
Analysis of Input-Dependent Program Behavior Using
Active Profiling

Xipeng Shen
College of William and Mary

Williamsburg, VA, USA
xshen@cs.wm.edu

Chengliang Zhang
University of Rochester

Rochester, NY, USA
zhangchl@cs.rochester.edu

Chen Ding
University of Rochester

Rochester, NY, USA
cding@cs.rochester.edu

Michael L. Scott
University of Rochester

Rochester, NY, USA
scott@cs.rochester.edu

Sandhya Dwarkadas
University of Rochester

Rochester, NY, USA
sandhya@cs.rochester.edu

Mitsunori Ogihara
University of Rochester

Rochester, NY, USA
ogihara@cs.rochester.edu

ABSTRACT
Utility programs, which perform similar and largely independent
operations on a sequence of inputs, include such common applica-
tions as compilers, interpreters, and document parsers; databases;
and compression and encoding tools. The repetitive behavior of
these programs, while often clear to users, has been difficult to
capture automatically. We present an active profiling technique
in which controlled inputs to utility programs are used to expose
execution phases, which are then marked, automatically, through
binary instrumentation, enabling us to exploit phase transitions in
production runs with arbitrary inputs. We demonstrate the effec-
tiveness and programmability of active profiling via experiments
with six utility programs from the SPEC benchmark suite; compare
to code and interval phases; and describe applications of active pro-
filing to memory management and memory leak detection.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—optimization,
compilers

General Terms
Measurement, Performance, Algorithms

Keywords
program phase analysis and prediction, active profiling, memory
management, dynamic optimization

1. INTRODUCTION
Complex program analysis has evolved from the static analysis

of program invariants to include the modeling of behavior variation
(of the same code) in different portions of the same run or across
different runs. A principal problem for behavior analysis is depen-
dence on program input. Changes in behavior induced by different
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inputs can easily hide those aspects of behavior that are uniform
across inputs, and might profitably be exploited.

Programming environment tools, server applications, user inter-
faces, databases, and interpreters, for example, use dynamic data
and control structures that make it difficult for current static analy-
sis to predict run-time behavior, or for profile-based analysis to pre-
dict behavior on inputs that differ from those used in training runs.
Yet at the same time, many of these programs have repetitive phases
that users understand well at an abstract, intuitive level, even if they
have never seen the source code. Many have the common feature
that they accept, or can be configured to accept, a sequence of re-
quests, each of which is processed more-or-less independently of
the others. We refer to such programs as utilities. Program behavior
differs not only across different inputs but also across different parts
of the same input, making it difficult for traditional analysis tech-
niques to find the phase structure embodied in the code. In many
cases, a phase may span many functions and loops, and different
phases may share the same code.

An example that we will refer to repeatedly is the GNU Gcc
compiler. We use the version included in the SPEC CPU 2000
benchmark set [18]. The source program has 120 files and 222182
lines of C code. Figure 1(a) shows the program speed, measured
in IPC (Instructions Per Cycle) by hardware counters on an IBM
POWER4 machine, for part of the execution of GCC compiling the
input scilab. Part (b) shows the memory usage, measured by the
size of live data, of the same (full) execution. Visual inspection of
both figures suggests that something predictable is going on: the
IPC curve has multiple instances with two high peaks in the middle
and a declining tail, and the memory usage curve is a series of mini-
segments with an identical shape. However, the width and height
of these features differs so much that an automatic technique may
not reliably identify the pattern. The goal of our new analysis is to
identify these repetitions as instances of the same phase, as marked
for the GCC execution in the figure. The analysis should identify
such phases in all executions of a program.

We introduce active profiling, which addresses the phase detec-
tion problem by exploiting the following observation: if we control
the input to a utility program, we can often induce it to display an
artificially regular pattern of behavior that is amenable to automatic
analysis. Based on the regular pattern, the analysis identifies a set
of candidate phase markers and then uses real inputs to filter out
false positives and identify phase behavior representative of normal
usage. Finally, the analysis is repeated to identify inner phases in-
side each outer phase. Active profiling combines input-level user
control and code- and execution-level monitoring and pattern anal-
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Figure 1: (a) IPC curve for part of the execution of GCC compiling the file scilab. Phase boundaries are shown as solid vertical lines.
(b) The size of live data in the execution of GCC compiling scilab. Phase boundaries are marked with circles.

ysis. It is programmable—a user can design inputs to target specific
aspects of program behavior. We will demonstrate this through an
example in Section 4.3.

Many automatic techniques have been developed for phase anal-
ysis, as we will review in Section 6. Highly input-dependent pro-
grams challenge some of the basic assumptions in automatic tech-
niques. For example, most profiling methods use a cut-off thresh-
old to remove from consideration loops and procedures that contain
too few instructions. If the input size may differ by many orders of
magnitude, the threshold may easily be too high or too low for a par-
ticular run. In addition, previous techniques focus on CPU-centric
metrics and look for recurring patterns. It is not always clear how to
include higher-level phenomena like memory allocation and mem-
ory leaks in the analysis. In comparison, active profiling allows a
user to target the analysis for specific behavior, it considers all pro-
gram instructions as possible phase boundaries, and it uses multiple
inputs to improve the results of the analysis.

