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Abstract. It has been widely suggested that memory transactions should behave
as if they acquired and released a single global lock. Unfortunately, this behav-
ior can be expensive to achieve, particularly when—as in the natural publica-
tion/privatization idiom—the same data are accessed both transactionally and
nontransactionally. To avoid overhead, we propose selective strict serializability
(SSS) semantics, in which transactions have a global total order, but nontransac-
tional accesses are globally ordered only with respect to explicitly marked trans-
actions. Our definition of SSS formally characterizes the permissible behaviors
of an STM system without recourse to locks. If all transactions are marked, then
SSS, single-lock semantics, and database-style strict serializability are equivalent.

We evaluate several SSS implementations in the context of a TL2-like STM
system. We also evaluate a weaker model, selective flow serializability (SFS),
which is similar in motivation to the asymmetric lock atomicity (ALA) of Menon
et al. We argue that ordering-based semantics are conceptually preferable to lock-
based semantics, and just as efficient.

1 Introduction

With the proliferation of multicore processors, there is widespread recognition that
traditional lock-based synchronization is too complex for “mainstream” parallel pro-
gramming. Transactional memory attempts to address this complexity by borrowing
the highly successful notion of transactions from database systems.

Transactions constrain the ways in which thread histories may legally appear to inter-
leave. If all shared data were accessed only within transactions, the constraints would be
relatively simple. In a break from the database world, however, memory transactions are
generally expected to coexist with nontransactional memory accesses, some of which
may also access shared memory. This coexistence complicates the task of specifying,
for every read in the program, which values may be returned.

Many possible semantics for TM have been proposed, including strong and weak iso-
lation (also known as strong and weak atomicity) [2, 18], single lock atomicity (SLA)
[8], and approaches based on language memory models [5], linearizability [16, 6], and
operational semantics [1, 13]. Of these, SLA has received the most attention. It speci-
fies that transactions behave as if they acquired a single global mutual exclusion lock.
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Unfortunately, as several groups have noted [8, 12, 19], SLA requires behavior that can
be expensive to enforce, particularly when a thread privatizes shared data (rendering it
logically inaccessible to other threads), works on it for a while (ideally without incur-
ring transactional overheads), and then publishes it again [11, 12, 19].

Most software TM (STM) implementations today do not correctly accommodate
privatization and publication, and forcing them to do so—at the boundaries of every
transaction—would impose significant costs. In an attempt to reduce those costs, Menon
et al. [12] have proposed a series of semantics that relax the requirement for serializa-
tion among transactions. These semantics are described in terms of locking protocols
significantly more complex than SLA. While we appreciate the motivation, we argue,
with Luchangco [9], that locks are the wrong way to formalize transactions. We prefer
the more abstract approach of language-level memory models [5,10,3]; like traditional
formalizations of database semantics, these directly specify permissible access order-
ings. We also argue that if one wishes to reduce the cost of SLA, it makes more sense to
relax the ordering between nontransactional and transactional accesses within a single
thread, rather than the ordering between transactions.

We argue that SLA is equivalent to the traditional database ordering condition known
as strict serializability (SS). As a candidate semantics for STM, we suggest transac-
tions with selective strict serializability (SSS), in which nontransactional accesses are
ordered with respect to a subset of their thread’s transactions. Whether this subset is
all, none, or some explicitly or implicitly identified set in between, a single formal
framework suffices to explain program behavior. We also propose a slightly weaker se-
mantics, selective flow serializability (SFS), that orders nontransactional accesses with
respect to subsequent transactions in other threads only in the presence of a forward
dataflow dependence that could constitute publication.

Like Menon et al., we take the position that races between transactional and nontrans-
actional code are program bugs, but that (as in Java) the behavior of buggy programs
should be constrained to avoid “out of thin air” reads. SSS and SFS allow the program-
mer or compiler to eliminate races by labeling a minimal set of transactions, while still
constraining behavior if the labeling is incorrect.

After a more detailed discussion of background in Section 2, we formalize our
ordering-based semantics in Section 3. To the best of our knowledge, this is the first
attempt to formalize privatization and publication safety without recourse to locks. We
discuss implementation options in Section 4, in the context of an STM system patterned
on TL2 [4]. We compare the performance of these implementations experimentally in
Section 5, and conclude in Section 6.

2 Background

Arguably the most intuitive semantics for transactions would build on sequential con-
sistency, providing a global total order, consistent with program order, for both trans-
actions and nontransactional accesses. Unfortunately, most architects already consider
sequential consistency too expensive to implement, even without transactions. Among
other things, it precludes standard compiler optimizations like write reordering. In light
of this expense, sequentially consistent transactions appear to be a non-starter.
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Several researchers have argued instead for what Blundell et al. [2] call strong atom-
icity, otherwise known as strong isolation. This drops the requirement that a thread’s
nontransactional memory accesses be seen by other threads in program order. It still
requires, however, that nontransactional accesses serialize with respect to transactions;
that is, that each nontransactional reference appears to happen between transactions,
and that all threads agree as to which transactions it appears between.

Unfortunately, strong isolation still suffers from several significant costs, which
make it unappealing, at least for software implementation:

Granularity: In a high-level programming language, it is not immediately clear what
constitutes an individual memory access. Is it acceptable, for example, for a trans-
action to intervene between the read and write that underlie x++ on a load-store
machine? How about x = 0x300000003, where x is a long long variable but
hardware does not provide an atomic 64-bit store?

Instrumentation: It is generally agreed that speculative execution of software trans-
actions in the face of concurrent nontransactional accesses will require the latter
to inspect and (in the case of writes) modify transactional metadata. Particularly
in programs that make extensive nontransactional use of data that are temporarily
private, this instrumentation can have a major performance impact.

