam-
ple, while fairness is often considered a virtue, a thread pool 
normally runs faster if the most-recently-used waiting worker 
thread usually receives incoming work, due to the footprint 
retained in the cache and the translation lookaside buffer.

In this paper we present synchronous queue algorithms 
that combine a rich programming interface with very low 
intrinsic overhead. Our algorithms avoid all blocking other 
than that intrinsic to the notion of synchronous handoff: 
A producer thread must wait until a consumer appears (and 
vice versa); there is no other way for one thread’s delay to 
impede another’s progress. We describe two algorithmic 
variants: a fair algorithm that ensures strict FIFO ordering 
and an unfair algorithm that makes no guarantees about 
ordering (but is actually based on a LIFO stack). Section 2 
of this paper presents the background for our approach. 
Section 3 describes the algorithms and Section 4 presents 
empirical performance data. We conclude and discuss 
potential extensions to this work in Section 5.

2. BACKGROUND

2.1. Nonblocking synchronization
Concurrent data structures are commonly protected with 
locks, which enforce mutual exclusion on critical sections 
executed by different threads. A naive synchronous queue 
might be protected by a single lock, forcing all put and 
take operations to execute serially. (A thread that blocked 
waiting for a peer would of course release the lock, allowing 
the peer to execute the matching operation.) With a bit of 
care and a second lock, we might allow one producer and 
one consumer to execute concurrently in many cases.

Unfortunately, locks suffer from several serious prob-
lems. Among other things, they introduce blocking beyond 
that required by data structure semantics: If thread A holds a 
lock that thread B needs, then B must wait, even if A has been 

preempted and will not run again for quite a while. A multi-
programmed system with thread priorities or asynchronous 
events may suffer spurious deadlocks due to priority inver-
sion: B needs the lock A holds, but A cannot run, because B is 
a handler or has higher priority.

Nonblocking concurrent objects address these prob-
lems by avoiding mutual exclusion. Loosely speaking, their 
methods ensure that the object’s invariants hold after every 
single instruction, and that its state can safely be seen—and 
manipulated—by other concurrent threads. Unsurprisingly, 
devising such methods can be a tricky business, and indeed 
the number of data structures for which correct nonblock-
ing implementations are known is fairly small.

Linearizability7 is the standard technique for demon-
strating that a nonblocking implementation of an object 
is correct (i.e., that it continuously maintains object invari-
ants). Informally, linearizability “provides the illusion that 
each operation… takes effect instantaneously at some point 
between its invocation and its response.”7, abstract Orthogon-
ally, nonblocking implementations may provide guarantees 
of various strength regarding the progress of method calls. 
In a wait-free implementation, every contending thread is 
guaranteed to complete its method call within a bounded 
number of its own execution steps.5 Wait-free algorithms 
tend to have unacceptably high overheads in practice, due 
to the need to finish operations on other threads’ behalf. In 
a lock-free implementation, some contending thread is guar-
anteed to complete its method call within a bounded num-
ber of any thread’s steps.5 The algorithms we present in this 
paper are all lock-free. Some algorithms provide a weaker 
guarantee known as obstruction freedom; it ensures that a 
thread can complete its method call within a bounded num-
ber of steps in the absence of contention, i.e., if no other 
threads execute competing methods concurrently.6

2.2. Dual data structures
In traditional nonblocking implementations of concurrent 
objects, every method is total: It has no preconditions that 
must be satisfied before it can complete. Operations that 
might normally block before completing, such as dequeuing 
from an empty queue, are generally totalized to simply return 
a failure code when their preconditions are not met. By call-
ing the totalized method in a loop until it succeeds, one can 
simulate the partial operation. This simulation, however, 
does not necessarily respect our intuition for object seman-
tics. For example, consider the following sequence of events 
for threads A, B, C, and D:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2
B’s call returns the 1
A’s call returns the 2

If thread A’s call to dequeue is known to have started 
before thread B’s call, then intuitively, we would think that 
A should get the first result out of the queue. Yet, with the 
call-in-a-loop idiom, ordering is simply a function of which 
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thread happens to retry its dequeue operation first once data 
becomes available. Further, each invocation of the totalized 
method introduces performance-degrading contention for 
memory–interconnect bandwidth.