Utility programs are the ideal target for this study because they
are widely used and commercially important, and because users
naturally understand the relationship between inputs and top-level
phases. Our technique, which is fully automated, works on pro-
grams in binary form. No knowledge of loop or function structure
is required, so a user can apply it to legacy code. Because users
control the selection of regular inputs, active profiling can also be
used to build specialized versions of utility programs for different
purposes, breaking away from the traditional “one-binary-fits-all”
program model.

We evaluate our techniques on five utility programs from the
SPEC benchmark suites and show behavior variation within an ex-
ecution and across different runs. We demonstrate the programma-
bility of active profiling. We also compare behavior phases found
through active profiling with phases based on static program struc-
ture (functions and loop nests) and on run-time execution intervals.
Finally, we describe our earlier results on the use of behavior phases
in improving the performance of garbage collection and detecting
memory leaks [15].

2. TERMINOLOGY
We define a program behavior phase as follows. First, a phase

is a unit of predictable behavior in that its instances, each of which
is a continuous segment of program execution, are similar in some
important respect. Note that different authors define “phase” in dif-
ferent ways. Our definition includes phases whose behavior can
potentially be very nonuniform and whose length can vary by any
degree. Some authors, particularly those interested in fine-grain

architectural adaptation, define a phase to be an interval, often of
bounded length, whose behavior is uniform in some important re-
spect (e.g., instruction mix or cache miss rate).

A phase marker is a basic block in program code such that if it
executes, an instance of the phase it marks must follow. Instances
of different behavior phases do not overlap in time. They can nest,
in which case we call the phase of the enclosing instance the outer
phase and the phase of an enclosed instance an inner phase. Com-
pilation, for example, is an outer phase that contains inner phases
for parsing and semantic analysis, data flow analysis, register allo-
cation, and instruction scheduling.

The goal of phase detection is to identify the phase markers in
a program. The objective of phase prediction is to predict the be-
havior of a coming phase instance. A typical method is to use past
instances of a phase to predict its future instances, hence the impor-
tance of similarity among the instances of a phase.

3. ACTIVE PROFILING
There are two main steps in active profiling: constructing regular

inputs and selecting phase markers.

3.1 Constructing regular inputs
In utility programs, phases have variable length and behavior as

shown for GCC in Figure 1. We can induce regularity, however,
by issuing a sequence of identical (or nearly identical) requests—in
GCC, by compiling a sequence of almost-identical functions. The
resulting IPC curve is shown in Figure 2. Solid and broken verti-
cal lines indicate outermost and inner phase boundaries that will be
identified by our analysis. The fact that behavior repeats a predeter-
mined number of times (the number of input requests) is critical to
the analysis.

A utility program provides an interface through which to make
requests and supply data. The interface can be viewed as a mini-
language. It can be as simple as a command as in a shell program
or a stream of bytes as in a data compression program. It can also
be as complicated as a full-fledged programming language, as for
example, in a Java interpreter or a processor simulator.

To produce a sequence of identical requests, we can often just
repeat a request if the service is stateless such as file compression.
Care must be taken, however, when the service stores information
about requests. A compiler generally requires that all input func-
tions in a file have unique names, so we replicate the same function
but give each a different name. A database changes state as a result
of insertions and deletions, so we balance insertions and deletions
or use inputs containing only lookups.
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Figure 2: IPC curve of GCC on an artificial regular input, with
instances of the outer phase (solid vertical lines) and instances
of inner phases (broken vertical lines).

The appropriate selection of regular inputs is important not only
to capture typical program behavior, but also to target analysis at
subcomponents of a program. For example, in GCC, if we are es-
pecially interested in the compilation of loops, we can construct
a regular input with a single function that has nothing but a se-
quence of identical loops. Phase detection can then identify the
inner phases devoted to loop compilation. By constructing special
inputs, not only do we isolate the behavior of a sub-component of
a service, we can also link the behavior to the content of a request.
We will discuss the use of targeted analysis for a Perl interpreter in
Section 4.3.

3.2 Selecting phase markers
The second phase of active profiling is fully automatic. It finds

phase markers in three steps. The first step searches for candidate
markers in the trace induced by a regular input. The second uses
real inputs to remove false positives. Finally, the third step repeats
the analysis to find inner phases.

Given a trace of basic blocks executed when running on a regular
input of f identical requests, the first step selects only basic blocks
that are executed exactly f times. Not all such blocks represent ac-
tual phase boundaries. A block may happen to be executed f times
during initialization, finalization, memory allocation, or garbage
collection. Next, the analysis checks whether the f instances of
a basic block have an even distance between them. It measures the
f−1 inter-occurrence distances for each block, calculates the mean
and standard deviation of all distances, and discards blocks whose
values are outliers (see the algorithm in Figure 4).