Optimization obstruction: Nontransactional accesses cannot safely be reordered if
they refer to locations that may also be accessed by transactions. The sequence
x = 1; y = 2 admits the possibility that a concurrent transaction will see x ==
1 && y != 2. If the compiler is unable to prove that no such transaction (or series
of transactions) can exist, it must, (a) treat x and y as volatile variables, access
them in program order, and insert a write-write memory barrier between them; or
(b) arrange for the assignments to execute as a single atomic unit.1

In light of these costs, most STM systems provide some form of weak isolation, in
which nontransactional accesses do not serialize with transactions. As several groups
have noted [5,12,13,19], the exact meaning of weak isolation is open to interpretation.
Perhaps the most popular interpretation is single lock atomicity (SLA) [8, p. 20], which
states that transactions behave as if they held a global mutex lock. Unfortunately, even
these semantics have nontrivial cost, and are unsupported by most TM implementations,
particularly for programs that publish or privatize data.

Publication (Figure 1, left) occurs when a thread initializes or otherwise modifies
a data structure that is logically private, and then modifies shared state to make the
structure accessible to other threads. Privatization (right) is the reverse: a thread’s mod-
ification of shared state makes some structure logically private. The appeal of privati-
zation and publication is the possibility that temporarily private data might be accessed
without transactional overhead.

1 Note that while strong isolation is sometimes equated with making every nontransactional
access execute as if it were an isolated transaction [2], this characterization is problematic:
it would force a global total order not only between these isolated transactions and “real”
programmer-specified transactions, but among the isolated transactions. The end result would
be equivalent to sequential consistency for shared locations.
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// initialize node
atomic {

PQ.insert(node)
}

atomic {
node = PQ.extract_min()

}
// use node privately

Fig. 1. Examples of publication (left) and privatization (right). More obscure examples, involving
antidependences or even empty transactions, are also possible [12].

Traditionally, when a thread releases a mutual exclusion lock, all prior accesses by
the thread are guaranteed to have occurred from the point of view of every other thread.
Similarly, when a thread acquires a lock, all subsequent accesses by the thread are
guaranteed not to have occurred. These facts suggest that the natural implementation of
SLA would be publication- and privatization-safe.

The Privatization Problem. In previous work [19], we identified two dimensions of the
privatization problem. Both arise from the fact that STM systems may perform opera-
tions that logically precede, but physically follow, a transaction’s linearization point. If
nontransactional code is unaware of the behavior of the TM system, transactional and
nontransactional work may overlap.

In the delayed cleanup problem (also described by Larus and Rajwar [8, pp. 22–23]),
transactional writes may appear to occur too late from the point of view of nontrans-
actional code. Specifically, a thread that privatizes shared data may fail to see logically
prior updates by a transaction that has committed but has not yet written its “redo log”
back to main memory.2 In the doomed transaction problem (also described by Wang et
al. [20, pp. 6–7]), private writes may appear to occur too early from a doomed trans-
action’s point of view. The resulting inconsistent view of memory may then allow that
transaction to fall into an infinite loop, suffer an exception, or (in the absence of run-
time sandboxing) perform erroneous actions that cannot be undone.

The Publication Problem. One might not initially expect a publication problem: private
accesses are assumed to occur before publication, and there is no notion of cleanup
for nontransactional code. Menon et al. show, however, that problems can arise if the
programmer or compiler prefetches data before it is actually published (Figure 2).

Relaxing SLA. Under SLA, straightforward solutions to the privatization and publica-
tion problems [19, 12] require transactions to begin and clean up in serialization order.
While heuristic optimizations may relax this requirement in some cases [11], it seems
clear that the general case will remain expensive for STM. To reduce this expense,
Menon et al. propose to relax the ordering among transactions. Of their three candidate
semantics, asymmetric lock atomicity (ALA) seems most likely to reduce transactional
overhead without precluding standard compiler optimizations. ALA transactions be-
have as if (1) there is a separate reader-writer lock for every datum, (2) read locks are
acquired (presciently) at the beginning of the transaction, and (3) write locks are ac-
quired immediately prior to writing. The asymmetry of reads and writes reflects the fact

2 Conversely, in an STM system based on undo logs, a privatizing thread may see erroneous up-
dates made (temporarily) by a transaction that has aborted but not yet cleaned up. As observed
by Menon et al., such reads appear to be fundamentally incompatible with the prohibition
against “out of thin air” reads. We therefore assume a redo log in the remainder of this paper.
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// initially x == 0 and x_is_public == false
T1: T2: T3:

e: j = 0
F: atomic {

t = prefetch(x)
a: x = 1
B: atomic { c: i = 0

x_is_public = true D: atomic {
} if (x_is_public) { if (x_is_public) {

i = x j = t
} }

} }

Fig. 2. Publication (left) in parallel with a safe (middle) or unsafe (right) use of published data.
The programmer has made B a transaction to ensure that it orders, globally, after prior initial-
ization of x. Vertical spacing is meant to suggest a possible interleaving of operations across
threads. Both D and F will serialize after B.

that (a) in most TM systems it is much easier for a reader to detect a conflict with a
previous writer than vice versa, and (b) in most programs publication can be assumed
to require a write in one transaction followed by a read in another.

In our view, ALA and similar proposals suffer from three important problems. First,
they explain transaction behavior in terms of a nontrivial fine-grain locking protocol—
something that transactions were intended to eliminate! Second, they give up one of
the key contributors to the success of database transactions—namely serializability (see
for example Fig. 11 of Menon et al. [12]). Third, they impose significant overheads on
transactions that do serialize, even in the absence of publication and privatization.

