
Implementing and Exploiting Inevitability in
Software Transactional Memory

Michael F. Spear,† Michael Silverman,† Luke Dalessandro,† Maged M. Michael,‡

and Michael L. Scott†
†Department of Computer Science ‡IBM T.J. Watson Research Center

University of Rochester magedm@us.ibm.com
{spear,msilver,luked,scott}@cs.rochester.edu

Abstract—Transactional Memory (TM) takes responsibility
for concurrent, atomic execution of labeled regions of code,
freeing the programmer from the need to manage locks. Typical
implementations rely on speculation and rollback, but this
creates problems for irreversible operations like interactive I/O.
A widely assumed solution allows a transaction to operate in
an inevitable mode that excludes all other transactions and is
guaranteed to complete, but this approach does not scale. This
paper explores a richer set of alternatives for software TM, and
demonstrates that it is possible for an inevitable transaction to
run in parallel with (non-conflicting) non-inevitable transactions,
without introducing significant overhead in the non-inevitable
case. We report experience with these alternatives in a graphical
game application. We also consider the use of inevitability to
accelerate certain common-case transactions.

I. INTRODUCTION

Transactional Memory (TM) [10] provides a simple and
powerful mechanism for shared-memory synchronization: pro-
grammers mark regions as atomic and rely on the underlying
system to execute atomic sections concurrently whenever
possible. Whether implemented in hardware, software (STM),
or a combination of the two, TM systems typically execute
optimistically, using rollback to recover from (hopefully un-
common) conflicts between transactions. Unfortunately, such
speculation is incompatible with irreversible operations—ones
that cannot be rolled back.

Some irreversible operations may be supported as special
cases (e.g., by buffering output) or, in some systems, by
breaking out of the transactional mold with open nesting [14]
or punctuated transactions [18]. The general case, however,
appears to require that certain transactions be inevitable—
guaranteed not to abort. Examples include interactive I/O
(where input is read after writing a prompt), system calls
whose behavior is not completely understood, and invocations
of precompiled library routines that may access shared loca-
tions (unless binary rewriting is available [15]). Interestingly,
an inevitable transaction may be able to skip certain book-
keeping operations associated with rollback, allowing it to
run faster than an abortable transaction—an observation that
raises the possibility of judiciously employing inevitability as a

At the University of Rochester, this work was supported in part by NSF
grants CNS-0411127, CNS-0615139, CCF-0702505, and CSR-0720796; by
equipment support from IBM; and by financial support from Intel and
Microsoft.

performance optimization for transactions that do not actually
require its semantics.

Inevitability has been considered by several existing hard-
ware or software TM systems [1], [6], [11], [15], [18]. With
the exception of the hardware system of Blundell et al. [3] and
the software system of Welc et al., inevitability is generally
assumed to preclude all parallelism—to require, in effect, a
token that prohibits any concurrent transactions from commit-
ting. Welc’s mechanism, which resembles our Inevitable Read
Locks (IRL), also boasts compiler integration that we believe
is compatible with all of our mechanisms.

This paper presents a set of six inevitability mechanisms
for STM that vary in the amount of concurrency they al-
low. By sacrificing categories of parallelism (for example,
preventing concurrent writers from committing during an
inevitable transaction’s execution), we are able to dramatically
reduce the latency of inevitable transactions. Furthermore,
many of our mechanisms are orthogonal to the underlying
STM implementation, and thus applicable to a wide range of
existing STM algorithms. Using both microbenchmarks and a
larger graphical game, we demonstrate that inevitability can be
introduced with low latency, high concurrency, and (in certain
cases) nontrivial performance benefits.

Minimal Requirements for Inevitability. Fundamentally,
inevitability entails only two requirements: (1) an inevitable
transaction must never abort, and (2) absent advance knowl-
edge of the data to be touched by transactions (knowledge
unavailable in the general case), there can be no more than
one inevitable transaction at a time. We assume a become
inevitable() API call that blocks if some other transaction is
already inevitable. For our graphical game we also provide
a polling version that returns a failure status if it cannot
succeed immediately. To guard against aborts, we consider
three separate cases:

Preventing Self Abort. Many STM APIs include a retry
mechanism [7] for efficient condition synchronization. Static
or dynamic checks must forbid this mechanism in inevitable
transactions (they may allow it, however, prior to calling be-
come inevitable).

Preventing Explicit Aborts. In the typical STM system, an
in-flight transaction must, at some point prior to committing,
acquire exclusive ownership of each location it wishes to
modify. A subsequent concurrent reader or writer may use

mls
ICPP '08

contention management [17] to receive permission to abort
the exclusive owner. If inevitable transactions always use
encounter-time locking, it is straightforward to augment con-
tention management so that non-inevitable transactions always
defer to inevitable transactions. This sacrifices any nonblock-
ing progress guarantees, but is otherwise a trivial extension. It
also decreases overhead within inevitable transactions, since
data written (or overwritten) by inevitable writes need not be
logged. Furthermore, given at most one inevitable transaction,
this cannot introduce deadlock.