The remaining code blocks all have f evenly spaced occurrences,
but still some may not be phase markers. In GCC, for example, the
identical functions in the input may each contain a branch state-
ment. Code to parse a branch may thus occur once per request with
this input, but not with other inputs. In Step 2, the analysis checks
whether a block occurs consistently in different inputs. It uses a
real input containing g (non-identical) requests. It measures the ex-
ecution frequency of the candidate blocks and keeps only those that
are executed g times. Usually one real input is enough to remove
all false positives, but this step can be repeated an arbitrary number
of times to make use of all available inputs. At the end of Step 2,
the analysis picks the first block in the remaining block sequence as
the marker of the outermost phase.

The other blocks may mark interesting points within the outer-
most phase. In Step 3, the analysis selects inner phases of a non-
trivial length and picks a marker for each inner phase. To illustrate
we take the following trace as an example:
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Figure 3: GCC inner-phase candidates with inner-phase bound-
aries.

basic block trace: . . . 8 10 . . . 9 100 . . .
logical time: . . . 10 110 . . . 200 210 . . .

gap size: 100 . . . 10

In the basic block trace, each number represents a basic block. The
logical time is measured by the number of instructions executed.
The size of a gap is the difference between the logical times of two
adjacent basic blocks in the trace. Assuming 20 and 10 are the mean
and standard deviation of the size of all the gaps in the trace, the gap
between block 8 and block 10 is more than 3 standard deviations
larger than the mean, so we select it as an inner phase instance and
take block 8 as the marker for that inner phase. In comparison, the
gap between block 9 and block 100 is too small to be considered an
inner phase. Figure 3 shows a trace of GCC on regular input. Each
circle on the graph represents an instance of a candidate inner phase
marker. The vertical lines separate the inner phase instances.

4. EVALUATION
This section reports active profiling results on a set of five utility

programs. It shows behavior variation both within a single run and
across different runs. It gives an example of programmable phase
analysis. It compares behavior phases with procedure and interval
phases. Finally, it demonstrates two uses of behavior phases.

Table 1: Benchmarks.
Benchmark Description Source
Compress UNIX compression utility SPEC95Int
GCC GNU C compiler 2.5.3 SPEC2KInt
LI XLisp interpreter SPEC95Int
Parser natural language parser SPEC2KInt
Vortex object oriented database SPEC2KInt
Perl Perl interpreter SPEC2KInt

4.1 Experimental settings
We test six utility programs (Table 4) from the SPEC 95 and 2K

benchmark suites: a file compression utility, a compiler, two inter-
preters, a natural language parser, and an object-oriented database.
Three other utility programs—two more compression utilities—exist
in these suites. We have not yet experimented with them because
they do not contribute a new application type. All test programs are
written in C. Phase analysis is applied to the binary code.
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Data Structure
innerMarkers : the set of inner phase markers
outerMarker : the outermost phase marker
traceR : the basic block trace recorded in the regular training run
traceI : the basic block trace recorded in the normal (irregular) training run
RQSTR : the number of requests in the regular input
RQSTI : the number of requests in the normal input
setB : the set of all basic blocks in the program
setB1, setB2, setB3 : three initialy empty sets
bi : a basic block in setB
timeR(bi, j) : the instructions executed so far when bi is accessed for the jth time
Vi =< Vi

1, Vi
2, . . . , Vi

k > : the recurring distance vector of basic block bi in traceR, where Vi
j = timeR(bi, j + 1) − timeR(bi, j)

Algorithm
step 1) Select basic blocks that appear RQSTR times in traceR and put them into setB1.
step 2a) From setB1, select basic blocks whose recurring distance pattern is similar to the majority and put them into setB2.
step 2b) From setB2, select basic blocks that appear RQSTI times in traceI and put them into setB3.
step 3) From setB3, select basic blocks that are followed by a long computation in traceR before reaching any block in setB3

and put those blocks into innerMarkers; outerMarker is the block in innerMarkers that first appears in traceR.
Procedure Step2a()
// M and D are two initially empty arrays

for every bi in setB1 {
Vi = GetRecurringDistances(bi, traceR);
mi = GetMean(Vi);
di = GetStandardDeviation(Vi);
M .Insert(mi);
D.Insert(di); }

if (!IsOutlier(mi,M ) && !IsOutlier(di,D)) {
setB2.AddMember(bi); }

End

Procedure IsOutlier(x, S)
// S is a container of values
m = GetMean(S);
d = GetStandardDeviation(S);
if (|x − m| > 3 ∗ d) return true;
return false;

End

Figure 4: Algorithm for phase marker selection and procedures for recurring-distance filtering.