3 Ordering-Based TM Semantics

Our proposed alternative to lock-based semantics begins with a programming model
in which, in every execution history H , each thread i has a memory access history
Hi ⊂ H in which certain maximal contiguous strings of accesses are identified as
(outermost) transactions. We use TH to denote the set of all transactions. We do not
consider open nesting here, nor do we permit overlapping but non-nested transactions.
Moreover, from the programmer’s point of view, transactions are simply atomic: there
is no notion of speculation or of committing and aborting. A typical implementation
will need to ensure that abortive attempts to execute a transaction are invisible; among
other things, this will require that such attempts retain a consistent view of memory [6].

The goal of a semantics for TM is to constrain the ways in which thread histories
may legally interleave to create a global history. In keeping with the database literature
and with memory models for programming languages like Java [10] and C++ [3], we
believe that the appropriate way to specify these constraints is not by reduction to locks,
but rather by specification of a partial order on program operations that restricts the set
of writes that may be “seen” by a given read.

3.1 Strict Serializability

The standard database ordering criterion is serializability [14], which requires that the
result of executing a set of transactions be equivalent to (contain the same operations
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and results as) some execution in which the transactions take place one at a time, and
any transactions executed by the same thread take place in program order. Strict seri-
alizability imposes the additional requirement that if transaction A completes before
B starts in the actual execution, then A must occur before B in the equivalent serial
execution. The intent of this definition is that if external (nontransactional) operations
allow one to tell that A precedes B, then A must serialize before B. For transactional
memory, it seems reasonable to equate external operations with nontransactional mem-
ory accesses, and to insist that such accesses occur between the transactions of their
respective threads, in program order.

More formally, we define the following strict (asymmetric, irreflexive) ordering
relations:

Program order, <p, is a union of disjoint total orders, one per thread. We say a <p b
iff a and b are executed by the same thread, and a comes before b in the natural
sequential order of the language in which the program is written. Because transac-
tions do not overlap, if transactions A and B are executed by the same thread, we
necessarily have either ∀a ∈ A, b ∈ B : a <p b or ∀a ∈ A, b ∈ B : b <p a. For
convenience, we will sometimes say A <p B or B <p A. For a $∈ B, we may even
say a <p B or B <p a.

Transaction order, <t, is a total order on all transactions, across all threads. It is con-
sistent with program order. That is, A <p B =⇒ A <t B. For convenience, if
a ∈ A, b ∈ B, and A <t B, we will sometimes say a <t b.

Strict serial order, <ss, is a partial order on memory accesses. It is consistent with
transaction order. It also orders nontransactional accesses with respect to preceding
and following transactions of the same thread. Formally, for all accesses a and c
in an execution history H , we say a <ss c iff at least one of the following holds:
(1) a <t c; (2) ∃ A ∈ TH : (a ∈ A ∧ A <p c); (3) ∃ C ∈ TH : (a <p C ∧ c ∈ C);
(4) ∃ access b ∈ H : a <ss b <ss c. Note that this definition does not relate
accesses performed by a given thread between transactions.

An execution with program order <p is said to be strictly serializable if there exists a
transaction order <t that together with <p induces a strict serial order <ss that permits
all the values returned by reads in the execution, as defined in the following subsection.
A TM implementation is said to be strictly serializable if all of its executions are strictly
serializable.

3.2 Values Read

To avoid the need for special cases, we assume that each thread history Hi begins with
an initial transaction T i

0, that T 0
0 writes values to all statically initialized data, and that

for all i > 0, T 0
0 <t T i

0.
We say a memory access b intervenes between a and c if a <p b <p c or a <ss

b <ss c. Read r is then permitted to return the value written by write w only if r and w
access the same location l and either (1) r and w are incomparable under both program
and strict serial order or (2) w <p r ∨ w <ss r and there is no intervening write of l
between w and r.
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For the sake of generality across languages and machines, we have kept these rules
deliberately parsimonious. In a practical language definition, we would expect them to
be augmented with additional rules to capture such concepts as coherence and causal-
ity [10]. For example, in

initially x == 0
T1: x = 1 || T2: atomic{a = x}; atomic{b = x}

the language memory model will probably insist that if a == 1 when T2 completes,
then b != 0; that is, x is coherent. Likewise, in

initially x == y == 0
T1: x = 1 || T2: if (x == 1) y = 1 || T3: atomic{a = y};

atomic{b = x}

the language memory model will probably insist that if a == 1 when T3 completes,
then b == 1 also; that is, the system is causally consistent. Deciding on a complete
set of such rules is a Herculean and potentially controversial task (witness the memory
models for Java and C++); we do not attempt it here. For any given choice of underlying
model, however, we argue that strict serializability, as defined above, is equivalent to
SLA. If an execution is strictly serializable, then it is equivalent by definition to some
execution in which transactions occur in a serial order (<t) consistent with program
order and with nontransactional operations. This serial order is trivially equivalent to
an execution in which transactions acquire and release a global lock. Conversely, if
transactions acquire and release a global lock, they are guaranteed to execute one at a
time, in an order consistent with program order. Moreover given a common underlying
memory model, SLA and strict serial order will impose identical constraints on the
ordering of nontransactional accesses relative to transactions.

3.3 Selective Strictness

A program that accesses shared data only within transactions can be considered prop-
erly synchronized, and can safely run on any TM system that respects <t. A program P
that sometimes accesses shared data outside transactions, but that is nonetheless data-
race-free with respect to <ss (this is what Abadi et al. term violation-free [1]) can also
be considered properly synchronized, and can safely run on any TM system S that re-
spects <ss. Transactions in P that begin and end, respectively, a region of data-race-free
nontransactional use are referred to as privatization and publication operations, and S
is said to be publication and privatization safe with respect to <ss.

