
Brief Announcement:
Transactions and Privatization in Delaunay Triangulation∗

Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe
Department of Computer Science, University of Rochester

{scott, spear, luked, vmarathe}@cs.rochester.edu

Categories and Subject Descriptors:
D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming

General Terms: algorithms, experimentation,
measurement, performance

Keywords: synchronization, transactional memory,
benchmarks, privatization

1. INTRODUCTION
With the rise of multicore processors, much recent atten-

tion has focused on transactional memory (TM). Unfortu-
nately, the field has yet to develop standard benchmarks
to capture application characteristics or to facilitate system
comparisons. This note describes one candidate benchmark:
an implementation of Delaunay triangulation [4]. Source for
this benchmark is packaged with Version 3 of the Rochester
Software Transactional Memory (RSTM) open-source C++
library [1,9]. It employs one of the fastest known sequential
algorithms to triangulate geometrically partitioned regions
in parallel; it then employs alternating, barrier-separated
phases of transactional and partitioned (“privatized”) work
to stitch those regions together. Experiments on multipro-
cessor and multicore machines confirm good speedup and
excellent single-thread performance. They also highlight the
cost of extra indirection in the implementation of transac-
tional data: since execution time is dominated by privatized
phases, performance is largely insensitive to the overhead
of transactions per se, but highly sensitive to any costs im-
posed on privatized data. Experience with the application-
writing process provides strong anecdotal evidence that TM
will eventually require language and compiler support.

2. OVERVIEW OF THE BENCHMARK
Given a set of points P in the plane, a triangulation parti-

tions the convex hull of P into a set of triangles such that (1)
the vertices of the triangles, taken together, are P, and (2)
no two triangles intersect except by sharing an edge. A De-
launay triangulation has the added property that no point
lies in the interior of any triangle’s circumcircle. Delaunay
triangulation is widely used in finite element analysis, where

∗
This work was supported in part by NSF grants CNS-0411127 and

CNS-0615139, equipment support from Sun Microsystems Laborato-
ries, and financial support from Intel and Microsoft.

Copyright is held by the author/owner(s).
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
ACM 978-1-59593-616-5/07/0008.

it promotes numerical stability, and in graphical rendering,
where it promotes aesthetically pleasing shading of complex
surfaces. In practice, Delaunay meshes are typically refined
by introducing additional points where needed to eliminate
remaining narrow triangles.

At the 2006 Workshop on Transactional Workloads, Kulka-
rni et al. proposed refinement of an existing Delaunay mesh
as a potential application of transactional memory [8]. Our
code addresses the complementary problem of constructing
the initial triangulation; we do not yet consider refinement.

We begin by sorting points into geometric regions, one
per worker thread. Using Dwyer’s refinement [5] of Guibas
and Stolfi’s divide-and-conquer algorithm [6], each worker
then triangulates its own region. Finally, we employ a mix
of transactions and thread-local computation to “stitch” the
regions together, updating previously chosen triangles when
necessary to maintain the circumcircle property.

All told, our application comprises some 3200 lines of
C++, in 24 source files. There are three transactional object
types and three static occurrences of transactions. The first
transactional type represents an edge between two points.
The second contains, for a given point, a reference to some
adjacent edge, from which others can be found by following
neighbor links. The third is used to create links in the chains
of a global hash set, used to hold created edges.

The first static transaction protects a call to the edge con-
structor. The second protects the body of a subroutine used
when stitching regions together. The third is used to “recon-
sider” edges that may not satisfy the circumcircle property
in light of subsequent region stitching. Together with called
routines, these transactions comprise 72, 155, and 214 lines
of code, respectively.

3. PERFORMANCE SUMMARY
We have measured the performance of the mesh applica-

tion on both multiprocessor and multicore machines, using 2
different STM systems and both coarse and fine-grain locks.
The original RSTM library [9] uses a level of indirection for
atomic, nonblocking replacement of object versions. The
redo-lock library [11] copies new versions back on top of the
originals at commit time, avoiding the need for indirection
when reading. The CGL (coarse-grain-lock) library forces
“transactions” to compete for a single, global lock, yield-
ing very low overhead in the uncontended case, but no con-
currency. Finally, our FGL (fine-grain-lock) results use the
CGL back end to avoid both overhead and indirection, and
use #ifdefs to replace transactions with critical sections
that acquire per-point locks.



Performance graphs can be found in our forthcoming pa-
per in the benchmarks track of IISWC 2007 [10]. Briefly, on
an 8-core, 32-thread Sun Niagara CMP, maximum speedup
is obtained when triangulating about 200,000 points. Here
the CGL back end takes 8.9s with one active thread (in
which case it reduces to Dwyer’s sequential algorithm), 2.4s
with 8 active threads (speedup of 3.7), and 2.2s (speedup
of 4.1) with 16 active threads. Both absolute times and
speedups are better on our 16-processor SunFire SMP: the
CGL back end achieves a speedup of 7.7 at 16 threads.