We construct regular inputs as follows. For GCC we use a file
containing 4 identical functions, each with the same long sequence
of loops. For Compress, which is written to compress and decom-
press the same input 25 times, we provide a file that is 1% of the size
of the reference input in the benchmark suite. For LI, we provide
6 identical expressions, each containing a large number (34945)
of identical sub-expressions. For Parser, we provide 6 copies of
the sentence “John is more likely that Joe died than it is that Fred
died.” (That admittedly nonsensical sentence is drawn from the ref-
erence input and, not surprisingly, takes an unusually long time to
parse.) The regular input for Vortex is a database and 3 iterations of
lookups. Since the input is part of the program, we modify the code
so that it performs only lookups but neither insertions nor deletions
in each iteration.

We use ATOM [30] to instrument programs for the phase anal-
ysis on a decade-old Digital Alpha machine, but measure program
behavior on a modern IBM POWER4 using its hardware perfor-
mance counters, which are automatically read every 10ms. Not all
hardware events can be measured simultaneously. We collect cache
miss rates and IPC (in a single run) at the boundaries of program
phases and, within phases, at 10ms intervals.

4.2 Behavior variation in utility programs
We first report GCC’s phases in detail as it is the most complex

example. Then we briefly discuss the results of other programs.
GCC comprises 120 files and 222182 lines of C code. The phase

detection technique successfully finds the outermost phase, which
begins the compilation of an input function. We also find 9 inner
phases. Though the analysis tool never considers source code, for
the sake of curiosity we mapped the automatically inserted markers
back into the source, where we confirmed that the markers separate

standard compilation stages.
The first phase ends at the end of function “loop optimize”, which

performs loop optimization on the current function. The second
phase ends in the middle of function “rest of compilation”, where
the second pass of common sub-expression elimination completes.
The third and fourth phases both end in function “life analysis”,
which determines the set of live registers at the start of each basic
block and propagates this information inside the basic block. The
two phase markers are separated by an analysis pass, which exam-
ines each basic block, deletes dead stores, generates auto-increment
addressing, and records the frequency at which a register is de-
fined, used, and redefined. The fifth phase ends in function “sched-
ule insns”, which schedules instructions block by block. The sixth
ends at the end of function “global alloc”, which allocates pseudo-
registers. The seventh ends in the same function as the fifth marker,
“schedule insns”. However, the two phase markers are in different
branches, and each invocation triggers one sub-phase but not the
other. The two sub-phases are executed through two calls to this
function (only two calls per compilation of a function), separated
by the sixth marker in “global alloc”, among other function calls.
The eighth phase ends in the middle of function “dbr schedule”,
which places instructions into delay slots. The last phase covers
the remainder of the compilation process. Given the complexity of
the code, manual phase marking would be extremely difficult for
someone who does not know the program well. Even for an expert
in GCC, it might not be easy to identify sub-phases that occupy
large portions of the execution time, of roughly equal magnitude.

The variation of IPC for three executions is shown in Figure 5.
If we count the number of instances of the outermost phase, the in-
put scilab has 246, the input 200 has 211, and the input 166 has
just 11. We show the execution of the outermost phase marker by
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Figure 5: The IPC curves of different GCC runs with phase instances separated by solid vertical lines (for the outermost phase) and
dotted vertical lines (for inner phases). The length of instances varies greatly but the length distribution will be similar as shown in
Figure 6.

solid vertical lines and the execution of inner phase markers by dot-
ted vertical lines. For legibility, we show the full execution of 200
without line marks and an enlarged segment with the lines.

Active profiling accurately captures the variation and repetition
of program behavior, even when the shape of the curve is not ex-
actly identical from instance to instance or from input to input. The
analysis is done once using regular and real training inputs. The
phase marking in other inputs does not require additional analysis.

The length of phase instances varies greatly both within the same
input and across inputs. Figure 6 shows histograms of the length (on
a logarithmic scale) and IPC (on a linear scale) for the 246 instances
of the input scilab.i in the top two graphs, the 211 instances of the
input 200.i in the middle two graphs, and the 11 instances of the
input 166.i in the bottom two graphs. The execution length ranges
from 6 million instructions to 10 billion instructions, while the IPC
ranges between 0.5 and 1.0. The center of the distribution is similar,
showing that most functions in the input file take around 30 million
instructions to compile and have an IPC of 0.7.

Figure 6 shows that despite of the wide variation, the lengths and
IPC have a similar distribution especially in the two inputs that have
a large number of phase instances. This cross-input regularity can
also be seen by the average IPC, shown in Figure 7. The IPC of 9
inner-phases ranges from below 0.5 to over 1.2 but the difference
from input to input is less than 0.1 for the same sub-phase. The
average of the whole execution is almost identical.

Next we show similar measurements for the other four programs
we have tested. Figure 8 shows phase behavior in a Lisp interpreter,
LI, and an English parser, Parser. Unlike GCC, the two programs
do not have clear sub-phases with different IPC. The 271 phase
instances of LI have highly varied length and IPC, but the 43 in-
stances of Parser have mostly the same length and the same IPC,
as shown by the histograms in Figure 8. Finally, Figure 9 shows
the IPC curves of Compress and Vortex, with two sub-phases in the

former and 13 sub-phases in the latter.
Without phase markers, it seems unlikely that one could recog-

nize repeating behavior in these programs. We would almost cer-
tainly overlook similarity between periods of 6 million and 10 bil-
lion instructions. If we just measured the average behavior of the
execution, we would effectively capture only the behavior of the
few largest processing steps and not the behavior variation of all
steps. Sampling-based techniques would be similarly dominated
by the longest phases.