Unfortunately, most existing TM implementations are not publication and privatiza-
tion safe with respect to strict serializability, and modifying them to be so would incur
nontrivial costs. It is not yet clear whether these costs will be considered an acceptable
price to pay for simple semantics. It therefore seems prudent to consider weaker se-
mantics with cheaper implementations. Menon et al. [12] approach this task by defining
more complex locking protocols that relax the serialization of transactions. In contrast,
we propose a weaker ordering, selective strict serializability, that retains the serializa-
tion of transactions, but relaxes the ordering of nontransactional accesses with respect
to transactions. Specifically, we assume a set of acquiring (privatizing) transactions
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AH ⊆ TH and a set of releasing (publishing) transactions RH ⊆ TH . AH and RH are
not required to be disjoint, nor are they necessarily proper subsets of TH . We require
that the initial transaction T i

0 be acquiring for all i; aside from this, it is permissible for
all transactions, or none, to be identified as acquiring and/or releasing.

Selective strict serial order, <sss, is a partial order on memory accesses. Like strict
serial order, it is consistent with transaction order. Unlike strict serial order, it orders
nontransactional accesses only with respect to preceding acquiring transactions and
subsequent releasing transactions of the same thread (and, transitively, transactions
with which those are ordered). Formally, for all accesses a, c ∈ H , we say a <sss c
iff at least one of the following holds: (1) a <t c; (2) ∃ A ∈ AH : (a ∈ A ∧ A <p

c); (3) ∃ C ∈ RH : (a <p C ∧ c ∈ C); (4) ∃ access b ∈ H : a <sss b <sss c.

3.4 Asymmetric Flow

Strict serializability, whether “always on” or selective, shares a problem with the DLA
(disjoint lock atomicity) semantics of Menon et al. [12]: it requires the useless but ex-
pensive guarantee illustrated in Figure 3. Specifically, a <p B <t F =⇒ a <ss F ,
even if B and F are ordered only by antidependence.

// initially x == 0, x_is_public == false, and T3_used_x == false
T1: T2: T3:

e: j = 0
F: atomic {

t = prefetch(x)
a: x = 1
B: atomic { c: i = 0

x_is_public = true D: atomic {
k = T3_used_x if (x_is_public) {

} i = x T3_used_x = true
} j = t

} }

Fig. 3. “Publication” by antidependence (adapted from Menon et al. [12]). If B is a releasing
transaction, selective strict serializability guarantees that the write of x is visible to D (i ==
1, which makes sense). In addition, if k == false, then B must have serialized before F,
and thus j must equal 1 as well. Unfortunately, it is difficult for an STM implementation to
notice a conflict between B and F if the former commits before the latter writes T3 used x,
and undesirable to outlaw the prefetch of x.

We can permit a cheaper implementation if we define a weaker ordering, selective
flow serializability, that requires nontransactional-to-transactional ordering only when
transactions are related by a true (flow) dependence:

Flow order, <f ⊂ <t, is a partial order on transactions. We say that A <f C if there
exists a transaction B and a location l such that A <t B, A writes l, B reads l, and
B = C ∨ B <t C.

Selective flow serial order, <sfs ⊂ <sss, is a partial order on memory accesses. It is
consistent with transaction order. It does not order nontransactional accesses with
respect to a subsequent releasing transaction B, but rather with respect to trans-
actions that have a flow dependence on B. Formally, ∀ accesses a, c ∈ H , we
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say a <sfs c iff at least one of the following holds: (1) a <t c; (2) ∃ A ∈ A :
(a ∈ A ∧ A <p c); (3) ∃ B ∈ R, C ∈ T : (a <p B <f C ∧ c ∈ C);
(4) ∃ access b ∈ H : a <sfs b <sfs c. It is not difficult to see that <sfs ⊂ <sss.

The sets of values that reads are permitted to return under selective strict and flow
serial orders are defined the same as under strict serial order, but with <sss and <sfs,
respectively, substituted for <ss. These induce corresponding definitions of SSS and
SFS executions and TM implementations. In comparison to ALA, SFS is not defined
in terms of locks, and does not force ordering between nontransactional accesses and
unrelated transactions (Figure 4).

// initially x == 0, y == 0, and x_is_public == false
T1: T2: T3:

e: j = 0
F: atomic {

c: i = 0 ...
D: atomic {

t = prefetch(x)
a: x = 1
B: atomic {

x_is_public = true
} if (x_is_public) {

i = y = t
}

} j = y
}

Fig. 4. Unnecessary ordering in ALA. When B commits and D reads x is public, ALA forces
D to abort (as it should, since x is public has to be logically acquired as of the beginning of
D, and that is impossible once B has committed). When D commits and F reads y, ALA will
likewise force F to abort (since it is flow dependent on a committed transaction with a later
start time), though one could, in principle, simply serialize F after D. With SFS, the programmer
would presumably mark B but not D as a releasing transaction, and F would not have to abort.

Like ALA, SFS can lead to apparent temporal loops in racy programs. In Figure 3,
for example, both semantics allow k == false and j == 0, even if B is a releasing
transaction. Naively, this output would seem to suggest that a < B < F < a. ALA
breaks the loop by saying that B and F are not really ordered. SFS breaks the loop by
saying that a and F are not really ordered. Which of these is preferable is perhaps a
matter of taste.

It should be emphasized that private (nontransactional) use of data that are some-
times accessed by other threads is safe only when data-race-free. To be confident that
a program is correct, the programmer must identify the transactions that serve to elimi-
nate races. This may sometimes be a difficult task, but it is the inherent and unavoidable
cost of privatization, even under SLA. Once it has been paid, the extra effort required
to label acquiring and releasing transactions is essentially trivial.