As an alternative, suppose we could register a request for a 
hand-off partner. Inserting this reservation could be done in a 
nonblocking manner, and checking to see whether a partner 
has arrived to fulfill our reservation could consist of reading a 
Boolean flag in the request data structure. A dual data struc-
ture16, 19 takes precisely this approach: Objects may contain 
both data and reservations. We divide partial methods into 
separate, first-class request and follow-up operations, each of 
which has its own invocation and response. A total queue, for 
example, would provide dequeue_request and dequeue_
followup methods (Listing 2). By analogy with Lamport’s 
bakery algorithm,10 the request operation returns a unique 
ticket that represents the reservation and is then passed as an 
argument to the follow-up method. The follow-up, for its part, 
returns either the desired result (if one is matched to the ticket) 
or, if the method’s precondition has not yet been satisfied, an 
error indication.

The key difference between a dual data structure and 
a “totalized” partial method is that linearization of the  
p_request call allows the dual data structure to deter-
mine the fulfillment order for pending requests. In addi-
tion, unsuccessful follow-ups, unlike unsuccessful calls 
to totalized methods, are readily designed to avoid bus or 
memory contention. For programmer convenience, we pro-
vide demand methods, which wait until they can return suc-
cessfully. Our implementations use both busy-wait spinning 
and scheduler-based suspension to effect waiting in threads 
whose preconditions are not met.

When reasoning about progress, we must deal with the fact 
that a partial method may wait for an arbitrary amount of time 
(perform an arbitrary number of unsuccessful follow-ups) 
before its precondition is satisfied. Clearly it is desirable that 
requests and follow-ups be nonblocking. In practice, good 
system performance will also typically require that unsuccess-
ful follow-ups not interfere with other threads’ progress. We 
define a data structure as contention-free if none of its follow-up 
operations, in any execution, performs more than a constant 
number of remote memory accesses across all unsuccessful 
invocations with the same request ticket. On a machine with 
an invalidation-based cache coherence protocol, a read of 

location o by thread t is said to be remote if o has been written 
by some thread other than t since t last accessed it; a write by 
t is remote if o has been accessed by some thread other than t 
since t last wrote it. On a machine that cannot cache remote 
locations, an access is remote if it refers to memory allocated 
on another node. Compared to the local-spin property,13 con-
tention freedom allows operations to block in ways other than 
busy-wait spinning; in particular, it allows other actions to be 
performed while waiting for a request to be satisfied.

3. ALGORITHM DESCRIPTIONS
In this section we discuss various implementations of syn-
chronous queues. We start with classic algorithms used 
extensively in production software, then we review newer 
implementations that improve upon them. Finally, we 
describe our new algorithms.

3.1. Classic synchronous queues
Perhaps the simplest implementation of synchronous queues 
is the naive monitor-based algorithm that appears in Listing 3. 
In this implementation, a single monitor serializes access to 
a single item and to a putting flag that indicates whether a 
producer has currently supplied data. Producers wait for the 
flag to be clear (lines 15–16), set the flag (17), insert an item 
(18), and then wait until a consumer takes the data (20–21). 
Consumers await the presence of an item (05–06), take it (07), 
and mark it as taken (08) before returning. At each point where 
their actions might potentially unblock another thread, pro-
ducer and consumer threads awaken all possible candidates 
(09, 20, 24). Unfortunately, this approach results in a number 
of wake-ups quadratic in the number of waiting producer and 
consumer threads; coupled with the high cost of blocking or 

datum dequeue(SynchronousQueue Q) {
  reservation r = Q.dequeue_reserve();
  do {
     datum d = Q.dequeue_followup(r);
     if (failed != d) return d;
     /* else delay -- spinning and/or scheduler-based */
  while (!timed_out());
  if (Q.dequeue_abort(r)) return failed;
  return Q.dequeue_followup(r);
}

Listing 2: Combined operations: dequeue pseudocode (enqueue is 
symmetric).