4.3 Programmability
Though our active analysis tool is usually employed in a fully

automated form (the user provides a regular input and a few real
inputs, and the tool comes back with an instrumented binary), we
can invoke the sub-tasks individually to explore specific aspects of
an application. This is one of the unique features of active profiling.

As an example, consider the Perl interpreter. The installed ver-
sion in our system directory has 27 thousand basic blocks and has
been stripped of all debugging information. Perl interprets one pro-
gram at a time, so it does not have outermost phases as other pro-
grams do. In hopes of exploring how the interpreter processes func-
tion calls, however, we created a regular 30-line input containing 10
identical calls. Given this input, the regularity checking tool (step 1
of Section 3.2) identified 296 candidate marker blocks. We then cre-
ated a 10-line irregular program containing three calls to two differ-
ent functions. The consistency checking tool (step 2) subsequently
found that 78 of the 296 candidates appeared consistently. Choos-
ing one of these blocks at random (number 5410, specifically), we
tested a third input, written to recursively sum the numbers from
1 to 10 in 11 calls. Block 5410 was executed exactly 11 times.
This experience illustrates the power of active profiling to identify
high-level patterns in low-level code, even when subsumed within
extraneous computation.
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Figure 6: The number of instructions and the average IPC for the phase instances occurred in the three inputs, which have 246, 211,
and 11 phase instances respectively. The numbers have similar ranges, and the distributions, although not identical, have their peaks
in the same range.

A once-per-procedure marker in the interpreter could be used as
a “hook” for various analyses related to procedures. It could, for
example, enable subsequent analysis to measure time and mem-
ory overhead, monitor resource consumption, correlate results from
different test runs, or localize the source of time, space, or other
anomalies.

4.4 Comparison with procedure and interval
phases

Program phase analysis takes a loop, subroutine, or other code
structure as a phase [3, 17, 20, 23, 24, 25]. For the experiment re-
ported here, we focus on procedure phases and follow the scheme of
Huang et al., who picked subroutines using the thresholds θweight

and θgrain [20]. Assume the execution length is T . Their scheme
picks a subroutine p as a phase if the cumulative time spent in p

scilab
200
166

Average IPC of sub−phases

sub−phases

ins
tru

cti
on

s p
er

 cy
cle

0.0
0.2

0.4
0.6

0.8
1.0

1.2

1 2 3 4 5 6 7 8 9 all
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across three inputs.
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(including its callees) is no less than θweightT and the average time
per invocation no less than θgrainT . In other words, the subroutine
is significant and does not incur an excessive overhead. Huang et
al. used 5% for θweight and 10K instructions for θgrainT . Georges
et al. made the threshold selection adaptive based on individual pro-
grams, the tolerable overhead, and the need of a user [17]. They
studied the behavior variation of the procedure phases for a set of
Java programs. Lau et al. considered loops and call sites in addi-
tion to subroutines, removed the code unit from consideration if the
average size was below a threshold, and then selected code units
whose behavior variation is within the average variation of all re-
maining code units [23].

Interval analysis divides an execution into fixed-size windows,
classifies past intervals using machine or code-based metrics, and
predicts the class of future intervals using last value, Markov, or
table-driven predictors [3, 14, 16, 29]. Most though not all past
studies (with the exception of [4]) use a fixed interval length for all
executions of all programs, for example, 10 million or 100 million
instructions.

Fully automatic techniques are rigid in that they are pre-pro-
grammed to look for specific patterns. Active profiling relies in
part on the user input. As a result, it uses fewer empirically tuned
thresholds—only the one commonly used for identifying outliers
(described in Section 3.2). In our test set, the number of outermost
phase instances ranges from 3 (corresponding to database queries)
in Vortex to 850 (corresponding to input sentences) in Parser. We
believe it is unlikely that an automatic method with a single set of
thresholds could uncover phases with such wide variation in num-
ber. Without a priori knowledge about the number of phase in-
stances, it is difficult to set a single appropriate value for θgrain in
procedure analysis or for interval length in interval-based analysis.

User control has two other important benefits. First, active pro-
filing can be used to target specific components of a program. Sec-
ond, it can identify phases in memory reference behavior that have
no simple patterns. On the other hand, active profiling needs the
manual efforts of a user to provide regular inputs. It is not suitable
for the uses when full automation is desired.

We should note that the extension to procedure analysis by Lau
et al. may improve the predictability of procedure phases. In fact,
the phase markers found by the method of Lau et al. [23] for GCC
include some of the markers found by active profiling. However,
they found more phases (30 in 166), and the markers were executed
with a different frequency.