4 Implementing SSS and SFS Systems

Both the doomed transaction problem and the undo log variant of the delayed cleanup
problem (footnote 2) involve abortive attempts to execute transactions. Since these
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attempts play no role in the (user-level) semantics of Section 3, we need to extend
our formalism. For discussion of implementation-level issues, we extend thread his-
tories (as in our previous work [16]) to include begin, commit, and abort operations.
None of these takes an argument. Begin and abort return no value. Commit returns
a Boolean indication of success. Each thread history is assumed to be of the form
((read | write)* begin (read | write)* (commit | abort))* (read | write)* (for simplicity,
we assume that nested transactions are subsumed into their parent). A transaction com-
prises the sequence of operations from begin through the first subsequent commit or
abort in program order. A transaction is said to succeed iff it ends with a commit that
returns true.

With this extended definition, for <g ∈ {<ss, <sss, <sfs}, a read r is permitted to
return the value written by a write w iff they access the same location l and (1) w
does not belong to an unsuccessful transaction, and r and w are incomparable under
both <p and <g; (2) w does not belong to an unsuccessful transaction, w <p r or
w <g r, and there is no intervening write of l between w and r; or (3) w and r belong
to the same transaction, w <p r, and there is no intervening write of l between w and
r. A memory access b intervenes between a and c if a <p b <p c or a <g b <g

c and (a) b and c belong to the same transaction, or (b) neither a nor b belongs to
an unsuccessful transaction. These rules are roughly equivalent to those of Guerraoui
and Kapałka [6], but simplified to merge request and reply events and to assume that
histories are complete (i.e., that every transaction eventually commits or aborts), and
extended to accommodate nontransactional accesses. In particular, we maintain their
requirement that transactions appear to occur in serial order (<t), and that writes in
unsuccessful transactions are never externally visible.

We assume that every correct STM implementation suggests, for every execution,
a (partial or total) natural order <n on transactions that is consistent with some <t

that (together with <p) can explain the execution’s reads. For the implementation to
ensure SSS semantics, it must provide publication and privatization safety only around
selected releasing and acquiring transactions, respectively. To ensure SFS semantics,
it must provide the same privatization safety, but need only provide publication safety
beyond selected flow-ordered transactions.

4.1 Preventing the Doomed Transaction Problem

If transactions D and A conflict, and A commits, STM runtimes typically do not
immediately interrupt D’s execution. Instead, D is responsible for detecting the con-
flict, rolling itself back, and restarting. This may occur as early as D’s next trans-
actional read or write, or as late as D’s commit point. Until the conflict is detected,
D is said to execute in a “doomed” state. If A privatizes a region accessed by D,
subsequent writes to that region may race with concurrent transactional accesses
by D.

The doomed transaction problem occurs when an STM implementation admits an
execution containing a failed transaction D, a nontransactional write w, an acquiring
transaction A <p w, and a natural transaction order <n such that any <t consistent
with <n, when combined with <p, induces a global (SS, SSS, SFS) order <g that
fails to explain a value read in D—specifically, when there are dependences that force
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D <t A, but there exists a read r ∈ D that returns the value written by w, despite the
fact that D <g A <g w.

In managed code, it appears possible to use run-time sandboxing to contain any erro-
neous behavior in doomed transactions [12,7]. For unmanaged code, or as an alternative
for managed environments, we present three mechanisms to avoid the inconsistencies
that give rise to the problem in the first place.

Quiescence. A transactional fence [19] blocks the caller until all active transactions
have committed or aborted and cleaned up. This means that a fence f participates in
the natural order <n on transactions and in program order <p for its thread. Since
D <t A <t f <p w, and f waits for D to clean up, we are guaranteed that the
implementation respects D <g w.

Polling. Polling for the presence of privatizers can tell a transaction when it needs to
check to see if it is doomed. This mechanism requires every privatizing transaction to
atomically increment a global counter (e.g., with a fetch-and-increment [fai] instruc-
tion) that is polled by every transaction, on every read of shared data. When a transaction
reads a new value of the counter, it validates its read set and, if doomed, aborts before
it can see an inconsistency caused by a private write. Pseudocode for this mechanism
appears in Figure 5.

TxBegin(desc)
...
desc->priv_cache = priv_count

Acquire()
fai(&priv_count)

TxRead(&addr, &val, desc)
... // read value consistently
t = priv_count
if (t != desc->priv_cache)

validate()
desc->priv_cache = t

Fig. 5. Polling to detect doomed transactions

Like a transactional fence, the increment c of priv count participates in <n. Sup-
pose D contains a read r that sees (incorrectly) a value written by w, with D <t A <t

c <p w. Since c increments priv count and D reads priv count as part of every
TxRead, D must abort before completing r, a contradiction.

Timestamp Polling. In a timestamp-based STM like TL2 [4], every writer increments a
global timestamp. If all transactions are writers (and hence all update the global times-
tamp), polling this timestamp prevents the doomed transaction problem, using the same
argument as above. When a read-only transaction A may privatize (privatization by
antidependence), it does so by reading a value written by a previous non-privatizing
transaction. Thus it suffices to observe that while A may not increment the global times-
tamp, A is ordered after some other transaction W (W <n A) that committed a write
in order for A’s privatization to succeed. If D is doomed because of the privatization
(and still active), it must read a value written by W . W ’s increment of the global times-
tamp is sufficient to force a polling-based abort in D prior to any use of an inconsistent
value.
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4.2 Preventing the Delayed Cleanup Problem

The delayed cleanup problem occurs when an STM implementation admits an execu-
tion containing a successful transaction D whose cleanup is delayed,3 a nontransac-
tional read r, an acquiring transaction A <p r, and a natural transaction order <n such
that any <t consistent with <n, when combined with <p, induces a global (SS, SSS,
SFS) order <g that fails to explain the value read by r—specifically, when there are
dependences that force D <t A, but r returns the value from some write w despite an
intervening write w′ ∈ D to the same location. We propose two mechanisms to avoid
this problem.

