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Abstract
Transactional Memory simplifies parallel programming by elim-
inating the use of locks to protect concurrent accesses to shared
memory. However, when locks are used to provide mutual exclu-
sion for irreversible operations (I/O, syscalls, calls to “black box”
libraries), their replacement with transactions seems problematic:
transactions can abort and restart at any arbitrary point in their ex-
ecution, which is unacceptable when operations performed during
a transaction have made the intermediate state of that transaction
visible to an outside agent.

Permitting at most one transaction to operate in an “inevitable”
mode, where it is guaranteed to commit, is widely accepted as a
solution to the irreversibility problem for transactions, albeit one
that is not expected to scale. In this paper we explore a variety of
mechanisms to support inevitability in software transactional mem-
ory. We demonstrate that it is possible for an inevitable transaction
to run in parallel with (non-conflicting) non-inevitable transactions,
without introducing significant overhead in the non-inevitable case.
Our mechanisms can also be used to improve the speed of certain
common-case transactions.

1. Introduction
Transactional Memory (TM) [11] provides a simple and powerful
mechanism for synchronizing concurrent access to data: program-
mers mark regions as atomic and rely on the underlying system
to execute atomic sections concurrently whenever possible. Cur-
rent TM designs may employ hardware, software, or a combination
of the two, and may offer nonblocking guarantees or use locks to
implement transactions.

Unfortunately, TM (and software TM (STM) [21] in particu-
lar) bears considerable runtime and semantic overhead. An STM
must instrument program loads and stores, and may require up to
O(n2) time and O(n) space overhead to ensure the correctness of
a transaction, where n is the number of locations accessed. Further-
more, any TM that permits optimistic concurrency must provide a
rollback mechanism to resolve conflicts. Since rollback can hap-
pen at any time during the execution of a transaction, the program-
mer cannot safely perform operations that have irreversible side
effects—e.g., I/O and system calls—from a transactional context.
In a library-based STM, it is also unsafe for transactional code to
call precompiled binaries that may access shared locations, unless
binary rewriting is available [5, 18, 27].

A straightforward solution to these problems is to identify cer-
tain inevitable transactions, at most one of which can be active at a
time, and to ensure that such a transaction never aborts. Once roll-
back is prevented, an inevitable transaction may safely perform I/O,
syscalls, and other irreversible operations without concern that they
will ever need to be “undone”. It may also be able to skip certain

∗ At the University of Rochester, this work was supported in part by NSF
grants CNS-0411127, CNS-0615139, CCF-0702505, and CSR-0720796;
by equipment support from IBM; and by financial support from Intel and
Microsoft.

bookkeeping operations associated with rollback, allowing it to run
faster than an abortable transaction—an observation that raises the
possibility of judiciously employing inevitability in the underlying
system as a performance optimization for transactions that don’t
actually require its semantics.

1.1 Inevitability in Existing TM Systems
The original TCC proposal [7], which serialized concurrent trans-
actions at their commit points, provided a notion of “age” through
which inevitability could be provided; in effect, the active trans-
action that had started earliest in time was guaranteed to commit.
TCC’s age-based inevitability served both to prevent starvation and
to allow irreversible operations inside transactions: to perform such
operations, the transaction waited until it was “oldest” and then
could proceed safely. Subsequent discussions of inevitability tend
to focus on this design point [1,12,22], and assume that an in-flight
inevitable transaction must prevent all concurrent transactions from
committing.

In software, this design is exemplified by JudoSTM [18], where
all concurrent transactions block at their commit point when an in-
evitable transaction is in-flight. While this permits some concur-
rency (a transaction can execute from its begin point up to its com-
mit point during the inevitable transaction’s execution), it does not
allow any non-inevitable transaction to commit until the inevitable
transaction completes. Moreover several features of JudoSTM, in-
cluding dynamic binary rewriting and value-based conflict detec-
tion, limit the applicability of their method to other TM designs.

To the best of our knowledge, the only exception to what we
might call the “commit-token model” of inevitability is the “un-
restricted” hardware TM of Blundell et al., which allows non-
inevitable transactions to commit alongside an inevitable trans-
action. This system exposes the inevitable status of a transaction
to the hardware, and leverages the fact that the cache coherence
protocol can identify conflicts between inevitable reads and non-
inevitable writes. Conflicts between an inevitable transaction and
concurrent non-inevitable transactions are resolved by favoring the
inevitable transaction; non-inevitable transactions are allowed to
commit when no such conflicts are detected.

1.2 Contributions
This paper focuses on software TM. It presents five mechanisms
that allow non-inevitable read-only transactions to commit while
an inevitable transaction is active. Two of these mechanisms also
allow non-inevitable writer transactions to commit. These five ap-
proaches to inevitability are largely orthogonal to the underlying
TM algorithm. Any STM that provides versioning and ownership
through metadata should be able to use our mechanisms with little
modification, and we believe that hardware and hybrid TMs could
support some of these mechanisms with little modification.

Through a series of microbenchmarks, we demonstrate that our
mechanisms introduce very little latency and allow high levels of
concurrency. We also assess the orthogonal question of whether
inevitability is a reasonable mechanism for enhancing performance.
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We consider a workload characterized by a large pool of tasks, each
represented by a transaction, where tasks do not synchronize with
each other. In such a setting, we find that inevitability can improve
throughput so long as transactions are not trivial, but the effect
decreases as parallelism increases.