FGL and redo-lock times are similar to those of CGL. The
original RSTM back end, however, is roughly 2× slower.
This is a direct consequence of its use of indirection: the
application is memory bound; private (geometrically parti-
tioned) work consumes well over 90% of total run time; and
indirection doubles the cost of accessing transactional ob-
jects, even in private code. (The memory-bound nature of
the application also accounts for better scaling on the SMP
machine, despite comparatively high penalties for coherence
misses.) Our results provide perhaps the strongest evidence
to date in support of indirection-free STM.

4. PROGRAMMING EXPERIENCE
The RSTM API is based on smart pointers [2] and ac-

cessor methods (“getters” and “setters”). These provide
both initial-access and per-access “hooks” into the run-time
system, and serve to catch a wide variety of access errors.
Getters take an extra, “validator” argument that allows us
to perform post-access consistency checks in redo-lock and
other zero-indirection systems.

We have found the API to be a significant improvement
over its predecessor, which was borrowed from DSTM [7].
In particular, smart pointers allow us, using generics, to
create general-purpose functions that can be used in both
transactional and nontransactional contexts. There are 11
such functions in the mesh application. Unfortunately, even
the new API is still quite difficult to use [3].

The most obvious problem is simple awkwardness. Acces-
sors are not a natural way to access fields in C++, though
they could easily be made so with compiler support, as in
C#. Validators, likewise, are pure syntactic clutter. Back
ends that copy objects require methods to create, deacti-
vate, and copy clones. Asking the user to write these exposes
implementation details that ideally should also be hidden.
Our use of generics for transactional/private code sharing
is also cumbersome; a similar effect could be achieved with
compiler-based function cloning. More problematically, our
smart pointers, which come in four different varieties, in-
troduce a level of complexity that seems out of place in a
programming model intended to simplify concurrency.

Awkwardness aside, transactional programs that use our
API must respect several significant restrictions. One can-
not safely escape a transaction in any way other than falling
off the end—no gotos, no breaks, no returns. More signif-
icantly, transactional objects must generally have only triv-
ial constructors and destructors, and only static methods:
A constructor must not, under any circumstances, throw an
exception or conflict with another transaction (which might
cause it to abort). A destructor must not do anything that
has to happen at delete time—the memory manager delays
space reclamation to avoid errors in concurrent transactions.
And since fields must be accessed through smart pointers,
“this” cannot safely be used.

Privatization can be achieved via global consensus (as in
the barriers of the mesh application) or by using a trans-
action to remove an object from a shared container. Such
“privatizing transactions” must be explicitly labeled in our
API, to avoid imposing overheads on non-privatizing code.

Finally, because we are able to instrument only explic-
itly identified transactional objects, nontransactional (non-
shared) objects do not revert their values on abort. This
means, among other things, that a transaction can safely
read or write a nontransactional variable (assuming, in the
latter case, it always writes before committing), but not both.

Like the sources of awkwardness above, almost all these
limitations could be eliminated with appropriate compiler
support. We conclude that library-based STM can be a
valuable tool for experimentation with back-end implemen-
tation techniques, but that the end goal—simple, scalable
thread coordination—will require language integration.

5. REFERENCES
[1] The Rochester Software Transactional Memory

Runtime, 2006.
www.cs.rochester.edu/research/synchronization/rstm/.

[2] A. Alexandrescu. Smart Pointers. In Modern C++
Design: Generic Programming and Design Patterns
Applied, C++ In-Depth Series, chapter 7. Addison
Wesley Professional, 2001.

[3] L. Dalessandro, V. J. Marathe, M. F. Spear, and
M. L. Scott. Capabilities and Limitations of
Library-Based Software Transactional Memory in
C++. 2nd ACM SIGPLAN Workshop on
Transactional Computing, Aug. 2007.

[4] B. Delaunay. Sur la Sphère Vide. Bulletin of the USSR
Academy of Sciences, Classe des Sciences
Mathématiques et Naturelles, 7:793–800, 1934.

[5] R. A. Dwyer. A Faster Divide and Conquer Algorithm
for Constructing Delaunay Triangulation.
Algorithmica, 2:137–151, 1987.

[6] L. Guibas and J. Stolfi. Primitives for the
Manipulation of General Subdivisions and the
Computation of Voronoi Diagrams. ACM Trans. on
Graphics, 4(2):74–123, Apr. 1985.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software Transactional Memory for
Dynamic-sized Data Structures. 22nd ACM Symp. on
Principles of Distributed Computing, July 2003.

[8] M. Kulkarni, L. P. Chew, and K. Pingali. Using
Transactions in Delaunay Mesh Generation. Workshop
on Transactional Memory Workloads, June 2006.

[9] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer III, and M. L. Scott.
Lowering the Overhead of Software Transactional
Memory. ACM SIGPLAN Workshop on Transactional
Computing, June 2006.

[10] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J.
Marathe. Delaunay Triangulation with Transactions
and Barriers. IEEE Intl. Symp. on Workload
Characterization, Benchmarks track, Sept. 2007.

[11] M. F. Spear, A. Shriraman, L. Dalessandro,
S. Dwarkadas, and M. L. Scott. Nonblocking
Transactions Without Indirection Using Alert-
on-Update. 19th ACM Symp. on Parallelism in
Algorithms and Architectures, June 2007.