Quiescence. As before, let A be immediately followed by a transactional fence f , and
let D commit before A. Since D <t A <t f <p r, and f waits for D to clean up, we
are guaranteed that the implementation respects D <g r.

Optimized Commit Linearization. Menon et al. [12] describe a commit linearization
mechanism in which all transactions must increment global counters at transaction
begin and while committing. Unfortunately, forcing read-only transactions to modify
shared data has a serious performance cost. To avoid this cost, we propose an alterna-
tive implementation of commit linearization in Figure 6. The implementation is inspired
by the classic ticket lock: writer transactions increment the global timestamp, clean up,
and then increment a second cleanups counter in order. Readers read the timestamp
and then wait for cleanups to catch up.

TxBegin(desc)
...
start = timestamp
while (cleanups < start)

yield()

TxCommit(desc) // not read only
acquire_locks()
my_timestamp = fai(timestamp)
if (validate())

// copy values to shared memory
else

must_restart = true
release_locks()
while (cleanups != (my_timestamp - 1))

yield()
cleanups = my_timestamp

Fig. 6. An implementation of commit linearization in which read-only transactions do not update
shared metadata

We argue that this mechanism is privatization safe with respect to (even non-se-
lective) strict serializability. If writer D precedes writer A in natural order but has
yet to clean up, then D will not yet have updated the cleanups counter, and A’s
TxCommit operation will wait for it. Any subsequent read in A’s thread can be guar-
anteed that D has completed.

Suppose that reader A privatizes by antidependence. If D increments the global
timestamp before A begins, A must wait in TxBegin for D to clean up, avoiding

3 In redo log-based STMs, cleanup entails replaying speculative writes and releasing ownership
of locations. As noted in footnote 2, undo log-based STMs have an analogous problem, which
we ignore here.
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the problem. If D is still active when A begins, there must exist some other writer W
(W <n A) that committed a write in order for A’s privatization to succeed. Clearly
D $= W , or else D’s write of the location in the antidependence would have forced A to
abort. Moreover, since the program is data-race-free, D <n W . For D to still be active
when A begins we must have W still active when A begins, a contradiction, since W
writes a location that A reads, and A does not abort.

Commit Fence. Our commit fence mechanism combines the best features of the trans-
actional fence and commit linearization. As in the transactional fence, there is no single
global variable that is accessed by all committing writer transactions. As in commit lin-
earization, only committing transactions can cause a privatizer to delay. Pseudocode for
the mechanism appears in Figure 7.

TxCommit(desc) // not read only
commit_fence[my_slot]++
acquire_locks()
my_timestamp = fai(timestamp)
if (validate())
// copy values to shared memory

else
must_restart = true

release_locks()
commit_fence[my_slot]++

Acquire()
num = commit_fence.size
for (i = 0 .. num)

local[i] = commit_fence[i]
for (i = 0 .. num)

if (local[i].is_odd())
while (commit_fence[i] == local[i])

yield();

Fig. 7. The commit fence

The commit fence ensures that any transaction sets an indicator before acquiring
locks, and unsets the indicator after releasing locks. At its acquire fence, a privatizing
transaction samples all transactions’ indicators, and waits until it observes every indi-
cator in an unset state. This commit fence c provides privatization safety as above: if D
accesses data privatized by A, and if D <t A, then D must update the commit fence
before A completes its commit sequence. Since A <p c, and c observes D’s in-flight
modifications, c will not return until D completes, and thus D <g c.

Unlike the full transactional fence, this mechanism does not prevent the doomed
transaction problem. Like the transactional fence, it can cause an acquirer A to wait
on a committing, nonconflicting transaction B even when A <t B. However, as in
commit linearization, A will block only for committing transactions, never for in-flight
transactions.

4.3 Preventing Publication Errors

Under SSS, publication safety can be expressed as the condition that if w <p R <t T ,
where R ∈ R, then w <sss T , even if T reads the location written by w. We propose
two release implementations that guarantee this condition.

Quiescence. Placing a transactional fence between a nontransactional access and a
subsequent publishing transaction prevents the publication problem. Suppose w <p R,
where w is a nontransactional write of location l and R ∈ R. The publication problem
manifests when some transaction T prefetches l before w writes it, but R <n T . If T
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begins before w, a fence between w and R forces T to complete before R begins, so
R $<n T .

Polling. Polling may also be used, as shown in Figure 8, to prevent the publication
problem. Instead of having a publisher wait for all active transactions to complete, each
active transaction T checks at each read (and at TxCommit) to see whether a release
operation e has occurred since T began execution. If e <p R <n T and T is successful,
we are guaranteed that T was not active at the time e occurred, and T could not have
prefetched any published datum.

TxBegin(desc)
...
desc->pub_cache = pub_count

TxRead(&addr, &val, desc)
... // read value consistently
if (pub_count != desc->pub_cache)

abort()

TxCommit(desc)
... // acquire locks, validate
if (pub_count != desc->pub_cache)

abort()
...

Release()
fai(&pub_count)

Fig. 8. Polling to detect publication

4.4 Preventing Flow Publication Errors

Flow-serializable publication safety requires only that if w <p R <f T , where R ∈
R, then w <sfs T . That is, the existence of R need not cause T to abort unless T
reads something R wrote. Menon et al. use timestamps to achieve ALA semantics.
Their timestamps, however, are not TL2 timestamps, as they are assigned at begin time,
even for read-only transactions. We briefly argue that TL2 timestamps [4] provide SFS
(Figure 9).