2. STM Support for Inevitability
Most STM runtimes control concurrent access using metadata in
object headers or in a hash table indexed by data address. Intel’s
McRT [19] and Microsoft’s Bartok [9] use the metadata to lock
locations on first access and make modifications in-place. TL2 [3]
and some variants of TL [4] and RSTM [24] buffer updates, and
only lock locations at commit time. Other STM algorithms, such as
DSTM [10], OSTM [6], ASTM [14], RSTM [15], and NZSTM [25]
use more complex metadata to achieve obstruction freedom.

While inevitability fundamentally introduces blocking into the
STM, we see no other obstacles to the use of any of our mechanisms
in all existing STMs. In our formulation, inevitability entails only
two requirements, the first of which is trivial:

• At Most One Inevitable Transaction: The runtime provides a
become inevitable() call, which transitions a running trans-
action into inevitable mode.1 The reference implementation of
become inevitable employs a test-and-set lock with expo-
nential backoff to block other inevitable transactions.

• Inevitable Transactions Do Not Abort: After returning from
become inevitable, the calling transaction must not abort if
it has performed irreversible operations.

This second requirement is the principal implementation chal-
lenge. We further classify the sources of aborts as self, explicit,
and implicit, corresponding to aborts caused by program logic,
read/write-after-write conflicts, and write-after-read conflicts.

Preventing Self Abort Many STM APIs include a retry mecha-
nism [8] for efficient condition synchronization. Clearly this mech-
anism cannot be used after performing an inevitable operation. It
may be possible, however, to perform condition synchronization
before becoming inevitable or, in certain cases, in ways that are
guaranteed never to force rollback of work already performed; we
consider these options further in Section 4.3.

Preventing Explicit Aborts In all of the STM algorithms named
above, an in-flight transaction must, at some point prior to com-
mitting, acquire exclusive ownership of each location it wishes to
modify. Subsequent to this acquisition step, any concurrent reader
or writer may use contention management [20] to receive permis-
sion to abort the exclusive owner. For inevitable transactions that
use encounter-time locking, it is straightforward to augment con-
tention management so that non-inevitable transactions always de-
fer to inevitable transactions. This sacrifices nonblocking guaran-
tees, but is otherwise a trivial extension. It also decreases overhead
within inevitable transactions, since data written (or overwritten) by
inevitable writes need not be logged. Furthermore, given the con-
dition that there is at most one inevitable transaction, this does not
introduce deadlock.

Preventing Implicit Aborts While some STM algorithms support
a “visible reader” mode, in which transactions explicitly mark the
metadata of locations they read, it is more common simply to record
transactional reads in a private log, which is then validated at com-
mit time to make sure that corresponding metadata has not changed.

1 In restricted cases, static analysis may determine that two inevitable trans-
actions will never conflict with one another. It may then be possible to allow
multiple concurrent inevitable transactions.

The runtime must ensure that inevitable transactions do not detect
such changes after becoming inevitable, via some additional guard
on reads. This requirement places the inevitable transaction some-
where between fully “visible” and fully “invisible,” depending on
the inevitability implementation.

Implicit aborts can trivially be prevented using a global read/
write lock (GRL): a call to become inevitable blocks until all
in-flight transactions commit or abort and clean up metadata. The
inevitable transaction then executes, while all other threads block
at the start of their next transaction until the inevitable transaction
commits. Unfortunately, this solution affords no concurrency, even
in workloads with no conflicts. We now turn our consideration
to mechanisms that prevent implicit aborts without sacrificing all
concurrency.

3. Inevitability Mechanisms
As suggested in Section 2, the primary requirement of a con-
currency-permitting inevitability mechanism is a method to guard
the inevitable transaction’s read set, so that a conflicting (non-
inevitable) writer does not invalidate an inevitable read. In practice,
this requirement entails a tradeoff between precision and overhead:
more precise mechanisms afford greater concurrency between the
inevitable transaction and transactions that write to disjoint areas
of memory, but at the cost of higher overhead within all in-flight
transactions. We have already described the global read/write lock
(GRL). In the remainder of this section we describe five additional
mechanisms that afford progressively higher levels of concurrency.

3.1 Global Write Lock
Read-only transactions may progress (and commit) alongside an
inevitable transaction so long as the inevitable transaction updates
the metadata of locations that it writes (thereby enabling the con-
current readers to detect conflicts). Similarly, a writing transaction
that uses commit-time locking can progress up to its commit point
while an inevitable transaction is in-flight, but must wait to com-
mit until after the inevitable transaction finishes. We refer to this
inevitability mechanism as a global write lock (GWL).

When a transaction attempts to become inevitable, GWL makes
no assumptions about the state of other threads. The inevitable
transaction must thus check metadata before performing any trans-
actional read (requiring a read-before-read (RBR) memory fence
on processors with relaxed memory consistency models) and might
need to block until a lock is released. To avoid races with non-
inevitable writers that have committed or aborted but not yet
cleaned up, the inevitable transaction must also use atomic in-
structions (compare-and-swap (CAS) or load linked/store
conditional (LL/SC)) to update metadata for writes. At the same
time, it can elide all read-set logging, and need not postvalidate
metadata after a transactional read.

Since inevitable transactions do not validate their read set, a
non-inevitable writer must check the GWL flag after acquiring any
location, to detect the presence of a concurrent inevitable transac-
tion; if none is detected, the transaction may proceed. Otherwise
it must release the location and restart. Testing the GWL flag af-
ter acquiring requires an acquire fence. On architectures like the
x86 and SPARC, an atomic CAS provides an acquire fence implic-
itly. On the PowerPC architecture, a lightweight instruction-sync
instruction can be used after the acquires to impose acquire fence
ordering (which is needed in any case in STM implementations
with deferred validation).