A quantitative comparison.
While behavior may vary widely within a phase, average behav-

ior across all instances of a phase should be highly uniform. In
our experiments we compare the cache hit rate and IPC of phase
instances identified by different methods. Specifically, we com-
pute the coefficient of variation (CoV) among phase instances. CoV
measures how widely spread a normal distribution is relative to its
mean, calculated as the standard deviation divided by the mean. If
one uses the average of a phase’s instances as its behavior predic-
tion, the CoV is the expected difference between the prediction and
the actual value of each phase.

It should be noted that different metrics—and thus different anal-
ysis techniques—may be appropriate for other forms of optimiza-
tion (e.g., fine-grain tuning of dynamically configurable proces-
sors). Better prediction accuracy on some metrics does not imply a
better program or a better system. Depending on the use, one type
of phase may be better than another type.

The comparison includes adaptive profiling, the implementation
of procedure analysis following [20], and an implementation of

interval-based analysis. For purposes of comparison, we select the
interval length for each program in our experiments so that the to-
tal number of intervals equals the number of inner behavior phase
instances identified by active profiling. Instead of using specific
interval phase methods, we calculate the upper bound across all
possible methods using an optimal partitioning, approximated by
k-means clustering. We measure most of the metrics using hard-
ware counters on an IBM POWER4 machine. Since the counter
results are not accurate for execution lengths shorter than 10ms, we
excluded phase instances whose lengths are below 10ms.

Unlike the other methods, the results for procedure phases are
obtained via simulation. Since some of the procedures are library
routines, we would require binary instrumentation to obtain equiva-
lent results from hardware counters. We use simulation because we
lack an instrumentation tool for the IBM machine.

Figure 10 contains the CoVs of cache hit rates and IPCs.1 Each
program is represented by a group of floating bars. Each bar shows
the CoV of a phase analysis method. When a program has multiple
inner phases, the two end points of a bar show the maximum and
minimum and the circle shows the average. The three potential bars
in each group show the CoVs of behavior phases, procedure phases,
and intervals with k-means clustering (the best possible prediction
given the number of clusters).

Among all the approaches, adaptive profiling provides phases
with the smallest average variations for 3 programs, Compress, LI,
and Parser, on both cache hit rates and IPC. Its results on the other
two programs, GCC and Vortex, are within 3% of the best ones from
the clustered interval method. However, the variation range of the
phases from the clustered interval method is much larger than that
from active profiling for GCC. On average across all programs, the
phases from active profiling have the smallest variation, while the
basic interval method has the largest. Procedure-based phases show
the largest variation ranges.

It is worth noting that Compress has two sub-phases, whose cache
hit rates are always about 88% and 90% respectively. However, be-
cause different instances have different lengths, when divided into
fixed-length intervals, the smallest and average CoV from inter-
val phases are 0.7% and 0.9%, much larger than those of behavior
phases, which are 0.15% and 0.21%. The reason that interval meth-
ods beat adaptive profiling on Vortex is because the interval length
happens to suit this program.

5. USES OF BEHAVIOR PHASES
Active profiling allows a programmer to analyze and improve

high-level behavior of a program. In this section, we describe our
preliminary results on preventive memory management and mem-
ory leak detection.

5.1 Preventive memory management
A behavior phase of a utility program often represents a memory

usage cycle, in which temporary data are allocated in early parts of
a phase and are dead by the end of the phase. This suggests that
garbage collection will be most efficient when run at the end of a
behavior phase, when the fraction of memory devoted to garbage
is likely to be highest. Conversely, garbage collection should run
in the middle of a phase only if the heap size reaches the hard
upper bound on the available memory. This “preventive” scheme
differs from typical reactive schemes, which invoke garbage collec-
tion (GC) when the heap size reaches a soft upper bound. By using

1We do not include the procedure-based method for IPC since it is
based on simulation and therefore could not be directly compared
to the real measurement of IPCs in the other three cases.
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Figure 10: Behavior consistency of three types of phases, calculated as the coefficient of variance among instances of each phase.
For each program, the range of CoV across all inner phases is shown by a floating bar where the two end points are maximum and
minimum and the circle is the average. A lower CoV and a smaller range mean more consistent behavior. Part (b) shows the CoV of
IPC.

phase information, preventive GC adapts to the natural needs of an
application without requiring empirical thresholds.

We have implemented preventive garbage collection, applied it to
the Lisp interpreter LI, and tested the performance on an Intel Pen-
tium 4 workstation (2.8 GHz CPU, 1GB RAM). We used both the
training and the reference inputs. The execution time of the entire
program is shown in Table 2. Using preventive GC, the program
outperforms the version using reactive GC by 44% for the refer-
ence input and a factor of 3 for the training input. For the reference
input, the faster execution time is due mainly to fewer GC passes.
Preventive GC passes are 3 times fewer than reactive ones for the
training input and 111 times fewer for the reference input.