TxStart(desc)
...
desc->start = timestamp;

TxCommit(desc)
... // acquire locks
endtime = get_timestamp();
if (validate())

// copy values to shared memory
foreach (lock in writeset)

lock.releaseAtVersion(endtime)
...

...

TxRead(addr* addr, addr* val, desc)
// addr not in write set
orec o = get_orec(addr);
if (o.locked ||

o.timestamp > desc->start)
abort()

... // read value
if (o != get_orec(addr))

abort()
... // log orec, return value

Fig. 9. TL2-style timestamps

Let us assume (due perhaps to compiler reordering) that T races with R to prefetch
l. This indicates that T could not start after R, and thus T.start ≤ R.start.
If it also holds that R <f T , then when R acquires timestamp t at commit time,
t > R.start ≥ T.start. R subsequently writes t into all lock words that it holds. If
R <f T , T must read some location written by R. During T ’s call to TxRead for l, the
test of the timestamp will cause T to abort, restart, and re-read l after R. Alternately, if
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T reads the lock covering l before R commits, then either T <t R, or T will abort at
its next validation. In either case, T cannot be ordered both before w and after R.

We note that TL2 timestamps reduce the scalability of non-publishing, non-priva-
tizing transactions when compared to the extendable timestamps of Riegel et al. [15].
They also enforce more ordering than the timestamps of Menon et al. [12], which do
not abort a transaction T that reads a value written by a publisher who started (but did
not commit) before T began. Finally, TL2-style timestamps preclude partial rollback
for closed nested transactions: If B reads a value that C writes, and B is nested within
A, then the requirement for B to order after C necessitates that A order after C as well.
Even if all accesses prior to B in A do not conflict with C, A must restart to acquire a
start time compatible with ordering after C.

5 Evaluation

In this section, we evaluate the role that selective semantics can play in reducing trans-
action latency without compromising correctness. We use targeted microbenchmarks to
approximate three common idioms for privatization and publication. All experiments
were conducted on an 8-core (32-thread), 1.0 GHz Sun T1000 (Niagara) chip multipro-
cessor running Solaris 10. All benchmarks were written in C++ and compiled with g++
version 4.1.1 using –O3 optimizations. Data points are the average of five trials.

5.1 STM Runtime Configuration

We use a word-based STM with 1 million ownership records, commit-time locking, and
buffered updates. Our STM uses timestamps to avoid validation overhead, and unless
otherwise noted, the timestamps employ a extendable time base scheme [15] to safely
allow nonconflicting transactions to ignore some timestamp-based aborts. From this
STM, we derive 10 runtimes:

– SLA. Uses the start and commit linearization of Menon et al. [12], and polls the
global timestamp on reads to avoid the doomed transaction problem.

– SSS-FF. Uses transactional fences before publishing transactions and after priva-
tizing transactions.

– SSS-FL. Uses our commit linearization for privatization, polls the global timestamp
to avoid the doomed transaction problem, and uses transactional fences before pub-
lishing transactions.

– SSS-PF. Uses polling for publication safety, and transactional fences for privatiza-
tion.

– SSS-PL. Uses polling for publication safety, commit linearization for privatization,
and polling to avoid the doomed transaction problem.

– SSS-PC. Uses polling for publication safety, commit fences for privatization, and
polling to avoid the doomed transaction problem.

– SSS-FC. Uses commit fences for privatization, polls the global timestamp to avoid
the doomed transaction problem, and uses transactional fences before publishing
transactions.



290 M.F. Spear et al.

SLA

SSS-FF

SSS-FL

SSS-PF

SSS-PL

SSS-PC

SSS-FC

ALA

SFS-TL

SFS-TF

 0

 500

 1000

 1500

 2000

 2500

 0  4  8  12  16  20  24  28  32

K
il
o

-T
ra

n
s
a

c
ti
o

n
s
/S

e
c
o

n
d

Threads

(a) Nontransactional phase of a phased privati-
zation workload, modeled as a low contention
red-black tree.
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(b) Worklist privatization, using transactional
producers and a single private consumer.

Fig. 10. Privatization microbenchmarks

– ALA. Uses TL2-style timestamps for publication safety, and commit linearization
with polling of the timestamp for privatization.

– SFS-TL. Identical to ALA, but maintains a privatization counter, separate from the
timestamp, to avoid the doomed transaction problem.

– SFS-TF. Uses TL2-style timestamps for publication safety, and transactional fences
for privatization.

5.2 Phased Privatization

In some applications, program structure, such as barriers and thread join points, ensures
that all threads agree that a datum is public or private [17]. Since these phase boundaries
are ordered globally, and with respect to <t, no additional instrumentation is required
for correctness on acquiring and releasing transactions. However, as in applications with
no privatization or publication, ALA or SLA semantics cause ordering latency for all
transactions.

We model the transactional phase of a phased workload with a low-contention red-
black tree (Figure 10(a)). Threads use 20-bit keys and perform 80% lookups, 10% in-
serts, and 10% removes. We ensure steady state by pre-populating the tree to 50% full.

Since SLA serializes all transactions, it consistently underperforms the other runtimes.
Similarly, ALA and other mechanisms that use commit linearization fail to scale as well
as mechanisms that do not impose additional ordering on all writers at commit time. How-
ever, the SSS-FL, SSS-PL, and SFS-TL curves show that our optimized mechanism for
commit linearization, which does not force read-only transactions to increment a global
shared counter, achieves better throughput when writing transactions are rare.4

4 Higher writer ratios show the same separation, with less difference between commit lineariza-
tion and SLA.

scott
Highlight
Correction: Transactional
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Our test platform clearly matters: the Niagara’s single shared L2 provides low-
latency write misses for the variables used to provide commit linearization, prevent-
ing additional slowdown as the lines holding the commit and cleanup counters bounce
between cores. At the same time, the Niagara’s single-issue cores cannot mask over-
heads due to polling for publication safety. Thus SSS-FF and SFS-TF perform best.
Since commit fences require polling to prevent the doomed transaction problem, SSS-
FC performs worse than SSS-FF.