GWL allows concurrent non-conflicting read-only non-inevita-
ble transactions to complete during an inevitable transaction’s exe-
cution, but we expect GWL to afford only limited parallelism with
read-write transactions, since it prevents a non-inevitable writer
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from committing even when it could logically serialize prior to a
concurrent inevitable transaction. We also expect that supporting
GWL introduces minimal overhead: with commit-time locking, we
add only a single memory fence and comparison to the commit
sequence of the non-inevitable transaction. Furthermore, we antici-
pate that GWL transactions should run significantly faster than their
non-inevitable counterparts, even when the semantics of inevitabil-
ity are not strictly required: there is no need for logging and validat-
ing the consistency of reads, which usually account for a significant
portion of the overhead of inevitable transactions.

In GWL, while inevitable reads avoid logging and validation,
still each inevitable read must check whether the location to be read
is in the process of being written by a concurrent non-inevitable
transaction, and if necessary wait until the location is released. In
the next two designs, we explore the possibility of eliminating per-
inevitable-read overheads completely.

3.2 GWL + Transactional Fence
Several STMs include quiescence mechanisms [3,6,13,23,26] that
permit threads to wait for concurrent transactions to reach pre-
dictable points in their execution. These mechanisms support mem-
ory reclamation and privatization, or ensure correctness during val-
idation. By using quiescence to eliminate the possibility of not-
yet-cleaned-up transactions, we can avoid the need to instrument
inevitable reads, at the cost of a possible delay after becoming in-
evitable. (Transactional writes still require instrumentation to en-
sure that locations are acquired before they are written. Without
this instrumentation, concurrent readers would not be able to cor-
rectly detect conflicts.)

To evaluate the utility of quiescence, we use a Transactional
Fence [23], which waits for all active transactions to commit or
abort and clean up.2 Once the transactional fence completes, the
inevitable transaction is guaranteed that there will be no concurrent
updates by non-inevitable transactions during its execution.

This same mechanism could be used in conjunction with GRL:
upon becoming inevitable, a transaction could wait for all con-
current transactions to complete. Since all new transactions (even
those that do not perform writes) would block at their begin point,
once the transactional fence completed, the inevitable transaction
would be guaranteed exclusive access to shared locations, and
could safely perform uninstrumented reads and writes.

3.3 Writer Drain
While waiting for all active transactions to finish is a straightfor-
ward way to ensure that an inevitable transaction can always safely
read, it is more conservative than necessary. All that is really re-
quired is to wait until all concurrent writers have completed. We
can do this by merging a writer count into the GWL flag. We call
the resulting mechanism a Writer Drain. With the Drain in place,
an inevitable transaction requires neither instrumentation of reads
nor atomic instructions in metadata updates for writes.

Abstractly, the Drain is an implementation of GWL in which an
inevitable transaction cannot start until all non-inevitable writers
have released their metadata. When commit-time locking is used,
this behavior can be ensured using a single-word status variable up-
dated according to the protocol shown in Figure 1. The status vari-
able consists of three fields: a bit i indicating an active inevitable
transaction, a reservation bit r indicating a transaction that will
become inevitable as soon as extant non-inevitable writer trans-
actions finish, and a count n of the number of such writers. This
protocol resembles a traditional fair reader-writer lock in which in-

2 Less expensive quiescence mechanisms may also suffice, though they may
be specific to particular TM implementations.
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Figure 1. State Transitions for the Writer Drain. State labels indi-
cate the values of the drain’s three fields: n : r : i. Transitions that
change r or i are made by an inevitable transaction; transitions that
change n are made by non-inevitable writer transactions. If the cur-
rent state lacks a desired outgoing transition, the thread that wishes
to make that transition must wait. “--n′ ” indicates completion of
the only remaining non-inevitable writer.

evitable transactions take the role of “writer” and non-inevitable
writer transactions take the role of “reader”.

In the draining state, thread I has reserved permission to ex-
ecute inevitably, but is waiting for all non-inevitable transactions
that are about to acquire a location to complete. When the last
of these transactions (indicated by an n′ transition) completes, the
drain transitions through a transient state to the plugged state. In
the plugged or filling state, thread I may execute without restric-
tion, but non-inevitable transactions must block at the point where
they wish to acquire a location. If there are pending transactions
in the drain when I completes, the drain moves to an unheld state,
in which non-inevitable transactions must inform the drain of their
status but may otherwise execute without restriction. When there
are no inevitable transactions, and no non-inevitable transactions
have acquired locations, the drain is empty.

When the drain is plugged or filling, the inevitable transaction is
guaranteed that all metadata is unacquired; it will never encounter
a locked location. During its execution, it is also guaranteed that
no other transaction will modify metadata. Given these guarantees,
the inevitable transaction requires no instrumentation of reads. In
addition, though it must still modify metadata before writing the
associated data, it can use ordinary writes to do so. In most archi-
tectures, such write-before-write ordering has no overhead; in the
PowerPC, it can be achieved with a lightweight-sync instruction.