00 public class NaiveSQ<E> {
01 boolean putting = false;
02 E item = null;
03
04 public synchronized E take() {
05 while (item == null)
06 wait();
07 E e = item;
08 item = null;
09 notifyAll();
10 return e;
11 }
12
13 public synchronized void put (E e) {
14 if (e == null) return;
15 while (putting)
16 wait();
17 putting = true;
18 item = e;
19 notifyAll();
20 while (item != null)
21 wait();
22 putting = false;
23 notifyAll();
24 }
25 }

Listing 3: Naive synchronous queue.
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The Synchronous Dual Queue: We represent the synchro-
nous dual queue as a singly linked list with head and tail 
pointers. The list may contain data nodes or request nodes 
(reservations), but never both at once. Listing 5 shows the 
enqueue method. (Except for the direction of data transfer, 
dequeue is symmetric.) To enqueue, we first read the head 
and tail pointers (lines 06–07). From here, there are two main 
cases. The first occurs when the queue is empty (h == t) or 
contains data (line 08). We read the next pointer for the tail-
most node in the queue (09). If all values read are mutually 
consistent (10) and the queue’s tail pointer is current (11), we 
attempt to insert our offering at the tail of the queue (13–14). 
If successful, we wait until a consumer signals that it has 

unblocking a thread, this results in poor performance.
Hanson’s synchronous queue (Listing 1) improves upon 

the naive approach by using semaphores to target wake-
ups to only the single producer or consumer thread that an 
operation has unblocked. However, as noted in Section 1, it 
still incurs the overhead of three separate synchronization 
events per transfer for each of the producer and consumer; 
further, it normally blocks at least once per operation. It is 
possible to streamline some of these synchronization points 
in common execution scenarios by using a fast-path acquire 
sequence;11 this was done in early releases of the dl.util 
. concurrent package which evolved into java.util.concurrent.

3.2. The Java SE 5.0 synchronous queue
The Java SE 5.0 synchronous queue (Listing 4) uses a pair of 
queues (in fair mode; stacks for unfair mode) to separately hold 
waiting producers and consumers. This approach echoes the 
scheduler data structures of Anderson et al;.1 it improves con-
siderably on semaphore-based approaches. When a producer 
or consumer finds its counterpart already waiting, the new 
arrival needs to perform only one synchronization operation: 
acquiring a lock that protects both queues (line 18 or 33). Even 
if no counterpart is waiting, the only additional synchroniza-
tion required is to await one (25 or 40). A transfer thus requires 
only three synchronization operations, compared to the six 
incurred by Hanson’s algorithm. In particular, using a queue 
instead of a semaphore allows producers to publish data items 
as they arrive (line 36) instead of having to first awaken after 
blocking on a semaphore; consumers need not wait.

3.3. Combining dual data structures with 
 synchronous queues
A key limitation of the Java SE 5.0 SynchronousQueue class is 
its reliance on a single lock to protect both queues. Coarse-
grained synchronization of this form is well known for intro-
ducing serialization bottlenecks; by creating nonblocking 
implementations, we eliminate a major impediment to 
scalability.

Our new algorithms add support for time-out and for bidi-
rectional synchronous waiting to our previous nonblocking 
dual queue and dual stack algorithms19 (those in turn were 
derived from the classic Treiber stack21 and the M&S queue14). 
The nonsynchronous dual data structures already block when a 
consumer arrives before a producer; our challenge is to arrange 
for producers to block until a consumer arrives as well. In the 
queue, waiting is accomplished by spinning until a pointer 
changes from null to non-null, or vice versa; in the stack, it is 
accomplished by pushing a “fulfilling” node and arranging for 
adjacent matching nodes to “annihilate” one another.

We describe basic versions of the synchronous dual 
queue and stack in the sections “The synchronous dual 
queue” and “The synchronous dual stack,” respectively. The 
section “Time-out” then sketches the manner in which we 
add time-out support. The section “Pragmatics” discusses 
additional pragmatic issues. Throughout the discussion, 
we present fragments of code to illustrate particular fea-
tures; full source is available online at http://gee.cs.oswego 
.edu /cgi-bin /viewcvs.cgi/jsr166/src/main/java/util/concurrent/
SynchronousQueue.java.