5.3 Worklist Privatization

The privatization problem was first discovered in worklist-based applications, where
transactions cooperatively create a task and enqueue it into a nontransactional worklist.
When the task is removed from the worklist, the data comprising the task are logically
private. Abstractly, these workloads publish by sharing a reference to previously private
data, and privatize by removing all shared references to a datum. In the absence of value
speculation, these applications admit the privatization problem, but not the publication
problem.

To evaluate selective semantics for worklists, we use a producer/consumer bench-
mark, in which multiple threads cooperatively produce tasks, and then pass the tasks to
a consumer thread. We model tasks as red-black trees holding approximately 32 6-bit
values, and build tasks using an equal mix of insert, remove, and lookup operations on
initially empty trees. Once a tree is found to hold a distinguished value, it is privatized
and sent to a nontransactional consumer thread. For the experiment in Figure 10(b), the
consumer is fast enough that even 32 producers cannot oversaturate it.

Mechanisms that impose excessive ordering (SLA and ALA) or use commit lin-
earization (SSS-FL, SSS-PL, and SFS-TL) perform worst. Furthermore, since trans-
actions are small, and since privatizing a task does not prevent other producers from
constructing a new task, the overhead of a transactional fence (SSS-FF and SSS-PF)
at privatization time is as low as the commit fence (SSS-PC and SSS-FC). TL2-style
timestamps (ALA, SFS-TL, and SFS-TF) decrease scalability. Again, due to the archi-
tecture of the Niagara CPU, polling for publication (SSS-PF, SSS-PL, and SSS-PC) or
doomed transaction safety (SLA, SSS-FL, SSS-PL, SSS-PC, SSS-FC, ALA, and SFS-
TL) increases latency slightly.

5.4 Indirect Publication

When the value of a shared variable determines whether another location is safe for
private access, both the publication and privatization problems can arise. This program-
ming idiom is analogous to locking: the period of private use corresponds to a critical
section. We explore it with extensible hashing.

In Figure 11, transactions perform 8 puts into a set of 256 hash tables, where each table
uses per-bucket sorted linked lists. If transaction T encounters a bucket containing more
than 4 elements, it sets a local flag. After committing, T privatizes and then rehashes
any flagged hash tables, doubling the bucket count (initially 8). In order to maintain a
steady rate of privatization, if a table’s bucket count reaches 213, the table is privatized
and passed to a worker thread W. W replaces the table with an empty 8-bucket table.
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Scalability is low, because privatization for rehashing essentially locks the hash ta-
bles. Even with 256 tables, the duration of rehashing is significantly longer than the
duration of several 8-put transactions, and thus even at two threads, when one thread
privatizes a table for rehashing, the other thread is likely to block while attempting to
access that table.

The different mechanisms vary only when there is preemption (at 32 worker threads,
since there is an additional thread for performing table destruction). At this point, all
privatization mechanisms risk waiting for a preempted transaction to resume. The effect
is worst for the transactional fence (SSS-FF, SSS-PF, SFS-TF), since it must wait for all
active transactions. Our commit linearization (SSS-FL, SSS-PL, ALA, SFS-TL) fares
much better, since threads only wait for previously committed writers, who necessarily
are at the very end of their execution. SLA linearization lies somewhere in between.
Unlike transactional fences (which also avoid the doomed transaction problem), its use
of a global timestamp avoids waiting for logically “later” transactions that are still in
progress, but unlike commit linearization, it also must wait on “earlier” transactions
that have not reached their commit point. The commit fence (SSS-PC, SSS-FC) per-
forms slightly worse than SLA, indicating that waiting on “later” transactions is more
expensive than waiting for “earlier” transactions.

The low latency of fence-based publication appears to be an artifact of the indirect
publication idiom. At a fence, the releasing transaction waits for all concurrent trans-
actions to commit or abort and clean up. Since some hash tables are effectively locked,
most concurrent threads will execute “restart” transactions to spin-wait for the tables to
become public. In our lazy STM, such transactions do not hold locks and can rapidly
restart, preventing delays at the publication fence.

6 Conclusions

In this paper we argued that TM semantics should be specified in terms of permissi-
ble memory access orderings, rather than by recourse to locks. In our specification,
traditional strict serializability (SS) takes the place of single lock atomicity (SLA). To
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reduce the cost of publication and privatization, we proposed selective strict serializ-
ability (SSS), which enforces a global order between transactional and nontransactional
accesses of a given thread only when transactions are marked as acquiring or releasing.
We also proposed a weaker selective flow serializability (SFS), that enforces release
ordering only with respect to transactions that read a location written by the releasing
transaction. We described several possible implementations of both SSS and SFS, with
informal correctness arguments.

Preliminary experiments suggest several performance-related conclusions: (1) By
imposing the cost of publication and privatization only when they actually occur, selec-
tive ordering of nontransactional accesses can offer significant performance advantages.
(2) Given selectivity, there seems to be no compelling argument to relax the serial or-
dering of transactions. Moreover we suspect that requiring annotations will ultimately
help the programmer and compiler to generate race-free code. (3) At the same time, the
additional relaxation of SFS (and, similarly, ALA), offers little if any additional benefit.
Since SSS is simpler to explain to novice programmers, permits true closed nesting,
and is orthogonal to the underlying STM, we currently see no reason to support more
relaxed semantics, whether they are defined in terms of prescient lock acquisition or
memory access ordering.
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