Like GWL, Drain should only afford limited concurrency with
read-write transactions since non-inevitable writers cannot commit
during the execution of any inevitable transaction. Furthermore, in
the absence of inevitable transactions we expect higher overhead,
since writing transactions must increment and decrement the non-
inevitable active count in the drain at the beginning and end of
their commit sequence (or, in the case of encounter-time locking,
before first acquire and after commit, respectively). In the face
of any concurrency, these updates will result in adverse cache
behavior. However, the throughput of the inevitable transaction
should be substantially higher. Consequently, an intelligent just-in-
time compiler could reduce the code of an inevitable transaction to
almost the size and complexity of a nontransactional equivalent.

3.4 Inevitable Read Locks
Both GWL and Drain use a single guard to protect all locations
read by the inevitable transaction. Though simple, these mecha-
nisms limit concurrency, since concurrent writers are prohibited
from committing even when their write sets do not overlap with the
inevitable transaction’s read set. We now consider a precise mecha-
nism to guard only the locations read by the inevitable transaction,
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thereby allowing a maximum amount of concurrency between the
inevitable transaction and disjoint writers.

Our Inevitable Read Locks (IRL) mechanism adds read locks
to the underlying STM’s metadata. Typically, lock-based STMs
overload a single word with lock and ownership information; the
least significant bit is used to indicate locking, with all other bits
compose a version number or pointer to the lock holder. Assuming
that all pointers must be aligned to at least 4 bytes, we can take
another low-order bit and use it to indicate that the location is being
read (but not written) by the inevitable transaction.

Using IRL, inevitable transactions must read and (potentially)
atomically update metadata on every transactional read, and must
release read locks (using normal stores) upon commit. During a
read or write, the inevitable transaction may detect a conflict with
an in-flight transaction writing the same location. To resolve the
conflict, the inevitable transaction must issue a remote abort, per-
haps after briefly waiting briefly for the conflicting transaction to
complete. In STMs that use encounter-time locking with in-place
update, the inevitable transaction may need to wait after issuing a
remote abort, so that the aborted transaction can undo any modifi-
cations it made.

Non-inevitable transactions also require minor modification to
support IRL. During reads, transactions may ignore benign con-
flicts with an inevitable reader (detected when the transaction reads
an ownership record and finds the read bit set), but during transac-
tional writes, the runtime must prevent acquisition of locations that
are actively being read by an inevitable transaction. To resolve such
conflicts, the writer can either block or abort itself.

While IRL should provide a high degree of concurrency be-
tween inevitable transactions and nonconflicting writing transac-
tions, we expect scalability to be limited for a number of reasons.
First, inevitable transactions incur significant overhead due to a
high number of expensive atomic operations. Secondly, inevitable
transactions must still bookkeep their reads, so that they can release
their read locks upon commit. Worse yet, the additional bus mes-
sages generated by the increased number of atomic operations may
cause a slowdown for truly disjoint non-inevitable transactions.
Lastly, as with visible reads in STM, we expect decreased scala-
bility due to cache effects: updates to metadata by the inevitable
transaction cause additional bus messages and cause cache misses
when concurrent non-inevitable readers perform validation.

3.5 Inevitable Read Filter
By approximating the set of read locks as a Bloom filter [2], our
Inevitable Read Filter (Filter) mechanism decreases impact on con-
current reads, albeit at the expense of a more complex protocol for
handling non-inevitable writes and inevitable reads. An inevitable
transaction records the locations it reads (or the locations of the
associated metadata) in a single, global Bloom filter, and writing
transactions refrain from acquiring locations recorded in the filter.
The size of the filter and the set of hash functions are orthogonal
to the correctness of the mechanism, and serve only to decrease the
frequency of false conflicts.

Since inevitable readers and non-inevitable writers both must
interact with the filter and with ownership metadata, we must take
care to avoid data races. The non-inevitable writer always acquires
a location before checking the filter, and upon a positive lookup
in the filter the writer must abort. Similarly, the inevitable reader
always records locations in the filter before checking metadata, and
if that subsequent metadata check fails, the inevitable transaction
blocks until the ownership record is released.

The complexity of the above protocol for interacting with the
filter and ownership metadata is compounded by the processor
memory model; the inevitable transaction must write to the filter
before reading a location, and non-inevitable transactions must

acquire locations (via atomic writes) before testing whether those
locations are present in the filter. In the former case, an explicit
write-before-read (WBR) memory fence is required on the x86,
SPARC, and PowerPC architectures. The latter case introduces the
need for a full sync instruction (SYNC) on the PowerPC, but no
additional ordering on x86 or SPARC. With commit-time locking,
a single SYNC suffices for the non-inevitable transaction, as it can
acquire all needed metadata, issue the SYNC, and then test all
acquired locations in the filter. Until hardware designers decrease
the best-case overhead of WBR fences, their presence on the critical
path of committing transactions introduces significant overhead.

Due to the unavoidable requirement for WBR ordering, we ex-
pect high overhead for the inevitable transaction using Filter. How-
ever, we expect better scaling than IRL, since read-read concur-
rency does not introduce any overhead, and does not sacrifice the
read-write concurrency of IRL. The ability to tune the filter by
changing its size or hash functions may prove useful as develop-
ers gain experience with transactional workloads.

3.6 Summary
Table 1 summarizes the impact of each inevitability mechanism
on the behavior of concurrent non-inevitable transactions, and also
identifies which mechanisms may introduce a delay in the in-
evitable transaction at its begin point. In Section 4 we discuss lim-
itations that an inevitability mechanism imposes on the sorts of ir-
reversible operations that can be performed; those limitations may,
in turn, require a fallback mechanism to use GRL when the proper-
ties of another inevitability mechanism prove inadequate. Table 2
summarizes the sources of latency introduced by each mechanism.