00 public class Java5SQ<E> {
01  ReentrantLock qlock = new ReentrantLock();
02  Queue waitingProducers = new Queue();
03  Queue waitingConsumers = new Queue();
04
05  static class Node
06    extends AbstractQueuedSynchronizer {
07    E item;
08    Node next;
09
10    Node(Object x) { item = x; }
11    void waitForTake() { /* (uses AQS) */ }
12    E waitForPut() { /* (uses AQS) */ }
13  }
14
15  public E take() {
16    Node node;
17    boolean mustWait;
18    qlock.lock();
19    node = waitingProducers.pop();
20    if(mustWait = (node == null))
21       node = waitingConsumers.push(null);
22    qlock.unlock();
23
24    if (mustWait)
25       return node.waitForPut();
26    else
27       return node.item;
28  }
29
30  public void put(E e) {
31    Node node;
32    boolean mustWait;
33    qlock.lock();
34    node = waitingConsumers.pop();
35    if (mustWait = (node == null))
36       node = waitingProducers.push(e);
37    qlock.unlock();
38
39    if (mustWait)
40       node.waitForTake();
41    else
42       node.item = e;
43  }
44 }

Listing 4: The Java SE 5.0 SynchronousQueue class, fair (queue-based) 
version. The unfair version uses stacks instead of queues, but is 
otherwise identical. (For clarity, we have omitted details of the way in 
which AbstractQueuedSynchronizers are used, and code to generalize 
waitingProducers and waitingConsumers to either stacks or queues.)
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reservations, except that in this case there may, temporarily, 
be a single node of the opposite type at the head.

Code for the push operation appears in Listing 6. (Except 
for the direction of data transfer, pop is symmetric.) We 
begin by reading the node at the top of the stack (line 06). 

claimed our data (15–16), which it does by updating our node’s 
data pointer to null. Then we help remove our node from the 
head of the queue and return (18–20). The request linear-
izes in this code path at line 13 when we successfully insert 
our offering into the queue; a successful follow-up linearizes 
when we notice at line 15 that our data has been taken.

The other case occurs when the queue consists of reser-
vations, and is depicted in Figure 1. After originally reading 
the head node (step A), we read its successor (line 24/step B) 
and verify consistency (25). Then, we attempt to supply our 
data to the headmost reservation (27/C). If this succeeds, we 
dequeue the former dummy node (28/D) and return (30). If 
it fails, we need to go to the next reservation, so we dequeue 
the old dummy node anyway (28) and retry the entire opera-
tion (32, 05). The request linearizes in this code path when 
we successfully supply data to a waiting consumer at line 
27; the follow-up linearization point occurs immediately 
thereafter.

The Synchronous Dual Stack: We represent the synchro-
nous dual stack as a singly linked list with head pointer. 
Like the dual queue, the stack may contain either data or 

Listing 5: Synchronous dual queue: Spin-based enqueue; dequeue 
is symmetric except for the direction of data transfer. The various 
cas field (old,new) operations attempt to change field from old to 
new, and return a success/failure indication. On modern processors 
they can be implemented with a single atomic compare_and_swap 
instruction, or its equivalent.

00 class Node { E data; Node next;...}
01
02 void enqueue(E e) {
03   Node offer = new Node(e, Data);
04
05   while (true) {
06     Node t = tail;
07     Node h = head;
08     if (h == t || !t.isRequest()) {
09          Node n = t.next;
10         if (t == tail) {
11               if (null != n) {
12           casTail(t, n);
13          } else if(t.casNext(n, offer)) {
14            casTail(t, offer);
15            while (offer.data == e)
16              /* spin */;
17            h = head;
18            if (offer == h.next)
19            casHead(h, offer);
20            return;
21          }
22         }
23     } else {
24       Node n = h.next;
25       if (t != tail || h != head || n == null)
26           continue; // inconsistent snapshot
27       boolean success = n.casData(null, e);
28       casHead(h, n);
29       if (success)
30             return;
31     }
32   }
33 }

00 class Node { E data; Node next, match; ... }
01
02 void push (E e) {
03   Node f, d = new Node(e, Data);
04
05   while (true) {
06         Node h = head;
07        if (null == h || h.isData()) {
08             d.next = h;
09             if (!casHead(h, d))
10             continue;
11             while (d.match == null)
12             /* spin */;
13             h = head;
14             if (null != h && d == h.next)
15             casHead(h, d.next);
16             return;
17         } else if (h.isRequest()) {
18             f = new Node(e, Data | Fulfilling, h);
19             if (!casHead(h, f))
20             continue;
21             h = f.next;
22             Node n = h.next;
23             h.casMatch(null, f);
24             casHead(f, n);
25             return;
26         } else { // h is fulfilling
27             Node n = h.next;
28             Node nn = n.next;
29             n.casMatch(null, h);
30             casHead(h, nn);
31         }
32   }
33 }

Listing 6: Synchronous dual stack: Spin-based annihilating push; pop 
is symmetric except for the direction of data transfer. (For clarity, 
code for time-out is omitted.)