To be fair, we note that the (111 times) fewer GC passes in the
reference input leads to (on average 36 times) more memory usage,
as shown by the column “avg” in Table 2. Existing reactive garbage
collectors may yield similar performance by giving the program as
large a heap size. Still, the preventive scheme is simpler because
it does not use empirically tuned thresholds. It is based on the
high-level program behavior pattern. The training input shows an
intriguing potential—the program runs 50% faster with preventive
GC (despite its 47 collection calls) than it does without any GC.
The faster execution is achieved with less than half of the memory,
possibly due to better locality as a result of preventive GC.

The garbage collection hints by Buytaert et al. work in a similar
way [9]. They use procedure-based phase analysis to insert GC
hints at the Java method local minima in term of live data size. The
live-data curves of the programs they used show a regular recurring
pattern, which is not the case for the programs in this work. We
believe that active profiling can be used to augment their system and
to improve garbage collection for a broader class of applications.

5.2 Memory leak detection
Given that a behavior phase often represent a memory usage cy-

cle, we apply it for memory leak detection. Through profiling, our
analysis identifies all allocation sites that contribute to the long-
term memory increase. We classify dynamic objects as either phase
local, if their first and last accesses are within an (outermost) phase
instance, hibernating, if they are used in a phase instance and then
have no use until the last phase instance of the execution, or global
if they are used by multiple phase instances.

If a site allocates only phase-local objects during profiling, and
if not all its objects are freed at the end a phase, it is likely that
the remaining objects are memory leaks. If a site allocates only hi-
bernating objects, it is likely that we can avoid storing the object

for more than one phase either by moving the last use early or by
storing the object to disk and reloading it at the end. Less inva-
sively, we can group objects that are likely to have no accesses for
a common long period of time and place them on the same virtual
memory page. Object grouping does not reduce the size of live data
but it reduces the amount of physical memory usage because the
unused page can be stored to disk by the operating system. Object
grouping may also reduce energy consumption without degrading
performance if memory pages can be placed in sleep mode.

Following is a sample report that shows a dynamic memory al-
location site identified by its call stack. The middle line shows the
number and size of freed and unfreed objects allocated from this
site and the bottom part shows the object classes. This site allocates
18 objects, with 14 of them reclaimed later. Since all 18 objects are
phase local in this execution, it is likely that the 4 remaining objects
are memory leaks. Reclaiming these four objects would save 16KB
memory without affecting the correctness of this execution. After
testing many inputs, we found that all objects reclaimed by GCC
are phase local objects. If an object is not reclaimed at the end of
its creation phase instance, it will not be reclaimed by the program.

alloc. site: 44682@xmalloc<149684@_obstack_
newchunk<149684@rtx_alloc<
155387@gen_rtx<352158@gen_jump<
84096@proc_at_0x120082260<
83994@expand_goto<4308@yyparse<
45674@proc_at_0x12005c390<
48606@main<390536@__start<

4/16288 unfreed, 14/57008 freed.
freed unfreed

phase local 14/ 57008 4/ 16288
hibernating 0/ 0 0/ 0

global 0/ 0 0/ 0

Monitoring techniques have been used by both research and com-
mercial systems to detect memory leaks. Chilimbi and Hauswirth
developed sampling-based on-line detection, where an object is con-
sidered a possible leak if it is not accessed for a long time [10].
Bond and McKinley used one-bit encoding to trace leaked objects
to their allocation sites [7]. Phase analysis can help these and other
techniques by enabling them to examine not just physical time but
also the stage of the execution. This is especially useful for utility
programs because the length of phase instances may differ by or-
ders of magnitude. In addition, phase-based techniques may help
to recognize and separate hibernating objects, to reduce the size of
active memory a program needs, and consequently to improve data
locality and reduce resource and energy demand. Like all profiling
techniques, of course, this method is incomplete: it cannot detect
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Table 2: Comparison of the execution time between preventive and reactive GC
program GC exe. time (sec) per-phase heap size (1K) total total mem. (1K)
inputs methods Pentium 4 max avg GC calls visited by GC

ref. preventive 13.58 16010 398 281 111883
reactive 19.5 17 11 31984 387511
no GC 12.15 106810 55541 0 0

train preventive 0.02 233 8 47 382
reactive 0.07 9 3 159 1207
no GC 0.03 241 18 0 0

leaks that don’t appear in the profiling runs.

6. RELATED WORK
The key uniqueness of active profiling is that it connects users’

high-level understanding of a program with automatic phase analy-
sis by using controlled inputs. As a result, it is independent of pa-
rameters, customizable to users’ needs, and robust to the complex-
ity of behavior patterns. We discuss its detailed differences from
other phase analysis below.