4. Programming with Inevitability
We now turn our attention to the impact of inevitability on transac-
tional programming models. For simplicity and generality, we as-
sume that the STM is implemented as a library, and we ignore the
concurrent execution of transactional and nontransactional code.

4.1 Irreversible Operations
In this section we contrast inevitability with other ways of accom-
modating irreversible operations, centering the discussion on the
desirable properties that are intrinsic to inevitability.

Enforcing Mutual Exclusion of Multi-Instruction I/O Alterna-
tives to inevitability for I/O include buffering, open nested trans-
actions [17], and punctuating transactions [22]. Buffering is not a
general solution for interactive I/O. We therefore limit our discus-
sion to the other two alternatives. For each of these, we consider
their use in a simple, output-only operation.

Listing 1 presents transactional operations for an abstract set
initialized via the init() function. We consider an array of such
sets, accessed via WorkLoad1 from Listing 2. For N >1 threads,
each thread n ∈ N executes WorkLoad1(n). We assume that
SetPrint() is executed inevitably, via an API call that correctly
ensures at most one inevitable transaction in flight at any time.

Since inevitability enforces mutual exclusion, there will be no
interleaving of print operations between threads. Thus while the
order in which N sets are printed cannot be predicted, inevitability
guarantees that each of the N sets will be printed without interrup-
tion by concurrent printing threads. This property does not hold for
open nesting or punctuating transactions.

Under open nesting, calls to SetPrint can abort; consequently,
the programmer must specify compensating actions to undo or mit-
igate the effects of print instructions issued from transactions that
call SetPrint but do not commit. Since such actions are properties
of the specific irreversible operation performed, it appears unlikely
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Mechanism Delay upon concurrent concurrent
becoming inevitable read-only writes

GRL Yes No No
GWL No Yes No
GWL + Fence Yes Yes No
Drain Sometimes Yes No
IRL No Yes Yes
Bloom No Yes Yes

Table 1. Summary of benefits and drawbacks of different inevitability options.

Mechanism Inev Inev Inev Inev Begin NonInev
Read Write Read Commit Overhead Commit
Instr Instr Logging Overhead Overhead

GRL None None No None WBR N/A
GWL Wait Acquire No None None Test
GWL + Fence None Store No None WBR Test
Drain None Store No CAS None 2 CAS
IRL Acquire Acquire Locks None None None
Bloom Write Acquire Filter None None WBR

WBR Intersect
Wait

Table 2. Overheads imposed by inevitability mechanisms.

Listing 1 Add, Remove, and Print transactions for a simple set.

Set sets[numthreads];

sub init()
foreach(set in sets)

set.fill_with_random_vals();

sub SetPrint(Set S)
atomic

print("Set " & S.id);
foreach (s in S)

print(" " & s.toString());
print("End of set " & S.id);

sub SetAdd(Set S, value v)
atomic

if (!S.contains(v))
S.add(v);

sub SetRemove(Set S, value v)
atomic

if (S.contains(v))
S.remove(v);

Listing 2 Parallel workloads for an array of sets.

sub WorkLoad1(int tid)
SetPrint(sets[tid]);

sub WorkLoad2(int tid)
do

if (tid == 0)
SetPrint(sets[0]);

else if (tid % 2 == 0)
SetAdd(sets[0], random());

else
SetRemove(sets[0], random());

until (TimerInterrupt)

that a single design pattern or library call can be provided to make
this task easy for programmers.

With punctuated transactions, individual I/O operations need
not be rolled back. However, at each I/O point, the transaction ef-
fectively commits and starts a new transaction; to ensure correct-
ness, the programmer attaches a set of predicates to the punctuat-
ing action (in this case, the call to print), specifying what con-
ditions must be restored before the thread resumes a new trans-
actional context that appears to be a continuation of its previous
context. Unfortunately, at the point where the transaction is punc-
tuated, the scheduler may permit any concurrent thread to execute
the first of its print statements. We believe that this problem can
be prevented through the explicit creation of a monitor-like mech-
anism that uses additional punctuating transactions to synchronize
calls to SetPrint. However, even if the runtime provides such a
mechanism, it would introduce a risk of deadlock and would rein-
troduce the need for global reasoning about locks.

Preserving Local Reasoning About Correctness While inevitabil-
ity is a global property (at most one active transaction can be
inevitable), it does not violate abstraction boundaries or require
global reasoning about correctness. We now consider WorkLoad2
from Listing 2, and demonstrate how alternatives to inevitability
such as privatization and punctuating transactions can necessitate
deep changes to the structure of an algorithm.

Under WorkLoad2, a single thread attempts to print a set that
is being actively modified. The runtime must ensure that the out-
put matches some dynamic instance of the set. Let us suppose that
the set initially contains all odd values within the range n . . . m;
after thread0 prints values n . . . m/2, the elements n . . . m are
all removed from the set, and then all even elements in the range
m/2 . . . m are added. With punctuating transactions, all set modifi-
cations can complete during a break in the execution of thread0. If
thread0 continues printing, the output will not match any dynamic
instance of the set. However, encoding an invariant to capture the
requirement that all previously printed values remain in the set may
be unacceptably complex: it must at least assert that all printed val-
ues are still in the set, and may also need to understand the set
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iterator’s implementation, so it may assert that there have not been
updates that fall within the range already printed.