Head Tail

Dummy

Item

Cancel

A

B

C

D

C

Reserv. Reserv.

Item

Figure 1: Synchronous dual queue: Enqueuing when reservations  
are present.
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Synchronous Dual Stack” are complete implementations 
of synchronous queues, real systems require the ability to 
specify limited patience so that a producer (or consumer) 
can time out if no consumer (producer) arrives soon enough 
to pair up. As noted earlier, Hanson’s synchronous queue 
offers no simple way to do this. Space limitations preclude 
discussion of the relatively straightforward manner in 
which we add time-out support to our synchronous queue; 
interested readers may find this information in our original 
publication.17

Pragmatics: Our synchronous queue implementations 
reflect a few additional pragmatic considerations to main-
tain good performance. First, because Java does not allow 
us to set flag bits in pointers (to distinguish among the 
types of pointed-to nodes), we add an extra word to nodes, 
in which we mark mode bits. We chose this technique over 
two primary alternatives. The class java.util.concurrent.
AtomicMarkableReference allows direct association of tag bits 
with a pointer, but exhibits very poor performance. Using 
runtime type identification (RTTI) to distinguish between 
multiple subclasses of the Node classes would similarly 
allow us to embed tag bits in the object type information. 
While this approach performs well in isolation, it increases 
long-term pressure on the JVM’s memory allocation and gar-
bage collection routines by requiring construction of a new 
node after each contention failure.

Time-out support requires careful management of mem-
ory ownership to ensure that canceled nodes are reclaimed 
properly. Automatic garbage collection eases the burden in 
Java. We must, however, take care to “forget” references to 
data, nodes, and threads that might be retained for a long 
time by blocked threads (preventing the garbage collector 
from reclaiming them).

The simplest approach to time-out involves marking 
nodes as “canceled,” and abandoning them for another 
thread to eventually unlink and reclaim. If, however, items 
are offered at a very high rate, but with a very low time-out 
patience, this “abandonment” cleaning strategy can result in 
a long-term build-up of canceled nodes, exhausting memory 
supplies and degrading performance. It is important to effect 
a more sophisticated cleaning strategy. Space limitations 
preclude further discussion here, but interested readers may 
find more details in the conference version of this paper.17

For sake of clarity, the synchronous queues of Figures 5 
and 6 blocked with busy-wait spinning to await a counterpart 
consumer. In practice, however, busy-wait is useless over-
head on a uniprocessor and can be of limited value on even 
a small-scale multiprocessor. Alternatives include desched-
uling a thread until it is signaled, or yielding the processor 
within a spin loop.9 In practice, we mainly choose the spin-
then-yield approach, using the park and unpark meth-
ods contained in java.util.concurrent.locks.LockSupport12 to 
remove threads from and restore threads to the ready list. 
On multiprocessors (only), nodes next in line for fulfillment 
spin briefly (about one-quarter the time of a typical context 
switch) before parking. On very busy synchronous queues, 
spinning can dramatically improve throughput because it 
handles the case of a near-simultaneous “flyby” between a 
producer and consumer without stalling either. On less busy 

The three main conditional branches (beginning at lines 07, 
17, and 26) correspond to the type of node we find.

The first case occurs when the stack is empty or contains 
only data (line 07). We attempt to insert a new datum (09), 
and wait for a consumer to claim that datum (11–12) before 
returning. The reservation linearizes in this code path when 
we push our datum at line 09; a successful follow-up linear-
izes when we notice that our data has been taken at line 11.

The second case occurs when the stack contains (only) 
reservations (17). We attempt to place a fulfilling datum on 
the top of the stack (19); if we succeed, any other thread that 
wishes to perform an operation must now help us fulfill the 
request before proceeding to its own work. We then read our 
way down the stack to find the successor node to the res-
ervation we are fulfilling (21–22) and mark the reservation 
fulfilled (23). Note that our CAS could fail if another thread 
helps us and performs it first. Finally, we pop both the reser-
vation and our fulfilling node from the stack (24) and return. 
The reservation linearizes in this code path at line 19, when 
we push our fulfilling datum above a reservation; the follow-
up linearization point occurs immediately thereafter.