Locality phases Early phase analysis was aimed at virtual mem-
ory management and was intertwined with locality analysis. In
1976, Batson and Madison defined a phase as a period of execu-
tion accessing a subset of program data [6]. Bunt et al. measured
the change of locality as a function of page sizes (called the locality
curve) in hand marked hierarchical phases [8]. Using the PSIMUL
tool at IBM, Darema et al. showed recurring memory-access pat-
terns in parallel scientific programs [13]. These studies did not pre-
dict locality phases. Later studies used time or reuse distance as
well as predictors such as Markov models to improve virtual mem-
ory management. Shen et al. used reuse distance to model program
behavior as a signal, applied wavelet filtering, and marked recurring
phases in programs [28]. For this technique to work, programs must
exhibit repeating behavior. With active profiling, we are able to tar-
get utility programs, whose locality and phase length are typically
input-dependent, and therefore not regular or uniform.

Program phases Balasubramonian et al. [3], Huang et al. [20,
24], and Magklis et al. [25] selected as program phases procedures,
loops, and code blocks whose number of instructions exceeds a
given threshold during execution. For Java programs, Georges et
al. selected as phases those procedures that display low variance in
execution time or cache miss rate [17]. It is not easy for a method
that uses fixed thresholds to determine the expected size or behav-
ior variance for phases of a utility program when one has no control
over the input. For example, instances of a compilation phase may
have very different execution length and memory usage.

Lau et al. considered loops, procedures, and call sites as possi-
ble phase markers if the variance of their behavior is lower than
a relative threshold, which is the average variance plus the stan-
dard deviation [23]. The technique may capture regular repetitions
more efficiently than the wavelet analysis [28]. The use of a relative
threshold makes it flexible enough to capture phases with an input
dependent length. It is also fully automatic. The analysis is general,
but it does not target specific behavior cycles such as high-level data
reuse [28] and user specified behaviors. Active profiling relies on
user input but also permits a user to target specific behavior, for ex-
ample, to find a code marker that signals the interpretation of a loop
in a Perl program.

Allen and Cocke pioneered interval analysis to model a program
as a hierarchy of regions [2]. Hsu and Kremer used program regions
to control processor voltages to save energy. Their regions may
span loops and functions and are guaranteed to be an atomic unit of

execution under all program inputs [19].
In comparison to the above techniques, active profiling does not

rely on the static program structure. It considers all program state-
ments as possible phase boundaries. We found that in GCC, some
sub-phase boundaries were methods called inside one branch of a
conditional statement. In addition, active profiling permits a user
to target specific behavior such as data reuse and memory alloca-
tion cycles. Finally, active profiling examines multiple inputs to
improve the quality of code markers.

Interval phases Interval methods divide an execution into fixed-
size windows, classify past intervals using machine or code-based
metrics, and predict the behavior of future intervals using last value,
Markov, or table-driven predictors (e.g., [3, 14, 16, 29]). Balasub-
ramonian et al. [4] dynamically adjust the size of the interval based
on behavior predictability/sensitivity. However, since the intervals
don’t match phase boundaries, the result may be an averaging of
behavior across several phases. Duesterwald et al. gave a classifica-
tion of these schemes [16]. Nagpurkar et al. proposed a framework
for online phase detection and explored the parameter space [26].
A fixed interval may not match the phase length in all programs un-
der all inputs. Our technique finds variable-length phases in utility
programs. It targets program level transformations such as mem-
ory management and parallelization, so it is designed for different
purposes than interval phase analysis is.

Training-based analysis Balasundaram et al. used microkernels
to build a parameterized model in a method called training sets [5].
The model was used to select data partitioning schemes. Ahn and
Vetter analyzed various program behavior metrics through statisti-
cal analysis including two types of clustering, factoring, and princi-
ple component analysis [1]. Different metrics were also correlated
with linear models (with non-linear components) by Rodriguez et
al. [27], queuing models by Jacquet et al. [22], and (logical) per-
formance predicates by Crovella and LeBlanc [11, 12]. Ipek et al.
combined observations automatically into predictive models by ap-
plying general multilayer neural networks on tens to thousands of
training results [21]. Their model also predicts the accuracy of the
prediction. Active profiling associates program points with input-
dependent behavior and may use the existing models to predict the
effect of different inputs.

7. CONCLUSIONS
The paper has presented active profiling for phase analysis in util-

ity programs, such as compilers, interpreters, compression and en-
coding tools, databases, and document parsers2. Using deliberately
regular inputs, active profiling exposes top-level phases, which are
then marked via binary instrumentation and verified with irregular
inputs. The technique requires no access to source code, no spe-
cial hardware support, no user knowledge of internal application

2A Linux version of the software is available at
http://www.cs.wm.edu/ xshen/Software/ActiveProf
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structure, and no user intervention beyond the selection of inputs.
By reliably marking large-scale program phases, active profiling
enables the implementation of promising new program improve-
ment techniques, including preventive garbage collection (resulting
in improved performance relative to standard reactive collection)
and memory leak detection.

Beyond the realm of behavior characterization and memory man-
agement, we have used active profiling to speculatively execute the
phases of utility programs in parallel, obtaining nontrivial speedups
from legacy code. As future work, we hope to explore additional
optimizations, and to identify additional classes of programs ame-
nable to profiling with intentionally crafted inputs.
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