Preventing Implicit Aborts. Some STMs support a vis-
ible reader mode, in which transactions publicly register the
locations they read. It is more common, however, to record
transactional reads in a private log, which is then validated
at commit time to make sure that values have not changed.
The runtime must provide some sort of guard on reads to
ensure that transactions are not endangered by changes after
becoming inevitable. This requirement places the inevitable
transaction somewhere between fully visible and fully invisible
reads, depending on the inevitability implementation.

II. INEVITABILITY MECHANISMS

STM runtimes typically control concurrent access using
metadata in object headers or in a hash table indexed by data
address. Intel’s McRT [16] and Microsoft’s Bartok [8] use the
metadata to lock locations on first access and make modifica-
tions in-place. TL2 [4] and some variants of RSTM [21] buffer
updates, and lock locations only at commit time. Other STM
algorithms, such as DSTM [9], OSTM [5], and ASTM [13],
use more complex metadata to achieve obstruction freedom.
While inevitability fundamentally introduces blocking into the
STM, we see no other obstacles to the use of any of our
mechanisms in all existing STMs.

In practice, guarding an inevitable transaction’s read set en-
tails a tradeoff between precision and overhead: more precise
mechanisms afford greater concurrency between the inevitable
transaction and transactions that write to disjoint areas of
memory, but at the cost of higher overhead within all in-flight
transactions. In the remainder of this section we summarize
our candidate implementations. Further details, including the
impact of relaxed memory models, can be found in a separate
workshop paper [20]. Table I summarizes the impact of each
inevitability mechanism on the behavior of concurrent non-
inevitable transactions, and also identifies which mechanisms
may introduce a delay in the inevitable transaction at its begin
point. Table II summarizes the overheads introduced or elided
by each mechanism.

A. Global Read/Write Lock

Both explicit and implicit aborts can trivially be prevented
using a global read/write lock (GRL): a call to become
inevitable blocks until all in-flight transactions commit or
abort and clean up metadata. The inevitable transaction then
executes, while all other threads block at the start of their next
transaction until the inevitable transaction commits. Unfortu-

nately, this solution affords no concurrency, even in workloads
with no conflicts.

B. Global Write Lock

The global write lock (GWL) uses separate mechanisms to
prevent implicit and explicit aborts, thereby enabling some
transactions to progress (and even commit) concurrently with
an inevitable transaction I . To prevent implicit aborts, the
GWL forbids non-inevitable writer transactions from holding
locks (and thus being able to commit changes that invalidate
I’s reads) while I is active. Explicit aborts are prevented
by instructing non-inevitable transactions to block when they
encounter a location locked by I .

To support concurrent readers, an inevitable transaction I
must acquire locations before modifying them. Concurrent
transactions can thus detect when their reads conflict with I’s
writes, and can block until I completes. When commit-time
locking is used, non-inevitable writers can progress to their
commit point before blocking. With encounter-time locking,
concurrent writers can execute up to their first transactional
write, and then must wait for I to complete before continuing.
The end result is that only read-only transactions can commit
along side of I . Since GWL prevents concurrent writers from
committing, we expect it to afford only limited parallelism in
the presence of inevitable transactions.

In GWL, a transaction I may become inevitable while other
transactions are in any stage of their execution, including their
commit sequence. Thus I does not block when becoming
inevitable, but I also has no guarantees about the state of
transactional metadata. In particular, a concurrent writer may
hold locks, or be in the process of acquiring a lock, during
I’s execution. Thus I must use atomic operations to acquire
locations, and it must inspect the metadata associated with any
location it reads (to detect when a committed noninevitable
transaction is still performing write-back). In the next two
subsections, we consider strategies that eliminate read instru-
mentation and reduce write instrumentation, at the expense of
some blocking at the point when I becomes inevitable.

C. GWL + Transactional Fence

Several STMs include quiescence mechanisms [4], [5], [12],
[19] that permit threads to wait for concurrent transactions
to reach predictable points in their execution. By using
quiescence to eliminate the possibility of not-yet-cleaned-up
transactions, we can avoid the need to instrument inevitable
reads, at the cost of a possible delay after becoming inevitable.
Transactional writes still require instrumentation to acquire
locations before they are written and thus exclude conflicting
readers.