Remarkably, even privatization fails to allow WorkLoad2 to
execute correctly without changes to the set implementation. A
naive use of privatization would excise the entire set, print it, and
then de-privatize the set, but this is not enough: we must also
also somehow lock the set, so that no set-changing operations are
executed and all lookup operations block. Without locking, it may
be impossible to correctly de-privatize the set after I/O completes,
since failed removals may be lost, or duplicate inserts occur.

4.2 Non-Transactional Code and System Calls
A limitation of library-based STM is its inability to call precom-
piled code. Recompilation of libraries can solve this problem, as
can dynamic binary rewriting [5,18,27]. Without such mechanisms,
precompiled libraries and system calls can still be called safely
from an inevitable transaction, so long as the inevitability mech-
anism and the library code obey the following rules.

First, the underlying STM must not use indirection. In an
indirection-based STM [6, 10, 14, 15], read instrumentation is nec-
essary in inevitable transactions, because data does not reside in
place. Indirection-free systems have no such constraint, because we
use encounter time locking and in-place update for the inevitable
transaction.

Second, if the library code reads and writes shared locations, it
must be instrumented (though not necessarily by the library itself)
according to the inevitability mechanism. We provide inevitable
prefetch instructions for this purpose: a write prefetch locks its
corresponding location without modifying the value, and a read
prefetch performs the appropriate read instrumentation (such as
adding locations to a filter, acquiring read locks, or ensuring that
write locks are not held). Without prefetching, only GRL can call
precompiled code that writes locations that have not been previ-
ously written by the calling transaction, and GWL, IRL, and Fil-
ter cannot call precompiled code that reads new locations. With
prefetching, library code can be called only if its writes can be con-
servatively predicted. Furthermore, if the underlying inevitability
mechanism is not Drain or GWL+Filter, the code’s reads must also
be predictable. The bottom line: inevitability and prefetching to-
gether can be used to call some, but not all, precompiled library
code.

Using inevitability to call precompiled code decreases scala-
bility relative to dynamic binary rewriting and recompilation. In-
evitability serializes transactions even when the library code they
execute does not perform irreversible operations. Furthermore,
some rewriting mechanisms achieve the effect of speculative lock
elision when calling lock-based code [18]. In contrast, inevitability
ensures that the calling transaction will not abort while holding a
lock, (avoiding the chance of deadlock if the lock is not released
correctly), but cannot extract parallelism that may be available.

4.3 Condition Synchronization
Whereas inevitability improves transactional programming by
adding support for irreversible operations, system calls, and pre-
compiled libraries, it complicates the use of condition synchroniza-
tion via explicit self-abort. As mentioned in Section 2, we explicitly
forbid inevitable transactions from self-aborting after performing
irreversible operations.

This condition does not, however, prevent condition synchro-
nization within inevitable transactions. An inevitable transaction
can certainly synchronize at its begin point. More generally, it
can synchronize before executing become inevitable, and at any
point in its inevitable execution at which it has only performed
reads (writes, library calls, and system calls must be conservatively
considered irreversible operations).

Additionally, an inevitable transaction can synchronize using
self-abort after performing irreversible operations in systems that
provide closed-nested transactions, as long as (1) the retry is per-
formed within a specially annotated closed-nested transaction; (2)
the retry condition involves only reads to locations that were not ac-
cessed inevitably; (3) the inevitability mechanism permits concur-
rent writers to commit; and (4) the condition can be computed and
written by any transaction without conflicting with the inevitable
transaction’s reads and writes. Since these properties do not cleanly
compose and cannot in general be statically checked, we expect the
usefulness of such condition synchronization to be limited.

5. Evaluation
In this section we analyze the performance of our different in-
evitability mechanisms across several microbenchmarks. We con-
ducted all tests on an IBM pSeries 690 (Regatta) multiprocessor
with 32 1.3 GHz Power4 processors running AIX 5.1. Our STM
runtime library is written in C and compiled with gcc v4.0.0. All
benchmarks are written in C++ and compiled using g++ v4.0.0.
Each data point represents the average of five trials, each of which
was run for five seconds.

STM Library Configuration Our STM library is patterned after
the per-stripe variant of TL2 [3], and uses commit-time locking
with buffered updates. We use an array of 1M ownership records,
and resolve conflicts using a simple, blocking contention manage-
ment policy (abort on conflict). Unlike the x86 TL2 implementation
available with the STAMP suite [16], we do not mitigate conflicts
on TL2’s global timestamp via probabilistic mechanisms.

Inevitability Model Due to the lack of standard transactional
benchmarks, much less those requiring inevitability, we use param-
eterized microbenchmarks to assess the impact on latency and scal-
ability imposed by our algorithms. For each test, all threads are as-
signed tasks from a homogeneous workload. A single thread is in-
structed to perform each of its transactions inevitably, with all other
threads executing normally. In this manner, we can observe the im-
pact on scalability introduced by frequent, short-lived inevitable
transactions, as well as the effectiveness of different inevitability
mechanisms for speeding a workload of non-synchronizing trans-
actions. Our choice to execute all inevitable transactions from the
same thread increases the predictability and regularity of our results
by avoiding cache contention for the inevitability token.