The remaining case occurs when we find another thread’s 
fulfilling datum or reservation (26) at the top of the stack. 
We must complete the pairing and annihilation of the top 
two stack nodes before we can continue our own work. We 
first read our way down the stack to find the data or reserva-
tion for which the fulfilling node is present (27–28) and then 
we mark the underlying node as fulfilled (29) and pop the 
paired nodes from the stack (30).

Referring to Figure 2, when a consumer wishes to retrieve 
data from an empty stack, it first must insert a reservation 
(step A). It then waits until its data pointer (branching to the 
right) is non-null. Meanwhile, if a producer appears, it satisfies 
the consumer in a two-step process. First (step B), it pushes a 
fulfilling data node at the top of the stack. Then, it swings the 
reservation’s data pointer to its fulfilling node (step C). Finally, 
it updates the top-of-stack pointer to match the reservation 
node’s next pointer (step D, not shown). After the producer 
has completed step B, other threads can help update the res-
ervation’s data pointer (step C); and the consumer thread can 
additionally help remove itself from the stack (step D).

Time-Out: Although the algorithms presented in 
the  sections “The Synchronous Dual Queue” and “The 

Figure 2: Synchronous dual stack: Satisfying a reservation.
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Figure 3 displays the rate at which data is transferred 
from multiple producers to multiple consumers; Figure 4 
displays the rate at which data is transferred from a single 
producer to multiple consumers; Figure 5 displays the rate 
at which a single consumer receives data from multiple pro-
ducers. Figure 6 presents execution time per task for our 
ThreadPoolExecutor benchmark.

As can be seen from Figure 3, Hanson’s synchronous 
queue and the Java SE 5.0 fair-mode synchronous queue both 
perform relatively poorly, taking 4 (Opteron) to 8 (SPARC) 
times as long to effect a transfer relative to the faster algo-
rithms. The unfair (stack-based) Java SE 5.0 synchronous 
queue in turn incurs twice the overhead of either the fair or 
unfair version of our new algorithm, both versions of which 
are comparable in performance. The main reason that the 
Java SE 5.0 fair-mode queue is so much slower than unfair 
is that the fair-mode version uses a fair-mode entry lock to 
ensure FIFO wait ordering. This causes pileups that block 
the threads that will fulfill waiting threads. This difference 
supports our claim that blocking and contention surround-
ing the synchronization state of synchronous queues are 
major impediments to scalability.

When a single producer struggles to satisfy multiple con-
sumers (Figure 4), or a single consumer struggles to receive 
data from multiple producers (Figure 5), the disadvantages 

queues, the amount of spinning is small enough not to be 
noticeable.

4. EXPERIMENTAL RESULTS
We present results for several microbenchmarks and one 
“real-world” scenario. The microbenchmarks employ 
threads that produce and consume as fast as they can; this 
represents the limiting case of producer-consumer applica-
tions as the cost to process elements approaches zero. We 
consider producer-consumer ratios of 1 : N, N : 1, and N : N.

Our “real-world” scenario instantiates synchronous 
queues as the core of the Java SE 5.0 class java.util.concur-
rent.ThreadPoolExecutor, which in turn forms the backbone 
of many Java-based server applications. Our benchmark 
produces tasks to be run by a pool of worker threads man-
aged by the ThreadPoolExecutor.

We obtained results on a SunFire V40z with four 2.4GHz 
AMD Opteron processors and on a SunFire 6800 with 16 
1.3GHz Ultra-SPARC III processors. On both machines, 
we used Sun’s Java SE 5.0 HotSpot VM and we varied the 
level of concurrency from 2 to 64. We tested each bench-
mark with both the fair and unfair (stack-based) versions 
of the Java SE 5.0 java.util.concurrent.SynchronousQueue, 
Hanson’s synchronous queue, and our new nonblocking 
algorithms.