To evaluate the utility of quiescence, we use a Transactional
Fence [19], which waits for all active transactions to commit or
abort and clean up.1 Once the fence completes, the inevitable
transaction is guaranteed that there will be no concurrent
updates during its execution.

1Less expensive quiescence mechanisms may also suffice, though they may
be specific to a particular TM implementation.

unheld

0<k–0–0

draining

0<k–1–0

empty

0–0–0

plugged

0–0–1

filling

0<k–0–1

−−n

++n

++n

++/−−n

++n

−−n′

−−r ,++i

−−n′

++r

−−i

++i

−−i

0–1–0

Fig. 1. State Transitions for the Writer Drain. State labels indicate the values
of the drain’s three fields: n–r–i. Transitions that change r or i are made by an
inevitable transaction; transitions that change n are made by non-inevitable
writer transactions. If the current state lacks a desired outgoing transition,
the thread that wishes to make that transition must wait. “ n′ ” indicates
completion of the only remaining non-inevitable writer.

D. Writer Drain

While waiting for all active transactions to finish is a
straightforward way to ensure that an inevitable transaction
can always safely read, it is more conservative than necessary.
All that is required is to wait until all concurrent writers have
completed. We can do this by merging a writer count into the
GWL flag. We call the resulting mechanism a Writer Drain.
With the Drain in place, an inevitable transaction requires
neither instrumentation of reads nor atomic instructions in
metadata updates for writes.

Abstractly, the Drain is an implementation of GWL in
which an inevitable transaction cannot start until all non-
inevitable transactions have released their metadata. When
commit-time locking is used, this behavior can be ensured
using a single-word status variable updated according to the
protocol shown in Figure 1. The status variable consists of
three fields: a bit i indicating an active inevitable transaction,
a reservation bit r indicating a transaction that will become
inevitable as soon as extant non-inevitable writer transactions
finish, and a count n of the number of such writers. This
protocol resembles a traditional fair reader-writer lock in
which inevitable transactions take the role of “writer” and non-
inevitable writer transactions take the role of “reader”.

In the draining state, thread I has reserved permission
to execute inevitably, but is waiting for all non-inevitable
transactions that are about to acquire a location to complete.
When the last of these transactions (indicated by an n′

transition) completes, the drain transitions through a transient
state to the plugged state. In the plugged or filling state,
thread I may execute without restriction, but non-inevitable
transactions must block at the point where they wish to acquire
a location. If there are pending transactions in the drain when I
completes, the drain moves to an unheld state, in which non-
inevitable transactions must inform the drain of their status
but may otherwise execute without restriction. When there are
no inevitable transactions, and no non-inevitable transactions
have acquired locations, the drain is empty.

When the drain is plugged or filling, the inevitable trans-
action is guaranteed that all metadata is unacquired; it will

never encounter a locked location. During its execution, it is
also guaranteed that no other transaction will modify metadata.
Given these guarantees, the inevitable transaction requires no
instrumentation of reads. In addition, though it must still
modify metadata before writing the associated data, it can use
ordinary writes to do so.

Like GWL, Drain should only afford limited concurrency
with read-write transactions since non-inevitable writers can-
not commit during the execution of any inevitable transac-
tion. Furthermore, in the absence of inevitable transactions
we expect higher overhead, since writing transactions must
increment and decrement the non-inevitable active count in the
drain at the beginning and end of their commit sequence. In the
face of any concurrency, these updates will result in adverse
cache behavior. However, the throughput of the inevitable
transaction should be substantially higher.

E. Inevitable Read Locks

Using a single guard to protect all locations read by the
inevitable transaction limits concurrency, since concurrent
writers cannot commit even when their write sets do not
overlap with the inevitable transaction’s read set. By protecting
inevitable reads at a fine granularity, our Inevitable Read Locks
(IRL) mechanism allows maximum concurrency between an
inevitable transaction and disjoint writers. In parallel with our
development of inevitable read locks, Welc et al. [22] proposed
single-owner read locks, which provide the same functionality.

Using IRL, inevitable transactions must read and (on first
access) atomically update metadata on every transactional
read, and must release read locks (using normal stores) upon
commit. During a read or write, the inevitable transaction may
detect a conflict with an in-flight transaction writing the same
location. To resolve the conflict, the inevitable transaction must
issue a remote abort, perhaps after waiting briefly for the
conflicting transaction to complete.

While IRL allows concurrency between inevitable trans-
actions and nonconflicting writing transactions, we expect
scalability to be limited. First, inevitable transactions incur
significant overhead due to a high number of expensive
atomic operations. Secondly, inevitable transactions must still
bookkeep their reads, so that they can release their read
locks upon commit. Worse yet, the additional bus messages
generated by the increased number of atomic operations may
cause slowdown for truly disjoint non-inevitable transactions.
Lastly, as with visible reads in STM, we expect decreased
scalability due to cache effects: updates to metadata by the
inevitable transaction will induce cache misses in concurrent
non-inevitable readers that attempt to validate their read sets
or access data that share a cache line with the metadata.