Our decision to analyze short inevitable transactions is deliber-
ate. Baugh and Zilles [1] have argued that transactions that perform
I/O are likely to run a long time, and to conflict with almost any
concurrent activity. This suggests that quiescence overhead will be
an unimportant fraction of run time, and that there is little motiva-
tion to let anything run in parallel with an inevitable transaction.
While this may be true of operations that write through to stable
storage, it is not true of more lightweight kernel calls, or of calls to
pre-existing libraries (including buffered I/O) that are outside the
control of the TM system. We are currently experimenting with a
graphical game that uses transactions to synchronize with concur-
rent 3-D rendering in OpenGL. Without inevitability, the rendering
thread may be forced to perform excessive copying (application-
level buffering), or else to render a single visual object over the
course of many separate transactions, at the risk of inconsistent out-
put.

Inevitability Mechanisms For each workload, we evaluate 9 li-
brary variants. The default (Baseline) variant is a standard TL2
implementation with no inevitability support. For programs with
inevitable transactions its behavior is incorrect, but useful for com-
parison purposes. We compare against the global read lock (GRL);
the global write lock both with and without a Transactional fence
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Figure 2. Disjoint Transactions, 20 accesses per transaction, 20%
writes, using a TL2-like runtime. Inevitability is not used by any
thread. Key appears in Figure 3.

(GWL+Fence and GWL, respectively); the writer drain (Drain); in-
evitable read locks (IRL); and three Bloom filter mechanisms that
differ in the size of the filter used and the number of hash functions.
Filter (s) uses a single hash function and a 64-bit bloom filter. Filter
(m) and Filter (l) both use a 4096-bit filter, with one and three hash
functions, respectively.

5.1 Latency for Non-Inevitable Transactions
Our various inevitability algorithms differ in the amount of over-
head they place on the critical path of non-inevitable transactions.
We first consider the case when inevitability is not used by any
transaction. Figure 2 compares overheads on a microbenchmark in
which threads access disjoint regions of memory. Transactions are
read-only with 33% probability, and otherwise perform 20% writes.
Each writing transaction accesses 20 distinct locations (thus there
are 4 writes), but the locations within each thread’s disjoint mem-
ory region vary.

Our hope for linear scaling is not realized, due to inherent se-
rialization among writing transactions in TL2. However, Drain se-
rializes much earlier, due to contention for its status variable. The
two atomic operations required to enter and exit the drain cause
substantial bus traffic and cache misses; at any significant level of
concurrency, each of these operations will result in a miss. Exclud-
ing Drain, our mechanisms introduce only modest overheads; they
are all within 10% of baseline performance. This behavior matches
our expectations, and confirms that supporting inevitability need
not, in and of itself, be a significant source of latency.

5.2 Supporting Disjoint Writes
When all transactions’ writes sets are disjoint, inevitability should
ideally have no impact on scalability. In Figure 3, we show a bench-
mark in which every thread accesses 100 locations per transaction.
Again, 33% of transactions are read-only, with the remaining trans-
actions performing a mix of 20% writes to private buffers and 80%
reads. However, all reads are to a single shared structure. Given the
size of each transaction, we do not expect TL2’s global timestamp
to be a bottleneck, although we do expect a bottleneck in Drain.

Naturally, we expect linear scaling from the Baseline implemen-
tation, and we might hope that inevitability would speed up at least
the inevitable thread without sacrificing scalability. However, our
mechanisms incur various penalties that prevent this hope from
being realized. With such large read sets, the absence of read in-
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Figure 3. Shared reads, disjoint writes, 100 accesses per trans-
action, 20% writes, using a TL2-like runtime. Thread 0 runs in-
evitably at all times.

strumentation for Drain, GRL, and GWL+Fence results in substan-
tial single-thread speedup. However, GWL forbids concurrent write
commits entirely, resulting in flat performance. When the Trans-
actional Fence is added to GWL, the periods when the inevitable
transaction is blocked provide an opportunity for concurrent non-
inevitable transactions to commit, raising performance. Further-
more, the GWL+TFence outperforms GRL by allowing concur-
rent transactions to progress up to their commit point during the
inevitable transaction’s execution.

IRL and the large and medium Filters perform slightly worse
than Baseline, due to their additional memory ordering constraints.
The workload is clearly sensitive to Filter parameters: the small
Filter causes unnecessary aborts and performs dramatically worse
than the other two. The distance between Baseline and these scal-
able mechanisms increases slightly as concurrency increases: we
attribute this to the increased cache misses that result from read
locks covering shared locations, and from cache misses during Fil-
ter accesses by non-inevitable transactions.

When we simulated the WBR memory fence with a lightweight-
sync instruction, performance of the inevitable thread improved by
60% for the large and 53% for the small and medium Filters. If we
take this to be a reasonable best-case overhead for a WBR fence,
then the Filters should all outperform Baseline at one thread. The
impact on non-inevitable transactions is negligible (less than 1% on
average) since they issue only one WBR per writing transaction.

In summary, the mechanisms we expected to scale do so, though
not quite as well as Baseline. Drain consistently outperforms
quiescence, and affords better scalability than GWL, because it
blocks non-inevitable transactions before they acquire locations.
In contrast, GWL often detects conflicts between non-inevitable
and inevitable transactions after acquisition, which forces the non-
inevitable transaction to abort in order to prevent deadlock.