Figure 3: Synchronous handoff: N producers, N consumers. Figure 4: Synchronous handoff: 1 producer, N consumers.
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Across all benchmarks, our fair synchronous queue uni-
versally outperforms all other fair synchronous queues and 
our unfair synchronous queue outperforms all other unfair 
synchronous queues, regardless of preemption or level of 
concurrency.

5. CONCLUSION
In this paper, we have presented two new lock-free and 
contention-free synchronous queues that outperform all 
previously known algorithms by a wide margin. In striking 
contrast to previous implementations, there is little perfor-
mance cost for fairness.

In a head-to-head comparison, our algorithms consis-
tently outperform the Java SE 5.0 SynchronousQueue by a 
factor of three in unfair mode and up to a factor of 14 in 
fair mode. We have further shown that this performance 
differential translates directly to factors of two and ten 
when substituting our new synchronous queue in for the 
core of the Java SE 5.0 ThreadPoolExecutor, which is itself at 
the heart of many Java-based server implementations. Our 
new synchronous queues have been adopted for inclusion 
in Java 6.

More recently, we have extended the approach described 
in this paper to TransferQueues. TransferQueues per-
mit producers to enqueue data either synchronously or 

of Hanson’s synchronous queue are accentuated. Because 
the singleton necessarily blocks for every operation, the 
time it takes to produce or consume data increases notice-
ably. Our new synchronous queue consistently outperforms 
the Java SE 5.0 implementation (fair vs. fair and unfair vs. 
unfair) at all levels of concurrency.

Finally, in Figure 6, we see that the performance differ-
entials from java.util.concurrent’s SynchronousQueue trans-
late directly into overhead in the ThreadPoolExecutor: Our 
new fair version outperforms the Java SE 5.0 implementa-
tion by factors of 14 (SPARC) and 6 (Opteron); our unfair 
version outperforms Java SE 5.0 by a factor of three on both 
platforms. Interestingly, the relative performance of fair 
and unfair versions of our new algorithm differs between 
the two platforms. Generally, unfair mode tends to improve 
locality by keeping some threads “hot” and others buried 
at the bottom of the stack. Conversely, however, it tends to 
increase the number of times threads are scheduled and 
descheduled. On the SPARC, context switches have a higher 
relative overhead compared to other factors; this is why our 
fair synchronous queue eventually catches and surpasses 
the unfair version’s performance. In contrast, the cost of 
context switches is relatively smaller on the Opteron, so the 
trade-off tips in favor of increased locality and the unfair 
version performs best.

Figure 5: Synchronous handoff: N producers, 1 consumer.
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asynchronously. TransferQueues are useful for example in 
supporting messaging frameworks that allow messages to 
be either synchronous or asynchronous. The base synchro-
nous support in TransferQueues mirrors our fair synchro-
nous queue. The asynchronous additions differ only by 
releasing producers before items are taken.

Although we have improved the scalability of the syn-
chronous queue, there may remain potential for improve-
ment in some contexts. Most of the inter-thread contention 
in enqueue and dequeue operations occurs at the memory 
containing the head (and, for fair queues, tail). Reducing 
such contention by spreading it out is the idea behind elimi-
nation techniques introduced by Shavit and Touitou.20 These 
may be applied to components featuring pairs of opera-
tions that collectively effect no change to a data structure, 
for example, a concurrent push and pop on a stack. Using 
elimination, multiple locations (comprising an arena) are 
employed as potential targets of the main atomic instruc-
tions underlying these operations. If two threads meet in 
one of these lower-traffic areas, they cancel each other out. 
Otherwise, the threads must eventually fall back (usually, in 
a tree-like fashion) to try the main location.

Elimination techniques have been used by Hendler et al.4 
to improve the scalability of stacks, and by us18 to improve 
the scalability of the swapping channels in the java.util.con-
current Exchanger class. Moir et al.15 have also used elimina-
tion in concurrent queues, although at the price of weaker 
ordering semantics than desired in some applications due 
to stack-like (LIFO) operation of the elimination arena. 
Similar ideas could be applied to our synchronous queues. 
However, to be worthwhile here, the reduced contention 
benefits would need to outweigh the delayed release (lower 
throughput) experienced when threads do not meet in arena 
locations. In preliminary work, we have found elimination 
to be beneficial only in cases of artificially extreme conten-
tion. We leave fuller exploration to future work.
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