F. Inevitable Read Filter

By approximating the set of read locks as a Bloom filter
[2], our Inevitable Read Filter (Filter) mechanism decreases
impact on concurrent reads at the expense of a more complex
protocol for non-inevitable writes and inevitable reads. The
Filter mechanism uses a single, global Bloom filter. The size

GRL GWL GWL+Fence Drain IRL Bloom
Delay upon becoming inevitable Yes Yes Sometimes
Allow concurrent read-only transactions Yes Yes Yes Yes Yes
Allow concurrent writer transactions Yes Yes

TABLE I
SUMMARY OF BENEFITS AND DRAWBACKS OF DIFFERENT INEVITABILITY OPTIONS.

Overhead GRL GWL GWL+Fence Drain IRL Bloom
Inevitable Read Instrumentation Wait Acquire Write, WBR, Wait
Inevitable Write Instrumentation Acquire Store Store Acquire Acquire
Inevitable Read Logging Locks Filter
Inevitable Commit Overhead CAS
Transaction Begin Overhead WBR WBR
Non-Inevitable Commit Overhead Test Test 2 CAS WBR, Intersect

TABLE II
OVERHEADS IMPOSED BY INEVITABILITY MECHANISMS.

of the filter and the set of hash functions are orthogonal to the
correctness of the mechanism, and serve only to control the
frequency of false conflicts. An inevitable transaction records
the locations it reads (or the metadata associated with those
locations) in the filter. Non-inevitable writers never acquire
locations that hit in the filter.

There are two significant ordering constraints on the use of
the filter. Since inevitable readers and non-inevitable writers
both must interact with the filter and with ownership metadata,
we must take care to avoid data races. The non-inevitable
writer always acquires a location before checking the filter, but
then aborts upon a positive lookup. Similarly, the inevitable
reader always records locations in the filter before checking
metadata; if the subsequent check finds the metadata locked,
the inevitable transaction blocks until ownership is released.

As discussed in a workshop paper [20], these ordering re-
quirements can introduce expensive write-before-read memory
fences. As a result, we expect high overhead for the inevitable
transaction using Filter. However, we expect better scaling
than IRL, since read-read concurrency does not introduce any
overhead, and does not sacrifice the read-write concurrency of
IRL. The ability to tune the filter by changing its size or hash
functions may prove useful as developers gain experience with
transactional workloads.

G. Becoming Inevitable

To become inevitable, a transaction T first gains exclusive
permission to perform inevitable operations by acquiring a
global token; it also performs any waiting required by the
underlying mechanism. After doing so, T must perform a
lightweight commit operation that makes prior reads and
writes inevitable and then ensures that T is still valid.

In IRL and Filter, until all of T ’s reads are made inevitable,
concurrent transactions are capable of committing changes that
require T to abort. Thus we opt to make T ’s reads inevitable
before testing that they are still valid. This minimizes the
window during which T can be forced to abort. T makes its
reads visible to concurrent transactions by acquiring read locks
or adding locations to the filter. In the other mechanisms, T

need not take special action to guard its reads.
Once T holds the inevitability token and has finished wait-

ing, GWL+Fence, GRL, and Drain ensure that no locations
will be held by concurrent transactions, nor will any locations
be acquired. GWL guarantees only that no concurrent writer
will acquire locations and commit. IRL and Filter make no
guarantees. After all reads have been made inevitable, T
must acquire write locks for all locations in its write set.
When the underlying STM uses encounter-time locking, this
condition is already provided. With commit-time locking, T
must acquire all locations, using atomic operations if required
by the inevitability mechanism.

Once all locations are acquired and all reads are protected
(either by read locks or by a filter), T must validate its read
set to ensure that it is still consistent. If this validation fails,
T aborts by releasing its read locks, clearing the read filter,
releasing write locks, releasing the inevitability token, and
restarting. If validation succeeds, T must make its prior writes
inevitable. When the underlying STM uses encounter-time
locking and direct update, T simply discards its undo log
(and in the case of GRL, releases all locks, as they are no
longer necessary). If the STM uses buffered update (with either
encounter-time or commit-time locking), then T must re-
execute the writes in its redo log. At this point T is permitted
to progress inevitably.

III. EVALUATION

In this section we analyze the performance of our different
inevitability mechanisms across several microbenchmarks. We
conducted all tests on an IBM pSeries 690 (Regatta) multipro-
cessor with 32 1.3 GHz Power4 processors running AIX 5.1.
Our STM runtime library is written in C and compiled with
gcc v4.0.0. All benchmarks are written in C++ and compiled
using g++ v4.0.0. Each data point is the average of five trials,
each of which was run for five seconds.