5.3 Workload Acceleration
We lastly consider the effectiveness of inevitability as an optimiza-
tion. In the large body of worklist-style algorithms that have oc-
casional conflicts between tasks, we posit that inevitability can
improve performance. In particular, when there is no priority or
fairness requirement between tasks, and when tasks do not syn-
chronize with each other, then the decision to execute some tasks
inevitably can improve throughput, so long as inevitable transac-
tions execute more quickly than their non-inevitable counterparts.
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Figure 4. Scalable worklists, using a TL2-like runtime. Thread 0 runs inevitably at all times. Transactions on the left hand side are short,
modeled with a 256-element hash table, while transactions on the right are larger, via a red-black tree with 1M elements.

To evaluate this claim, we concurrently execute an equal mix of
insert, remove, and lookup instructions on a set, and measure the
change in throughput when one thread executes all transactions in-
evitably. Figure 4 presents two such workloads. In the first, tasks
access a 256-element hash table; in the second, a 1M-element red-
black tree.

The HashTable’s small transactions do not benefit from in-
evitability; the overhead of the drain and the TL2 timestamp dom-
inate, resulting in both a limit on the scalability of an otherwise
scalable benchmark, and a limit on the improvement afforded by
inevitability. In the RBTree, however, transactions are large enough
that the drain overhead does not dominate. Consequently, there is a
modest but decreasing benefit to inevitability at lower thread levels,
and not until 24 threads does inevitability increase latency.

Again, the GWL performs worse than GRL. As before, most
of GRL’s scalability is due to non-inevitable transactions complet-
ing while the inevitable transaction is blocked. In GWL, however,
non-inevitable transactions can slow down an inevitable transac-
tion, since they access metadata concurrently with the inevitable
transaction. Since all non-inevitable transactions block in GRL, no
such interference occurs. Adding the Transactional Fence to GWL
eliminates this effect. However, as in GRL, the fence prevents fast-
running inevitable transactions from running often enough to im-
prove performance at high thread counts.

In additional experiments, we confirmed that this effect is even
more pronounced in workloads with less inherent concurrency—
e.g., with large transactions that frequently conflict. Here single-
thread performance is paramount, and the use of inevitability to
raise that performance can have a dramatic impact. On a Random-
Graph [14] workload, where all transactions conflict and each trans-
action reads hundreds of locations, we observed over two orders of
magnitude improvement at one thread; at higher thread levels, con-
tention for the drain increased, eventually reducing performance
to baseline levels at 16 threads. In a scalable LinkedList workload
with large read sets, inevitability raised throughput on 1–32 threads
to a constant level 50% higher than the peak performance without
inevitability.

5.4 Dependence on Workload Characteristics
Our results, though preliminary, suggest that the best inevitability
mechanism depends on the offered workload:

Library or system calls with unpredictable write sets: GRL is
the only option in this case. It sacrifices most concurrency in the
application.

Short inevitable transactions that are likely to conflict with non-
inevitable transactions: Here GWL is attractive. It requires, how-
ever, that the read and write sets of precompiled functions be pre-
dicted, and it limits scalability if there are concurrent nonconflict-
ing writers.

Long but rare inevitable transactions that call library code with
unpredictable read sets: GWL+Fence should perform well in
this case. The cost of the fence is offset by the improved perfor-
mance of the inevitable transaction, and when the workload does
not contain concurrent disjoint writers, the impact on scalability
will be limited.

Long, frequent inevitable transactions that run with long non-
inevitable transactions, and rarely conflict with them: Drain
seems best for these. It allows calls to precompiled code with
unpredictable read sets, but introduces a scalability bottleneck if
there are many short-running nonconflicting writers.

Short, frequent inevitable transactions that run with short non-
inevitable transactions, and rarely conflict with them: Both IRL
and Filter should work well here. Both are well-suited to workloads
with frequent inevitable transactions and concurrent, nonconflict-
ing writer transactions. They both afford good scalability, but re-
quire that the read and write sets of library code be predicted. The
choice of mechanism should depend on the timing of the call to
begin inevitable. If the call is made late, the expense of mak-
ing existing reads inevitable should be lower for Filter, since the
cost of a single memory fence can be amortized across all read lo-
cations, and there are no atomic operations. Filter should also be
preferred if the inevitable transaction’s read set overlaps with other
transactions’ reads, since IRL’s read locks will cause non-inevitable
transactions to incur cache misses.

6. Conclusions
In this paper we have presented several mechanisms to implement
inevitable transactions. Using these mechanisms, programmers can
easily incorporate I/O, system calls, and other irreversible oper-
ations into STM-based applications. While no single mechanism
achieves both low contention-free overhead and high scalability at
high levels of concurrency, these mechanisms make it practical to
develop realistic transactional workloads. In particular, inevitabil-
ity provides a simple and effective way to allow I/O in transactions
and, contrary to conventional wisdom, need not sacrifice scalability
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for workloads that have few write conflicts between inevitable and
non-inevitable transactions.

The Bloom Filter mechanism underscores the importance of de-
signing memory systems with lower write-before-read fence over-
head. Even with current overheads, the Filter seems like best way
to provide inevitability without sacrificing scalability. When speed
within inevitable transactions is paramount, the Drain appears to
be best: it gives high single-thread performance and low overhead
when conflicts are infrequent, but introduces a scalability bottle-
neck. We suspect that it is most suitable as a performance optimiza-
tion for workloads with low contention and no condition synchro-
nization. Alternatively, GWL+Fence provides better scalability and
comparable throughput for inevitable transactions with little impact
on non-inevitable transactions, at the cost of delays at the point
when a transaction becomes inevitable. Ideally, future STM sys-
tems might employ static analysis or profiling to identify the ideal
inevitability mechanism for a given application.
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