
Brief Announcement: Transactional Memory Retry
Mechanisms

Michael F. Spear, Andrew Sveikauskas, and Michael L. Scott
Department of Computer Science, University of Rochester∗

{spear, asveikau, scott}@cs.rochester.edu

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel
Programming

General Terms: algorithms, design, performance

Keywords: transactional memory, condition synchroniza-
tion, Bloom filters

1. INTRODUCTION
Software TM systems typically support condition synchro-

nization through a retry mechanism [2]. Using retry, a
transaction explicitly self aborts and deschedules itself when
it detects that a precondition for its operation does not hold.
The runtime then tracks the set of locations read by the
retryer, and refrains from rescheduling it until at least one
location in the set has been modified by another transaction.

When a transaction T calls retry after reading locations
{l1 . . . lr}, the standard implementation modifies the meta-
data of each location li to indicate that any transaction that
subsequently writes li must wake T . After marking all such
locations, T re-checks its validity (to avoid a timing win-
dow) and yields the processor. Though elegant and simple,
this implementation has several potential drawbacks. First,
explicitly marking each location li requires exclusive access
to li’s metadata in the cache, in a manner analogous to “vis-
ible reader” conflict detection. Previous work suggests that
the invalidation of lines in concurrent readers may have a
substantial performance cost [3]. Second, when garbage col-
lection is unavailable, tracking locations for retrying trans-
actions appears to prevent the reclamation of any shared
data whenever a transaction is in the retry state. Third,
for hardware or “best-effort” TM [1], software-based retry

does not easily virtualize: registration as a “visible reader”
appears to require that a thread re-execute its entire trans-
action in software before it can yield the processor.

We have developed a retry mechanism based on Bloom
filters that is orthogonal to the TM implementation. Our
retry avoids the pitfalls outlined above, but serializes writer
transactions after their commit point when there are retry-
ing transactions. Implementation details and evaluation of
our mechanism are available in a technical report [4].

∗
This work was supported in part by NSF grants CNS-0411127, CNS-

0615139, CCF-0702505, and CSR-0720796; and by financial support
from Intel and Microsoft.

Copyright is held by the author/owner(s).
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
ACM 978-1-59593-989-0/08/08.

2. RETRY WITH BLOOM FILTERS
We maintain a global set of retrying transactions, each

represented by a Bloom filter and a handle object (e.g., a
semaphore) for wakeup. To retry, transaction T constructs
a Bloom filter representing the locations it has read and
adds this filter, together with its handle, to the global set.
T then re-validates its read set. If validation fails, T re-
moves its filter from the global set and restarts; otherwise,
it yields the CPU and awaits notification that it can resume.
When T wakes, it removes its filter from the global set and
restarts. Transactions in a hardware or hybrid TM can use
this mechanism easily, provided that the code for retry is
able to obtain the current transaction’s read set.

When committing, a writer W must wake any retryer
whose read set intersects its write set. It does so by inspect-
ing the Bloom filters in the global set. When W has k writes,
it can incur up to O(k) overhead per retryer. This overhead
can be avoided (at the expense of spurious wakeups) if W
creates a filter of its writes and compares it to each posted
read set via constant-time intersection.

Our current results [4] (for software TM) are mixed: both
Bloom-filter and (optimized) visible-reader retry outperform
naive sleep, but neither is consistently better than the other.
We are hopeful that further experience with transactional
workloads will clarify the tradeoff, or identify application
characteristics that favor a particular implementation. Our
current implementations and microbenchmarks are available
as a patch to RSTM [5].

3. REFERENCES
[1] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and

D. Nussbaum. Hybrid Transactional Memory. 12th Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, Oct. 2006.

[2] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy.
Composable Memory Transactions. 10th ACM SIGPLAN 2006
Symp. on Principles and Practice of Parallel Programming,
pages 48–60, Chicago, IL, June 2005.

[3] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott.
Conflict Detection and Validation Strategies for Software
Transactional Memory. 20th Intl. Symp. on Distributed
Computing, Stockholm, Sweden, Sept. 2006.

[4] M. F. Spear, A. Sveikauskas, and M. L. Scott. Transactional
Memory Retry Mechanisms. TR 935, Dept. of Computer Science,
Univ. of Rochester, June 2008.

[5] Univ. of Rochester. Rochester Software Transactional Memory.
http://www.cs.rochester.edu/research/synchronization/rstm/.