The STM library is patterned after the per-stripe variant
of TL2 [4], and uses commit-time locking with buffered
updates. We use an array of 1M ownership records, and resolve

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1
0
0
0
 T

ra
n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Threads

(a) Disjoint Transactions, 20 accesses per transaction, 20% writes. Inevi-
tability is not used by any thread.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1
0

0
0

 T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Threads

Baseline
Drain

IRL

Filter (l)
Filter (m)
Filter (s)

GWL
GWL+Fence

GRL

(b) Shared reads, disjoint writes, 100 accesses per transaction, 20%
writes. Thread 0 runs inevitably at all times.

Fig. 2. Inevitability overhead (left) and effect on disjoint writer transactions (right) using a TL2-like runtime.

conflicts using a simple, blocking contention management
policy (abort on detection of conflict).

Inevitability Model. Due to the lack of standard trans-
actional benchmarks, much less those requiring inevitability,
we use parameterized microbenchmarks to assess the impact
of inevitability on latency and scalability. For each test, all
threads are assigned tasks from a homogeneous workload.
A single thread performs each of its transactions inevitably,
with all other threads executing normally. In this manner, we
can observe the impact on scalability introduced by frequent,
short-lived inevitable transactions, as well as the effectiveness
of different inevitability mechanisms at speeding a workload
of non-synchronizing transactions, without introducing cache
contention for the inevitability token.

Our decision to analyze short inevitable transactions is de-
liberate. Baugh and Zilles [1] have argued that transactions that
perform I/O are likely to run a long time, and to conflict with
almost any concurrent activity. This suggests that quiescence
overhead will be an unimportant fraction of run time, and that
there is little motivation to let anything run in parallel with an
inevitable transaction. While this may be true of operations
that write through to stable storage, it is not true of more
lightweight kernel calls, or of calls to pre-existing libraries
(including buffered I/O) that are outside the control of the TM
system. For example, inevitable rendering transactions in our
OpenGL-based graphical game complete in as little as 11 µs.

Inevitability Mechanisms. For each workload, we evaluate
9 library variants. The Baseline variant has no inevitability
support. For programs requiring inevitability, its behavior is
incorrect, but useful for comparison purposes. We compare
against the global read/write lock (GRL); the global write lock
both with and without a Transactional fence (GWL+Fence and
GWL, respectively); the writer drain (Drain); inevitable read
locks (IRL); and three Bloom filter mechanisms that differ in
the size of the filter used and the number of hash functions.
Filter (s) uses a single hash function and a 64-bit bloom filter.

Filter (m) and Filter (l) both use a 4096-bit filter, with one
and three hash functions, respectively.

A. Latency for Non-Inevitable Transactions

Our inevitability mechanisms differ in the overhead they
impose on non-inevitable transactions. We first consider the
case when inevitability is not used by any transaction. Fig-
ure 2(a) compares overheads on a microbenchmark in which
threads access disjoint regions of memory. Transactions are
read-only with 33% probability, and otherwise perform 20%
writes. Each writing transaction accesses 20 distinct locations
(thus there are 4 writes), but the locations within each thread’s
disjoint memory region vary.

Our hope for linear scaling is not realized, due to inherent
serialization among writing transactions in TL2. However,
Drain serializes much earlier, due to contention for its status
variable. The two atomic operations required to enter and exit
the drain cause substantial bus traffic and cache misses; at any
significant level of concurrency, each of these operations will
result in a miss. Excluding Drain, our mechanisms introduce
only modest overheads; they are all within 10% of baseline
performance. This behavior matches our expectations, and
confirms that supporting inevitability need not, in and of itself,
be a significant source of latency.

B. Supporting Disjoint Writes

When all transactions’ writes sets are disjoint, inevitability
should ideally have no impact on scalability. In Figure 2(b),
we show a benchmark in which every thread accesses 100
locations per transaction. Again, 33% of transactions are read-
only, with the remaining transactions performing a mix of 20%
writes to private buffers and 80% reads. However, all reads are
to a single shared structure. Given the size of each transaction,
we do not expect TL2’s global timestamp to be a bottleneck,
although we do expect a bottleneck in Drain.

We expect linear scaling from the Baseline implementation,
and we might hope that inevitability would speed up at least

the inevitable thread without sacrificing scalability. However,
our mechanisms incur various penalties that prevent this hope
from being realized. With such large read sets, the absence
of read instrumentation for Drain, GRL, and GWL+Fence
results in substantial single-thread speedup. However, GWL
forbids concurrent write commits entirely, resulting in flat
performance. When the Transactional Fence is added to GWL,
the periods when the inevitable transaction is blocked provide
an opportunity for concurrent non-inevitable transactions to
commit, raising performance. Furthermore, the GWL+Fence
outperforms GRL by allowing concurrent transactions to
progress up to their commit point during the inevitable trans-
action’s execution.

IRL and the large and medium Filters perform slightly
worse than Baseline, due to their additional memory order-
ing constraints. The workload is clearly sensitive to Filter
parameters: the small version of Filter causes unnecessary
aborts and performs dramatically worse than the other two.
The distance between Baseline and these scalable mechanisms
increases slightly as concurrency increases: we attribute this to
the increased cache misses that result from read locks covering
shared locations, and from cache misses during Filter accesses
by non-inevitable transactions.

In summary, the mechanisms we expected to scale do
so, though not quite as well as Baseline. When transactions
are not disjoint, Drain outperforms GRL. Drain also affords
better scalability than GWL, because it blocks non-inevitable
transactions before they acquire locations. In contrast, GWL
often detects conflicts between non-inevitable and inevitable
transactions after acquisition, which forces the non-inevitable
transaction to abort in order to prevent deadlock.

C. Workload Acceleration

We lastly consider the effectiveness of inevitability as an
optimization. In the large body of worklist-style algorithms
that have occasional conflicts between tasks, we argue that
inevitability can improve performance. In particular, when
there is no priority or fairness requirement between tasks,
and when tasks do not synchronize with each other, then
the decision to execute some tasks inevitably can improve
throughput, so long as inevitable transactions execute more
quickly than their non-inevitable counterparts. To evaluate
this claim, we concurrently execute an equal mix of insert,
remove, and lookup instructions on a set, and measure the
change in throughput when one thread executes all transactions
inevitably. Figure 3 presents two such workloads. In the first,
tasks access a 256-element hash table; in the second, a 1M-
element red-black tree.

The HashTable’s small transactions do not benefit from
inevitability; the overhead of the drain and the TL2 timestamp
dominate, resulting in both a limit on the scalability of an
otherwise scalable benchmark, and a limit on the improvement
afforded by inevitability. In the RBTree, however, transactions
are large enough that the drain overhead does not dominate.
Consequently, there is a modest but decreasing benefit to

inevitability at lower thread levels, and not until 24 threads
does inevitability increase latency.

Again, the GWL performs worse than GRL. As before,
most of GRL’s scalability is due to non-inevitable transactions
completing while the inevitable transaction is blocked. In
GWL, however, non-inevitable transactions can slow down an
inevitable transaction, since they access metadata concurrently
with the inevitable transaction. Since all non-inevitable trans-
actions block in GRL, no such interference occurs. Adding the
Transactional Fence to GWL eliminates this effect. However,
as in GRL, the fence prevents fast-running inevitable transac-
tions from running often enough to improve performance at
high thread counts.

IV. ASYNCHRONOUS 3-D RENDERING WITH
INEVITABILITY

To assess the impact of inevitability on a more realistic
workload, we developed a new transactional benchmark that
uses inevitable transactions to perform asynchronous rendering
and updates of a 3-D scene graph. In the benchmark, a number
of animated multi-segment objects (AMOs) compete to reach
a set of stationary gravity-emitting objects (GEOs). Along
the way, the AMOs must perform collision detection, and all
objects run a physics simulation to update their position and
velocity. Eventually, the benchmark will become part of an
OpenGL game where the interactive user attempts to “rescue”
the AMOs before they fall into a GEO.

Inevitable Rendering. We use transactions to detect and
resolve collisions, to compute animations, and to update all
object positions. We also use transactions to render: instead
of using barriers to separate scene updates from rendering ac-
tions, we render the scene asynchronously. For multithreaded
code, this lets us decouple the rate at which physics (and even-
tually AI) is simulated from the frame rate. When inevitable
rendering is disabled, the render thread uses a transaction
to copy AMO data to private buffers, in batch sizes of 1 or
10 AMOs. When inevitable rendering is enabled, rendering
can skip copying and can call OpenGL methods directly on
transactional data (although some inevitability mechanisms
require inevitable read prefetch() calls [20]).

Inevitable Updating. Accelerating the frame rate far above
the screen refresh rate is common in games that couple frame
rate and update rate. With asynchronous rendering, we can
decrease the frame rate to the refresh rate without affecting
the AMO update rate. For configurations of the benchmark
in which a frame rate of 60 FPS can be achieved without
inevitability, it can be more beneficial to execute update
transactions inevitably. Since the update transactions do not
use condition synchronization, the addition of inevitability
does not compromise correctness, but affords a fast-path with
less instrumentation. When inevitable updating is enabled,
AMO update transactions attempt to become inevitable but
do not block when inevitability is unavailable; instead those
transactions continue and perform their updates non-inevitably.

Experimental Platform. To evaluate inevitability in the
OpenGL game, we ran experiments on a 2.6 GHz 4-core Intel

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1
0
0
0
 T

ra
n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Threads

Baseline
Drain

IRL

Filter (l)
Filter (m)
Filter (s)

GWL
GWL+Fence

GRL

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1
0

0
0

 T
ra

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Threads

Fig. 3. Scalable worklists. Thread 0 runs inevitably at all times. Transactions on the left hand side are short, modeled with a 256-element hash table, while
transactions on the right are larger, operating on a red-black tree with 1M elements.

0

20

40

60

80

100

120

140

160

180

Baseline IRL Filter (L) Filter (M) Filter (S) Drain GWL GWL +
Fence

GRL

Fr
am

es
 P

er
 S

ec
on

d

Inev Render 1 Inev Render 10 Inev Update 1

0K

4K

8K

12K

16K

20K

24K

Baseline IRL Filter (L) Filter (M) Filter (S) Drain GWL GWL +
Fence

GRL

A
M

O
 U

pd
at

es
 P

er
 S

ec
on

d

Inev Render 1 Inev Render 10 Inev Update 1

Fig. 4. Render thread performance (left) and AMO update thread performance (right) with 500 AMOs and 10 GEOs. A complete scene update requires
500 AMO updates.

Q6600 (single package, two dual-core processors with two
independent 4MB L2 caches) with an NVIDIA 8800 GTS and
4GB RAM running 32-bit Windows Vista. The benchmark and
STM library were compiled with Visual C++ 2005, and each
run was configured with three AMO update threads and one
rendering thread. Each data point represents the average of
five trials, each of which was run for two minutes (the point
at which most AMOs reach a GEO).

Preliminary Results. Figure 4 shows the frame rate and
update rate for a run with 500 AMOs and 10 GEOs. For this
configuration, inevitability is not required to achieve a rate
of 60 FPS, and thus inevitability is not necessary to achieve
satisfactory visual output. Both the Drain and GWL succeed in
pushing the frame rate 25% higher than the non-inevitable rate,
showing that inevitability would be useful for a more render-
intensive workload. We also note that the delays imposed by
GRL and GWL+Fence result in significantly slower frame
rates. With a batch size of 1, each frame is rendered in 510
transactions, and the cost of blocking on each transaction is
substantial. With a batch size of 10, there are 51 transactions

per frame, and performance improves accordingly.
If each AMO is to move in each frame rendered, then

roughly 500 AMO updates are required per frame. For many of
our mechanisms, inevitable rendering actually decreased the
update rate, resulting in choppy animations. Since rendering
transactions are read-only, inevitable updating seems more
appropriate for this workload: with any mechanism other than
GRL, inevitable update threads do not impede nonconflicting
rendering transactions, but inevitability should increase the
update rate. The right-hand side of Figure 4 confirms this
expectation. The benefit is most significant with Drain and
GWL, where the impact on rendering was minimal and updater
throughput rose by a factor of 3.

V. CONCLUSIONS

In this paper we presented several mechanisms to implement
inevitable transactions. Using these mechanisms, programmers
can easily incorporate I/O, system calls, and other irreversible
operations into STM-based applications without sacrificing
all concurrency. While no single mechanism achieves both

low contention-free overhead and high scalability at high
levels of concurrency, these mechanisms make it practical
to develop realistic transactional workloads. In particular,
inevitability provides a simple and effective way to allow I/O
in transactions and, contrary to conventional wisdom, need
not sacrifice scalability for workloads with few write conflicts
between inevitable and non-inevitable transactions.

Our results, though preliminary, suggest that the best in-
evitability mechanism depends on the offered workload:

Library or system calls with unpredictable write sets.
GRL is the only option in this case. It sacrifices most concur-
rency in the application.

Short inevitable transactions that are likely to conflict
with non-inevitable transactions. Here GWL is attractive. It
requires, however, that the read and write sets of precompiled
functions be predicted, and it limits scalability if there are
concurrent nonconflicting writers.

Long but rare inevitable transactions that call library
code with unpredictable read sets. GWL+Fence should
perform well in this case. The cost of the fence is offset by the
improved performance of the inevitable transaction, and when
the workload does not contain concurrent disjoint writers, the
impact on scalability will be limited.

Long, frequent inevitable transactions that run with long
non-inevitable transactions, and rarely conflict with them.
Drain seems best for these. It allows calls to precompiled
code with unpredictable read sets, but introduces a scalability
bottleneck if there are many short-running nonconflicting
writers. Drain also appears most suitable when speed within
inevitable transactions is paramount.

Short, frequent inevitable transactions that run with
short non-inevitable transactions, and rarely conflict with
them. Both IRL and Filter should work well here. Both are
well-suited to workloads with frequent inevitable transactions
and concurrent, nonconflicting writer transactions. They both
afford good scalability, but require that the read and write sets
of library code be predicted.

Our OpenGL benchmark provides a practical demonstration
that inevitability can simplify and accelerate transactional I/O
even when non-transactional mechanisms are sufficient, and
confirms our expectations about the performance effects of
different inevitability mechanisms. The benchmark also shows
the effectiveness of inevitability in reducing latency. We intend
to continue development of the benchmark, adding output
that is dependent on input, to further explore the benefits of
inevitability for transactional applications.

REFERENCES

[1] L. Baugh and C. Zilles. An Analysis of I/O and Syscalls in Critical
Sections and Their Implications for Transactional Memory. 2nd ACM
SIGPLAN Workshop on Transactional Computing, Portland, OR, Aug.
2007.

[2] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Communications of the ACM, 13(7):422–426, 1970.

[3] C. Blundell, E. C. Lewis, and M. M. K. Martin. Unrestricted Transac-
tional Memory: Supporting I/O and System Calls within Transactions.
Technical Report TR-CIS-06-09, Department of Computer and Informa-
tion Science, University of Pennsylvania, May 2006.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. 20th Intl.
Symp. on Distributed Computing, Stockholm, Sweden, Sept. 2006.

[5] K. Fraser. Practical Lock-Freedom. Technical Report UCAM-CL-TR-
579, Cambridge University Computer Laboratory, Feb. 2004.

[6] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabju, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional Memory Coherence and Consistency. 31st Intl. Symp. on
Computer Architecture, page 102. IEEE Computer Society, June 2004.

[7] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
Memory Transactions. 10th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pages 48–60, Chicago, IL, June 2005.

[8] T. Harris, M. Plesko, A. Shinar, and D. Tarditi. Optimizing Memory
Transactions. 2006 ACM SIGPLAN Conf. on Programming Language
Design and Implementation, Ottawa, ON, Canada, June 2006.

[9] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
Transactional Memory for Dynamic-sized Data Structures. 22nd ACM
Symp. on Principles of Distributed Computing, Boston, MA, July 2003.

[10] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. 20th Intl. Symp. on Computer
Architecture, pages 289–300, San Diego, CA, May 1993. ACM Press.

[11] O. S. Hofmann, D. E. Porter, C. J. Rossbach, H. E. Ramadan, and
E. Witchel. Solving Difficult HTM Problems Without Difficult Hard-
ware. 2nd ACM SIGPLAN Workshop on Transactional Computing,
Portland, OR, Aug. 2007.

[12] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg. A
Scalable Transactional Memory Allocator. 2006 Intl. Symp. on Memory
Management, Ottawa, ON, Canada, June 2006.

[13] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software
Transactional Memory. 19th Intl. Symp. on Distributed Computing,
Cracow, Poland, Sept. 2005.

[14] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. Hosking, R. Hudson, E. Moss,
B. Saha, and T. Shpeisman. Open Nesting in Software Transactional
Memory. 12th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming, San Jose, CA, Mar. 2007.

[15] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory. 16th
Intl. Conf. on Parallel Architectures and Compilation Techniques,
Brasov, Romania, Sept. 2007.

[16] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software Transactional
Memory System For A Multi-Core Runtime. 11th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, pages 187–197,
New York, NY, Mar. 2006.

[17] W. N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. 24th ACM Symp. on
Principles of Distributed Computing, pages 240–248, Las Vegas, NV,
July 2005.

[18] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Transactions
with Isolation and Cooperation. 22nd ACM SIGPLAN Conf. on Object
Oriented Programming Systems and Applications, Montreal, Quebec,
Canada, Oct. 2007.

[19] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization
Techniques for Software Transactional Memory. Technical Report TR
915, Department of Computer Science, University of Rochester, Feb.
2007.

[20] M. F. Spear, M. M. Michael, and M. L. Scott. Inevitability Mechanisms
for Software Transactional Memory. 3rd ACM SIGPLAN Workshop on
Transactional Computing, Feb. 2008.

[21] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L.
Scott. Nonblocking Transactions Without Indirection Using Alert-on-
Update. 19th ACM Symp. on Parallelism in Algorithms and Architec-
tures, San Diego, CA, June 2007.

[22] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable Transactions
and their Applications. 20th ACM Symp. on Parallelism in Algorithms
and Architectures, Munich, Germany, June 2008.

